
HAL Id: hal-02476585
https://hal.science/hal-02476585

Submitted on 6 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Maximal Good Step Graph Methods for Reducing the
Generation of the State Space

Hao Dou, Kamel Barkaoui, Hanifa Boucheneb, Xiaoning Jiang, Shouguang
Wang

To cite this version:
Hao Dou, Kamel Barkaoui, Hanifa Boucheneb, Xiaoning Jiang, Shouguang Wang. Maximal Good Step
Graph Methods for Reducing the Generation of the State Space. IEEE Access, 2019, 7, pp.155805-
155817. �10.1109/ACCESS.2019.2948986�. �hal-02476585�

https://hal.science/hal-02476585
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Received September 29, 2019, accepted October 15, 2019, date of publication October 23, 2019, date of current version November 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2948986

Maximal Good Step Graph Methods for Reducing
the Generation of the State Space
HAO DOU1, KAMEL BARKAOUI 2, HANIFA BOUCHENEB3, XIAONING JIANG1,
AND SHOUGUANG WANG 1, (Senior Member, IEEE)
1School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
2Cedric Laboratory, Computer Science Department, Conservatoire National des Arts et Métiers, 75141 Paris, France
3Laboratoire VeriForm, Department of Computer Engineering and Software Engineering, École Polytechnique de Montréal, Montréal, QC H3C 3A7, Canada

Corresponding author: Shouguang Wang (wsg5000@hotmail.com)

This work was supported in part by the Zhejiang Provincial Key Research and Development Program of China under Grant 2018C01084.

ABSTRACT This paper proposes an effective method based on the two main partial order techniques which
are persistent sets and covering step graph techniques, to deal with the state explosion problem. First, we
introduce a new definition of sound steps, the firing of which enables to extremely reduce the state space.
Then, we propose a weaker sufficient condition about how to find the set of sound steps at each current
marking. Next, we illustrate the relation between maximal sound steps and persistent sets, and propose a
concept of good steps. Based on the maximal sound steps and good steps, a construction algorithm for
generating a maximal good step graph (MGSG) of a Petri net (PN) is established. This algorithm first
computes the maximal good step at each marking if there exists one, otherwise maximal sound steps are
fired at the marking. Furthermore, we have proven that an MGSG can effectively preserve deadlocks of a
Petri net. Finally, the change performance evaluation is made to demonstrate the superiority of our proposed
method, compared with other related partial order techniques.

INDEX TERMS Petri nets, state explosion problem, covering step graph methods, persistent sets.

I. INTRODUCTION
Concurrent systems [1]–[3] are composed of several subsys-
tems operating in parallel and they are especially difficult
to be designed or analyzed in the real world [4]–[9]. Thus,
the design correctness of concurrent systems needs to be
checked via the verification.

The state space exploration method [10]–[14] is one of the
most widely used techniques for the verification of finite-state
concurrent systems. However, there exists an obstacle in
the application of this technique, which is the state-space
explosion. This problem is mainly caused by the interleaving
semantics of concurrent systems, i.e., all firing orders of
concurrent transitions are explored exhaustively, during the
application of such technique. Actually, many researchers
have studied strategies fighting for this problem and several
different techniques are proposed such as compositional ver-
ification, symmetric reduction, abstraction and partial order
reduction.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwu Li .

The partial order reduction [38]–[55] has been proven to
be the most successful strategy for alleviating the state-space
explosion in practice [54]. It can utilize the indepen-
dence of concurrent execution to eliminate some interme-
diate states [56]–[57]. More precisely, there is no need
to explore all interleaving semantics possessing identical
concurrent execution, when analyzing properties of interest
(deadlock freeness [17]–[27], reachability [28]–[32], live-
ness [33]–[37], or linear properties [38]).Note that partial
order reduction techniques, such as stubborn sets [46]–[48],
sleep sets [43], ample sets [49]–[50], persistent sets [42]–[43]
and covering step graphs [52], preserve deadlocks of Petri
nets (PNs) [15]–[16] at least.

The covering step graph methods explore all the transitions
of the state space and concurrent ones are put together to
constitute an atomic step. They aim to reduce the depth
of the marking graph while the purpose of the persistent
sets is to reduce its breadth. The persistent sets are intro-
duced in [42], [43], which are particular stubborn sets. Dif-
ferent from the covering steps, persistent sets only explore
enabled transitions at each marking. To make full advantage
of both methods, Ribet et al. [53] present a persistent step

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 155805

https://orcid.org/0000-0001-7175-0448
https://orcid.org/0000-0002-8998-0433
https://orcid.org/0000-0003-1547-5503

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

graph (PSG) which can both improve persistent sets and
covering step graph methods, and reduce the state space from
its breadth and depth. More importantly, it has been proven
that the PSG preserves the deadlocks of Petri nets. In order
to further reduce the state space, Barkaoui et al. [54] propose
the maximal persistent step graph (MPSG) method and intro-
duce a new definition of weak-persistent sets. Combining the
weak-persistent sets with covering steps, the MPSG achieves
amore significant reduction of the state space, compared with
the PSG.

In this work, according to the definition of covering step
graphs introduced in [52] we first propose a new definition
of sound steps, which is an extension of covering steps. Then,
from a practical point of view, a weaker sufficient condition
about how to build the set of sound steps at each marking
is introduced. Based on this condition, we can compute the
set of maximal sound steps at each marking more intuitively
and quickly. Next, we propose a definition of good steps,
combing maximal sound steps and persistent sets. Due to the
proposed good steps and maximal sound steps, a maximal
good step graph (MGSG) is constructed, which significantly
reduces the state space compared with other related partial
order reduction methods. In addition, the MGSG preserves
deadlock markings of Petri nets. The major contributions of
this work are listed as follows:

1) We propose a new definition of sound steps, based on
a better understanding of the concurrent and conflict
relations between transitions of a step. Thus, the firing
of a sound step at each marking enables to extremely
reduce the state space;

2) Based on the definition of sound steps, we propose a
weaker sufficient condition about how to find the set
of sound step at each marking, which is of practical
significance;

3) Combining the persistent sets and sound steps, a new
definition of good steps is introduced, which plays an
important role in computing the maximal good step
graph (MGSG)

4) The generated maximal good step graph permits to pre-
serve the deadlocks of a Petri net.

The rest of this paper is structured as follows: Basic knowl-
edge used throughout this paper is introduced in Section II
and Section III presents the definition of persistent sets, and
followed by some previous partial order reduction methods,
which are the basic of our proposed method. Section IV first
introduces the new definition of sound steps, then proposes a
weaker sufficient condition for sound steps, next presents the
concept of good steps and exhibits the construction algorithm
of the MGSG, finally proves that the MGSG preserves the
deadlocks of Petri nets. Section V compares our proposed
technique with other related partial order reduction meth-
ods and shows the experimental results to demonstrate the
superiority of our method. Finally, Section VI concludes this
work.

II. PRELIMINARIES
In the following discussion, E∗ represents the set of all
sequences constituted by elements of E (i.e., including an
empty sequence ε) and E+ denotes the set of sequences
without ε, such that E∗:= {ε} ∪ E+. For instance, E = {e,
f }, E∗ = {ε, e, f , ee, ef, fe, ff , . . .} and E+ = {e, f , ee, ef, fe,
ff , . . .}.
Fundamental notations related to Petri nets and partial

order methods are introduced in this section. A reader may
consult more details in [15]–[16], [53]–[54].
A generalized Petri Net (PN) is a 4-tupleN = (P, T ,F ,W),

where P and T are denoted as non-empty, finite, and disjoint
sets. P characterizes a set of places and T describes a set of
transitions. There is a flow relation F , which is represented
by directed arcs from places to transitions or from transitions
to places. W : (P × T)∪ (T × P) → N = {0, 1, 2, . . .} is a
mapping that assigns a weight to an arc. It satisfies thatW (x,
y) > 0 if (x, y) > F , and W (x, y) = 0, otherwise, where x,
y ∈ P ∪ T . If ∀ (x, y) ∈ F , W (x, y) = 1, this net is called
an ordinary Petri net, denoted by a 3-tuple N = (P, T , F).
Given a node x ∈ P ∪ T , the pre-set of x is denoted by •x,
where •x = {y ∈ P ∪ T | (y, x) ∈ F}, and the post-set of x is
expressed as x• = {y ∈ P ∪ T | (x, y) ∈ F}. We can extend
this notation to a set of nodes, i.e., ∀X ⊆ P∪T , •X = ∪x∈X •x
and X• = ∪x∈Xx•.
A marking (or state) M of N is a mapping from P to N,

where N represents nonnegative integers. For the sake of
convenience, the multi-set symbol

∑
p∈PM (p)p is utilized to

denote vectorM , whereM (p) indicates the number of tokens
in p at M . For example, M = [3, 2, 1, 2]T is denoted by
M = 3p1 + 2p2 + p3 + 2p4. A place p is marked by M if
M (p) > 0. We define (N , M0) as a Petri net system with its
initial marking M0.
The transition t ∈ T is enabled at a marking M , denoted

by M [t〉, if ∀p ∈ •t , M (p) ≥ W (p, t). The firing of t at M
yields a marking M ′, i.e., ∀p ∈ •t , M ′ (p) = M (p) −W (p,
t)+W (t , p), which is denoted asM [t〉M ′. The markingM ′

is called an immediately reachable marking from M . The set
of all transitions enabled at M is denoted by En(M) = {t ∈
T |∀p ∈ •t , M (p) ≥ W (p, t)}. The sequence σ = t1t2 . . . tn ∈
T ∗ is enabled atM , denoted asM [σ 〉, if there exists a series of
markingsM1,M2, . . . ,Mn−1 such thatM [t1〉M1∧M1[t2〉M2∧

. . . ∧ Mn−1[tn〉. A marking M ′′ is said to be reachable from
M if the firing of a sequence σ ∈ T ∗ atM yields the marking
M ′′, which is indicated asM [σ 〉M ′′. We use the notation R(N ,
M) to denote the set of all markings reachable from M of N .
A non-empty subset of transitions is said to be a step τ

of N (τ ⊆ T) if the firing of transitions in this step is
simultaneously and atomically at a markingM of N . To con-
sider a firing step from an interleaving semantic standpoint,
it can be viewed as an abstraction of all sequences of its
transitions. For example, a step τ = {t , t ′, t ′′} hides six
sequences of its transitions: tt ′t ′′, tt ′′t ′, t ′tt ′′, t ′t ′′t , t ′′tt ′, and
t ′′t ′t . A step τ is enabled at a marking M , denoted as M [τ 〉,
if ∀p ∈ •τ , M (p) ≥

∑
t∈τ W (p, t), which means that there

155806 VOLUME 7, 2019

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

are enough tokens allowing transitions within the step to fire
concurrently. Firing a step τ yields a marking M ′ such that
∀p ∈ •τ ,M ′ (p) = M (p)+

∑
t∈τ (W (t , p)−W (p, t)), which

is denoted byM [τ 〉M ′. A markingM ′′ is said to be reachable
in multiple ways fromM if there exists an enabled transition t
atM and after the firing of t , there exists a sequence σ , a step
τ and two intermediate markings M1, M2 such that M [t〉M1
[σ 〉 M2 [τ 〉M ′′, which is indicated as M [tστ 〉M ′′. Note that
as long as the enabled conditions are satisfied, the firing order
of a transition t , a sequence σ , and a step τ is arbitrary, i.e.,M
[tστ 〉M ′′, M [tτσ 〉M ′′, M [σ tτ 〉M ′′, etc. We use EnStep(M)
to denote the set of all enabled steps at M . Given an enabled
step τ ∈EnStep(M), τ is maximal at M if (τ ′ ∈ EnStep(M)
such that τ ⊂ τ ′. We denote by Step(T) the set of all steps of
a PN N .
Transitions t1 and t2 are in structural conflict, denoted by

t1⊥t2, if •t1 ∩ •t2 6= Ø. Transitions t1 and t2 are symmetric
structural conflict with each other, denoted as t1⊥st2, if t1⊥t2,
and •t1 ∩ •t2 ∩ t1• = •t1 ∩ •t2 ∩ t2•. Two transitions t1 and
t2 are in conflict, denoted as t1 # t2 if the firing of t1 (or t2)
may disable the transition t2 (or t1) at a marking M where t2
(or t1) should have been enabled. We use CFS(t) = {t2 ∈
T |t1 # t2} to denote the set of transitions in conflict with t1.
The transitive closure of conflict relation is weak conflict.
Transitions t1 and t2 are in weak conflict, which is denoted
by t1 [#] t2. The set of transitions in weak conflict with t1 is
denoted as [CFS](t) = {t2 ∈ T |t1 [#]t2}. Notice that t ∈ T
and CFS (t) ⊆ [CFS](t).

Two sequences of transitions σ and σ ′ are equivalent,
denoted as σ ≡ σ ′ if they are the same or each one can
be obtained from the other by successive permutations of
transitions. Let M be a reachable marking. ∀M ′ ∈ R(N ,
M), equivalent sequences σ and σ ′ from M lead to the same
marking M ′, i.e., M [σ 〉M ′ and M [σ ′〉M ′, if σ ≡ σ ′. We use
[σ] to denote the set of transitions contained in a sequence σ .
A reachability graph RG of N is a finite and labeled

directed graph, denoted by RG = (R(N , M0), →, T , M0),
where → is a directed edge from a marking M to another
reachable marking M ′, where M , M ′ ∈ R(N , M0), and it is
labeled by a transition t of T. A covering step graph CSG of
N is defined by CSG = (RS (N ,M0),→, Step(T),M0), where
RS (N ,M0)⊆ R(N ,M0) is a subset of reachable markings, and
→ is labeled by an enabled step τ ∈ Step(T) at each marking
M ∈ RS (N , M0).
Given a PN (N , M0), a transition t ∈ T is live at the initial

marking M0 if ∀M ∈ R(N , M0), ∃M ′ ∈ R(N , M), M ′[t〉.
This net (N , M0) is live if each transition t of N is live at
M0. The reverse case is that a transition t is dead at M0 if
∀M ∈ R(N , M0), ¬M [t〉. (N , M0) is dead if @t ∈ T , M0 [t〉.
A marking M ∈ R(N , M0) is a deadlock marking if ∀t ∈ T ,
¬M [t〉, which can be described as En(M) = Ø. The net (N ,
M0) is called deadlock-free (i.e., not-dead or weak-live) if
∀M ∈ R(N , M0), ∃t ∈ T , M [t〉. A place p ∈ P is k-bounded
if given M ∈ R(N , M0), ∃k ∈ N+: M (p) ≤ k , where N+
represents positive integers. The PN (N , M0) is a k-bounded

net if each place p of N is k-bounded. Note that the PN (N ,
M0) is said to be safe iff k = 1.

In this paper, we only focus on the ordinary Petri net
N = (P, T , F , M0).

III. PARTIAL ORDER METHODS
In this section, we introduce the persistent sets and covering
step graph methods, and their combination.

A. PERSISTENT SETS
At each marking, persistent sets only contain enabled tran-
sitions. Note that each transition of a persistent set can not
be disabled, by the firing of other transitions not in the
same persistent set [43], [53]. In general, the exploration of
persistent sets preserves at least deadlocks of Petri nets.

The persistent sets proposed by [43], [53] are called strong-
persistent sets. In [54], the authors introduce weak-persistent
sets with weaker conditions inspired from stubborn sets
of [46]. In the following discussion, the persistent sets used
throughout this paper are strong-persistent sets.
Definition 1 [54]: Let M be a marking and µ ⊆ En(M)

a subset of enabled transitions. Formally, the subset µ is a
persistent set ofM if all the following conditions are satisfied:

1) En(M) 6= Ø⇔ µ 6= Ø;
2) ∀t ∈ µ, ∀ω ∈ (T − µ)+, M [ω〉 ⇒ M [ωt〉;
3) ∀t ∈ µ, ∀ω ∈ (T − µ)+, M [ωt〉 ⇒ M [tω〉.

Condition 1) means that there exists no persistent set atM
iff M is a deadlock marking. Condition 2) ensures that after
the firing of transitions not inµ atM , any transition t ofµ can
be fired. Condition 3) states that if the firing of any sequence
ω, which is composed of transitions not inµ, does not disable
any transition t ofµ, and then the firing of t will not disableω.
Consider the PN1 in Fig. 1(a). The set of enabled transi-

tions at M0 is En(M0) = {t0, t2}. Let µ1 = {t0} be a subset
of En(M0). It is not a persistent set since t0 is disabled by the
firing of a sequence t2t3, i.e., M0[t2t3〉 but ¬M0[t2t3t0〉. For
the same PN1, the set µ2 = {t2} is persistent as conditions 1,
2 and 3 hold for t2.

B. STEP GRAPHS COMBINED WITH PERSISTENT SETS
Covering step graphs are proposed in [52]. In a covering step
graph, all transitions are visited and concurrent ones are put
together to constitute a step. The firing of transitions in a
step is simultaneously. The aim of step graph methods is to
achieve more reduction of the state space from path depths,
and preserve certain global reachability properties such as
deadlocks. For example, consider the model PN2 depicted
in Fig. 2(a). There exist two steps at the initial marking M0,
τ1 = {t0, t2, t3, t4} and τ2 = {t0, t2, t3, t5}. However,
the firing of τ1 or τ2 may disable t1 that should have been
enabled at a markingM1, whereM0[t2〉M1. Thus, t0 cannot be
fired together with t2 since some deadlock markings may not
be preserved if they are fired simultaneously. The covering
step graph (CSG) is shown in Fig. 2(b) and firing steps at

VOLUME 7, 2019 155807

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

FIGURE 1. (a) A model of PN1, (b) its RG, (c) its CSG, and (d) its MGSG.

FIGURE 2. (a) A model of PN2, (b) its CSG, (c) its PG, and (d) its MGSG.

M0 are τ1 = {t2, t3, t4}, τ2 = {t2, t3, t5} and τ3 = {t0}.
Specially, the covering step graph preserves deadlocks of
PN2 and reduces the state space from path depths.

Different from covering step graphs, persistent graphs (PG)
are to reduce the width of the state space. At each marking,
only the enabled transitions of a persistent set are visited
and fired individually. For instance, consider the same PN2,
the set of enabled transitions at M0 is En(M0) = {t0, t2, t3,
t4, t5} and there are three persistent sets atM0: µ1 = {t0, t2},
µ2 = {t3} and µ3 = {t4, t5}. The firing of a transition within
different persistent sets may yield different persistent graphs.
A minimal persistent graph of PN2 is shown in Fig. 2(c).

To make full use of the advantages of covering step graphs
and persistent sets, a hybrid method is proposed in [42]. The
main idea of its generation algorithm is to compute persistent
sets at each marking firstly, and then determine which transi-
tions in different sets can be combined together as a step. The
combination of both methods allows reducing the state space
from path depths and the width, and preserves the deadlocks
of PNs. As an example, consider the PN2. For the persistent
sets {t0, t2}, {t3} and {t4, t5} of the initial markingM0, we can
build various steps such as {t0, t3, t4}, {t0, t3, t5}, {t2, t3, t4},
{t2, t3, t5}, and {t2, t3}. These steps are so-called persistent

steps and the firing of different one atM0 may lead to different
persistent step graphs. According to the algorithm proposed
in [41], the maximally reduced persistent step graph (PSG) is
depicted in Fig. 2(d).

For these reduced state graphs, some intermediate mark-
ings are abstracted and all key markings are preserved. The
key markings of a PN can be utilized to explore certain global
reachability properties such as deadlocks of a PN.

IV. MAXIMAL GOOD STEP METHODS
A. SOUND STEP SETS
Definition 2: LetM be a reachable marking of a PN N = (P,
T , F , M0), τ an enabled step at M and t ∈ τ . The transition
t is sound at M w.r.t τ if conditions 1) and 2) hold for all
t ′ ∈ τ− {t}:

1) ∀σ ∈ (T−{t})+, (M [t ′σ 〉 ∧¬ M [t ′σ t〉)⇒

a) ∃σ ∗ ∈ (T − {t})+, M [t ′σσ ∗t〉∨
b) ∃t1 ∈En(M) − τ , ∃σ1 ∈ (T−{t})∗, (t1σ1 ≡ σ ∧

M [t1t ′σ1〉)

2) ∀σ ∈ (T−{t})+, M [t ′σ t〉 ⇒ ∃σ ′ ∈ (T−{t})+,
(σ ≡ σ ′ ∧M [tt ′σ ′〉)

155808 VOLUME 7, 2019

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

The step τ is sound at M if its transitions are all sound at M
with respect to τ . We use the notation SS(M) to indicate the
set of all sound steps at a marking M of a PN N .
For a sound transition t w.r.t. τ at M , Condition a) shows

that t can be re-enabled after the firing of a sequence starting
with certain transitions of the same step τ and Condition
b) means that the disableness of t cannot be caused by other
transitions of the same step τ ; and Condition 2) states that
if a sequence t ′σ t is firable from M , then there must exist
an equivalent sequence tt ′σ ′ that is also firable from M .
Specifically, in a case where t is disabled by an enabled
sequence t ′σ , i.e., M [t ′σ 〉 ∧¬ M [t ′σ t〉, if the firing of t ′σ
satisfies a certain condition (i.e., Condition a) or b)), then
we can be sure that t is sound at M . Condition a) represents
that the sequence t ′σ t that is used to be not enabled atM can
be fired s.t. M [t ′σσ ∗t〉. Intuitively, it means that if a transi-
tion t is disabled after the firing of other transitions within
the same step τ , i.e., ¬M [t ′σ t〉, then the sound transition t
can be re-enabled after the firing of other sequences, i.e.,
M [t ′σσ ∗t〉. Condition b) shows that the sequence t ′σ has
an equivalent and enabled sequence at M that starts with a
certain transition outside τ s.t. t ′σ ≡ t1t ′σ1 and M [t1t ′σ1〉,
which means that the sequence t ′σ leading to the disableness
of t can be fired at M in another order and then the firing
of t cannot be affected by t ′σ . Note that expressions such
as ‘‘t1σ1 ≡ σ ’’, ‘‘M [t1t ′σ1〉’’, ‘‘σ ≡ σ ′’’, and ‘‘M [tt ′σ ′〉’’
can be considered as boolean expressions. More specifically,
the value of ‘‘t1σ1 ≡ σ ’’ is 1 if the sequence t1σ1 is equivalent
to σ , otherwise its value is 0.

It is obvious that if |τ | = 1 then τ is a sound step at M .
Indeed, in such a case t ′ ∈ Ø, the sequence t ′σ is not
enabled at M , i.e., ¬M [t ′σ 〉, since for an enabled sequence,
the first transition must belong to En(M). Hence, it follows
that Conditions 1) and 2) are satisfied.
Example 1: As an example of a sound step, consider the

PN4 in Fig. 4(a). The enabled step τ = {t1, t2, t3} of the initial
marking M0 = p1 + p2 + p3 is sound since it satisfies Defi-
nition 2. Specifically, an enabled step τ1 = {t2, t3} of M0 is
also sound. For instance, Condition 1) is satisfied for t2 w.r.t.
τ1 since M0[t2t4〉 and ¬M0[t2t4t3〉, there exists an enabled
transition t1 such that M0[t2t4t1t3〉; and Condition 2) also
holds for t2 since M0[t2t4t1t3〉, there exists a sequence t1t4
equivalent with t4t1 s.t.M0[t3t2t1t4〉. The set of all sound steps
at M0 of the PN4 is SS(M0) = {{t1}, {t2}, {t3}, {t1, t2}, {t1,
t3}, {t2, t3}, {t1, t2, t3}}. As another example of a sound step,
consider the PN5 shown in Fig. 6. The enabled step τ = {t1,
t4, t5} is sound at the initial markingM0 = p1+p4 +p5 since
Conditions 1) and 2) hold for each transition of τ . The set of
all sound steps at M0 is SS(M0) = {{t1}, {t4}, {t5}, {t1, t4},
{t1, t5}, {t4, t5}, {t1, t4, t5}}. Taking a sound step τ1 = {t4,
t5} for an example, we can see that Condition 1) is satisfied
for t5 sinceM0[t5t6〉 and ¬M0[t5t6t4〉, there exists a sequence
t1t2t3 such thatM0[t5t6t1t2t3t4〉; and Condition (2) also holds
for t5 since M0[t5t6t1t2t3t4〉, there exists a sequence t1t2t3t6
equivalent with t6t1t2t3 s.t.M0[t4t5t1t2t3t6〉. As an example of
a non-sound step, consider the PN1 depicted in Fig. 1(a). The

enabled step {t0, t2} of the initial marking M0 = p0 + p2+
p4 is not sound since Condition 1) does not hold for t2:
M0[t2t3〉 and ¬M0[t2t3t0〉, but we have neither a) nor b) due to
there exists no sequence σ ∗ ∈ (T−{t})+ s.t.M [t2t3σ ∗t0〉 and
¬M0[t3t2〉. Thus, the set of sound steps at M0 of the PN1 is
SS(M0) = {{t0}, {t2}}. Another example of a non-sound step
is PN3 shown in Fig. 3(a). An enabled step τ1 = {t0, t2} of
the initial marking M0 = p0 + p1+ p2 + p4 is not sound as
Condition (1) does not hold for t2. Intuitively, the sequence
t2t3t1 is firable at M0 but t2t3t1t0 is not firable at M0, i.e.,
M0[t2t3t1〉 ∧¬ M0[t2t3t1t0〉, and we have neither a) nor b) as
there exists no sequence σ ∗ ∈ (T − {t})+ s.t. M [t2t3t1σ ∗t0〉
and ¬M0[t1t2t3〉. For the same PN3, the enabled step τ2 = {t1,
t2} ofM0 is also not sound as it does not satisfy Condition(2)
sinceM0[t2t3t1〉 but ¬M0[t1t2t3〉. Hence, the set of sound steps
at M0 of the PN3 is SS(M0) = {{t1}, {t2}, {t3}}.

B. PROBLEMS STATEMENT
We first propose two problems used in the following section.
Problem 1: Given a PN N and its initial marking M0, how

to find the set of sound steps at each reachable marking from
a practical point of view?

Essentially, The answer of Problem 1 corresponds to a
weaker sufficient condition for sound steps. From a practical
point of view, we need to explain clearly the way about how to
build the set of sound steps at each marking. Hence, we ana-
lyze how to determine which transitions can be constitute as a
sound step at each marking, from the aspect of a net structure.

Let M be a marking of N and τ ⊆ En(M) an enabled step
at M with τ = {t , t ′} (i.e., |τ | = 2). If t and t ′ satisfy the
following conditions, we can know that the step τ at M is a
sound step. In other words, we can find which step is sound
at M according to the following conditions:

1) Transitions t and t ′ are not conflict with each other.
Actually, if t are in conflict with t ′, then transitions t and
t ′ can not be fired together at M .

2) There is a transition µ that is conflict with t . We can
distinguish three cases for the type of µ.
a) The transition µ is not enabled atM and there exists a

sequence σ ∈ T ∗ s.t.M [t ′σ 〉M ′∧M ′ [µ〉. We need to
determine whether there exists an enabled transition
t∗, s.t. t∗ ∈ En(M) − τ and the preset p∗ of t∗ can
give its token to the common place p of t and µ.
If the transition t∗ and the place p∗ satisfy the above
condition, then t and t ′ may be constituted as a sound
step at M .

b) The transition µ is not enabled at M and the firing of
t ′ can not yield a marking M ′ s.t. M ′[µ〉.

c) The transition µ is enabled at M . We continue to
distinguish this case into two categories:
i. There is a disabled transition ν that is in symmet-

ric structural conflict with µ;
ii. There is a disabled transition ν conflict with µ

and the firing of t ′ can not yield M ′ s.t. M ′[ν〉.

VOLUME 7, 2019 155809

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

FIGURE 3. (a) A model of PN3, (b) its CSG, and (c) its MGSG.

FIGURE 4. (a) A model of PN4, (b) its CSG, (c) its MPSG, and (d) its MGSG.

If two transitions of a step τ at M satisfies the above
conditions, we can say that τ is sound at M . For instance,
τ = {t4, t5} of the PN5 in Fig. 6 is a sound step at the initial
markingM0 since t4 is conflict with t6 andM0[t5〉M ′∧M ′[t6〉.
We can find that there exists an enabled transition t1 outside
the step τ and the preset p1 of t1 gives its token to the common
place p4 of t4 and t6. Thus, {t4, t5} is a sound step at M0.
As another example of a sound step, consider the same PN5.
The step τ = {t1, t4} is also sound at M0 since t4 is conflict
with t6 and there does not exist a sequence σ ∈ T ∗ s.t.
M0[t1σ 〉M ′ ∧ M ′[t6〉. As an example of a non-sound step,
consider the PN3 shown in Fig. 3(a). The step τ = {t1, t2}
is not sound at the initial marking M0 since t1 is conflict
with t3 andM0[t2〉M ′ ∧M ′[t3〉. However, we cannot find an
enabled transition t∗ s.t. the preset p∗ of t∗ can give its token
to the common place p4 of t1 and t3. As another example of
a non-sound step, consider the same PN3. The step τ = {t0,
t2} is also not sound atM0 since t0 is conflict with an enabled
transition t1 ofM0 and t1 is conflict with another transition t3
which is not enabled at M0. However, t3 is not in symmetric

structural conflict with t1 and the firing of t2 can lead to a
marking M ′ s.t. M ′[t3〉.
Problem 2:Given a PNN and a reachable markingM , how

to determine a step τ with |τ | > 2 is a sound step at M?
In terms of Problem 1, we know how to find a sound step

τ at each marking with |τ | = 2. It is obvious that τ is always
a sound step at M with |τ | = 1 according to Definition 2.
As for a step τ atM with |τ | > 2, we first find all transitions
of τ , and then estimate whether two arbitrary transitions can
be fired together as a sound step according to Problem 1. If so,
the step τ containing these transitions with a bigger range is
sound atM . For example, the step τ = {t1, t4, t5} is sound at
M0 of the PN5 in Fig. 6 since {t1, t4}, {t4, t5} and {t1, t5} are
all sound at M0.

C. A CONSTRUCTION ALGORITHM FOR AN MGSG
In this section, we first introduce a function named Max-
SoundStep to compute the set of all maximal sound steps at
each marking of a PN N . Then, we present a relation between
maximal sound steps and persistent sets, and followed by the

155810 VOLUME 7, 2019

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

notion of good steps that combine sound steps with persistent
sets. Afterwards, a construction algorithm for amaximal good
step graph (MGSG) is established and we prove that such a
graph preserves deadlocks of a PN.

We exhibit Function MaxSoundStep in the following. Let
IsSound be a decision function defined by: given a reachable
markingM of a PNN and an enabled step τ ofM , IsSound(M ,
τ) = false, if transitions of τ atM do not satisfy the sufficient
conditions of Problem 1. In other words, IsSound(M , τ) =
true signifies that τ is sound at M . A sound step τ is the
maximal one at M , if there does not exist another sound step
τ ′ atM s.t. τ ⊂ τ ′. Note that FunctionMaxSoundStepwill be
used in the construction algorithm for an MGSG.

Function MSS = MaxSoundStep(M)
Input: A marking M of a PN N ;
Output: A set MSS of all maximal sound steps at M ;
1. MSS = Ø;
2. MS = {En(M)};
3. S = Ø;
4. while (∃τ ∈ MS s.t. ¬IsSound(M , τ)) do
5. MS = MS − τ ;
6. S = {τ ′|∀t ∈ τ , τ ′ = τ − {t}};
7. for (each µ ∈ S s.t. ∀π ∈ MS, µ 6⊂ π) do
8. MS = MS ∪ {µ};
9. end for
10. end while
11. MSS == MS;
12. Output: MSS.

In brief, Function MaxSoundStep is executed as follows:
First, let MS be the set of all enabled transitions set at a
marking M , i.e., MS = {En(M)}. Then, a step τ of MS,
which is not sound according to Problem 1, is deleted. After
deleting the step τ , we define a symbol S to compute the set
of all maximal subsets of τ . Each step µ of S, which does not
belong to a step π of the deletedMS, is added to the setMS to
combine the new set ofmaximal steps. By repeating the above
process, the set of all maximal sound steps at a markingM is
computed.
Example 2: Consider the PN3 shown in Fig. 3(a) and its

initial markingM0 = p0+p1+p2+p4. In terms of Function
MaxSoundStep,MS = {En(M0)} = {{t0, t1, t2}} and τ = {t0,
t1, t2}. By Definition 2, it is obvious that τ is not sound atM0
and thus is deleted fromMS. The setMS is then replaced with
MS = {Ø}. The set S of all maximal steps in τ is computed
s.t. S = {{t0, t1}, {t1, t2}, {t0, t2}} and MS is replaced with
MS = {{t0, t1}, {t1, t2}, {t0, t2}} since each step of S does
not belong to {Ø}. We can see that these steps {t0, t1}, {t1,
t2} and {t0, t2} are all not sound atM0 and we will repeat the
above procedure for each step of MS. Finally, the set MSS of
all maximal sound steps at M0 is MSS = {{t0}, {t1}, {t2}}.
Consider the PN2 depicted in Fig. 2(a) and its initial marking
M0 = p0 + p2 + p5 + p7. Let MS = {En(M0)} = {{t0, t2,
t3, t4, t5}} and τ = {t0, t2, t3, t4, t5}. We can see that τ is

not sound at M0 and then MS is replaced by MS = {{t0, t2,
t3, t4}, {t0, t2, t3, t5}, {t0, t2, t4, t5}, {t0, t3, t4, t5}, {t2, t3, t4,
t5}}. According to Definition 2, each step ofMS is not sound
at M0. By repeating the above procedure, the set MS is then
replaced with MS = {{t0, t2, t3}, {t0, t2, t4}, {t0, t2, t5}, {t0,
t3, t4}, {t0, t3, t5}, {t2, t3, t4}, {t2, t3, t5}, {t2, t4, t5}, {t3, t4,
t5}}. We can note that steps {t0, t3, t4}, {t0, t3, t5}, {t2, t3, t4}
and {t2, t3, t5}are all sound at M0. After deleting non-sound
steps of MS at M0, we can obtain the set MSS of all maximal
sound steps at M0 is MSS = {{t0, t3, t4}, {t0, t3, t5}, {t2, t3,
t4}, {t2, t3, t5}}.
Definition 3: LetM be a reachable marking of a PN N and

τ an enabled step atM . The step τ is a good step atM if 1) τ
is a sound step at M , and 2) the set µ of all transitions in the
step τ is a persistent set atM . A good step τ is maximal atM
if there does not exist a good step τ ′ s.t. τ ⊂ τ ′.
Example 3:Consider the PN1 shown in Fig. 1(a). There are

two sound steps τ1 and τ2 at the initial marking M0, where
τ1 = {t0} and τ2 = {t2}. According to Definition 1, only the
step τ2 is persistent at M . Thus, τ2 is a maximal good step at
M0. Consider the PN3 depicted in Fig. 3(a). The set of sound
steps at M0 is SS(M0) = {{t1}, {t2}, {t3}}. We can see that
only the sound step {t2} is persistent at M0 via Definition 1.
Thus, {t2} is the only good step at M0. Consider the PN4 in
Fig. 4(a). There are many sound steps at the initial marking
M0 and the step τ = {t1, t2, t3} is the only maximal sound
step at M0. According to Theorem 1, τ is persistent at M0.
Therefore, the step τ is a maximal good step atM0. Consider
the PN2 depicted in Fig. 2(a). There are four maximal sound
steps τ1, τ2, τ3, and τ4 at the initial marking M0, where τ1 =
{t0, t3, t4}, τ2 = {t0, t3, t5}, τ3 = {t2, t3, t4}, and τ4 = {t2,
t3, t5}. According to Definition 1, these transition sets τ1,
τ2, τ3 and τ4 are all not persistent at M0. Actually, there are
numerous sound steps at M0 of the PN2 such as {t2, t3, t4},
{t2, t3}, {t2, t4}, {t2, t5}, {t0}, {t2} and {t3}. Sound steps {t2,
t3}, {t2}, and {t3} are persistent sets of M0 on the basis of
Definition 1. Hence, there are three good steps atM0, i.e., {t2,
t3}, {t2}, {t3}, and the step {t2, t3} is the maximal good step
at M0.
Theorem 1: Let τ be a sound step containing all the enabled

transitions at a markingM of N . Then, τ is a good step atM .
Proof: It has been known that all enabled transitions are

in the step τ , i.e., τ = En(M). According to Definition 1,
it is obvious that this set τ containing all enabled transitions
at M , is a persistent set of M . Thus, τ is a good step at the
marking M .

Algorithm 1 is proposed to generate a maximal good step
graph (MGSG). Let λ(M , τ) define a next-state marking
function that returns a reachable marking by firing an enabled
step τ at a marking M of N .
Remark: Given a PN N , its maximal good step

graph (MGSG) can be established by Algorithm 1.We briefly
explain this algorithm as follows. It can be divided into two
stages. The first one is to obtain the set of enabled steps
by which directed edges are labeled at each marking, and
the second one is to generate the state graph via nodes and

VOLUME 7, 2019 155811

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

Algorithm 1 Construction Algorithm for a Maximal Good
Step Graph (MGSG)
Input A Petri net N = (P, T , F , M0);
Output An MGSG of N .
1. Let x0 be the root node of the MGSG and M be the

marking of node x0;
2. Initialize the stack3:= (x0) and the set 6:= (M); /∗3 is

a stack allowing to store nodes and 6 is a set consisting
of all the markings of nodes that are explored by this
algorithm∗/

3. 8 = Ø; /∗8 represents a set of enabled steps by which
directed edges are labeled at each reachable marking∗/

4. while 3 6= () do
5. x:= pop(3); /∗Remove the last node x from the stack
3∗/

6. Let Mx be the marking of node x;
7. if En(Mx) 6= Ø then
8. if there exists a maximal good step τ at Mx then
9. 8 = {τ}; /∗Refer to Definition 3∗/
10. else
11. 8 := MaxSoundStep(Mx); /∗MaxSoundStep

returns the set of all maximal sound steps at Mx .∗/
12. end if
13. for each step τ ∈ 8 do
14. Compute a reachable marking My by the

next-state marking function λ(Mx , τ);
15. if My /∈ 6 then
16. Create a new node y;
17. Add a directed edge from x to y and this

arc is labeled by τ ;
18. Let My be the marking of node y;
19. 6 := 6 ∪My;
20. 3 := push (3, y);/∗Push node y into stack

3 as the last node in 3∗/
21. else
22. Get the marking M ′yin 6 that is equal to

My and the node of marking M ′yis named as y′;
23. Add a directed edge from x to y′ and this

arc is labeled by τ ;
24. end if
25. end for
26. end if
27. end while
28. end

labeled arcs. First, let x0 be the root node of an MGSG and
M the marking of x0, i.e., 6:= (M) and 3:= (x0), and 8 is
a set of enabled steps by which each directed edge is labeled
at the marking. Second, remove the last node from a stack3,
and then the current marking Mx is obtained. Third, for a
deadlock-free marking Mx , if there exists a maximal good
step τ at Mx , then the directed edge from Mx is labeled by
τ and we denote 8 = {τ}, otherwise each directed edge
from Mx is labeled by a maximal sound step at Mx and we

use8:=MaxSoundStep(Mx) to denote the set of all maximal
sound steps atMx . What is said above is the first stage. After
that, for each τ ∈ 8, compute the next-state λ(Mx , τ) and
we can obtain the next-state markingMy. IfMy is an existing
marking in the MGSG such that My ∈ 6, then we find the
node y′ of a marking My and add a directed arc from x to y′,
which is labeled by τ , otherwise a new node y is created and
is pushed in to a stack3. The second stage is indicated above.
Repeat these stages until 3 is empty and an MGSG is hence
constructed.
Example 4: Consider the PN1 in Fig. 1(a) and its initial

marking M0 = p0 + p2+ p4. Firstly, Algorithm 1 sets x0
a root node of the MGSG and M0 the marking of x0, and
initializes3:= (x0) and 6:= (M0). Secondly, x0 is removed
from the stack 3, which is then called x. Thirdly, we will
compute the next node y of the MGSG, the markingMy of y,
and the directed arc from x0 to y. At the initial marking M0,
there exists the only maximal good step τ such that τ = {t2}.
After firing a step τ , we get a reachable marking M1 =

p0+p3+p4 by computing the next-state function λ(M0, {t2}).
It is obvious that M1 /∈ 6. Thus, a new node y is created and
an arc from x to y is labeled by {t2}. Next, Algorithm 1 sets
6 := (M0, M1) and 3:= (y). Repeat stages above until 3
is empty and an MGSG is hence constructed. The MGSG of
PN1 is shown in Fig. 1(d).
Theorem 2: The MGSG exploration detects deadlock

markings of a PN.
Proof: Suppose that there exists a deadlock marking D

of a PN N . LetM be a reachable marking of the MGSG from
M0 and D a deadlock marking reachable from M in the Petri
net. Let ω be a firing sequence yielding a marking D from
M in the Petri net s.t. M [ω〉D. We prove that D is also a
deadlockmarking of theMGSG reachable fromM . The proof
of this theorem is by induction, focusing on the length of the
sequence ω:
1) If |ω| = 0, then it is obvious that M = D and D is a

deadlock marking of the MGSG;
2) Assume that |ω| = k andD is a deadlock marking of the

MGSG;
3) Let us demonstrate that D is still a deadlock marking of

the MGSG reachable from M with |ω| = k + 1;
LetM ′ be an intermediate marking reachable fromM after

the firing of a step τ and D is reached fromM ′ by a sequence
ω1 s.t. (M [τ 〉M ′ [ω1〉 D)∧ (τ∪ [ω1] = [ω]). We distinguish
two main cases:
Case 1: If there is a maximal good step π at a markingM ,

then there are two cases for a step τ :
- Case a: If τ = π , then M ′ is a marking of the
MGSG according to Algorithm 1. Applying the induc-
tion hypothesis on ω1, we can see that |ω1| ≤ k and M ′

[ω1〉D. Hence, D is a deadlock marking of the MGSG.
- Case b: If τ 6= π , there must exist a sequence ω2 such
that π∪ [ω2]= [ω]. It is obvious that transitions of π are
all in the sequence ω since π is persistent and sound at
M , i.e., transitions of π are all enabled at M and these
transitions are all firable after the firing of transitions not

155812 VOLUME 7, 2019

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

in π . Then, transitions of π can be shifted to the front of
a sequence ω to constitute a step firable from M . The
proof of this case is similar to Case a, and D is proven to
be a deadlock marking of the MGSG.

Case 2: Else, there only exist maximal sound steps at M :
- Case c: If τ is a maximal sound step at M , then M ′ is a
marking of the MGSG due to Algorithm 1. Applying the
induction hypothesis onω1, we can see that |ω1| ≤ k and
M ′ [ω1〉D. Thus,D is a deadlock marking of the MGSG.

- Case d: If τ is not, there exists a maximal sound step τ ′

s.t. τ ⊂ τ ′. Let τ ′ = τ∪ {t}. If t is a transition of ω1,
then t can be shifted to be the first transition ofω1 andwe
can obtain an equivalent sequence of ω1 s.t. ω1 ≡ tω′1,
whereω′1 consists of transitions inω1 without t . The step
τ can be fired together with t , just as the firing of the
step τ ′. Let M ′1 be an intermediate marking reachable
from M s.t. M [τ ′〉M ′1 [ω′1〉D. We can see that τ∪ [ω1]
= τ ′∪ [ω′1] = [ω]. The proof is similar to Case c. D is
proven to be a deadlock marking of the MGSG. Else if
t is not a transition of ω1, there may exist a transition t ′

of ω1 that is in conflict with t s.t. t [#] t ′. In this case,
there must exist another maximal sound step τ ′′ = τ∪

{t ′}. Similarly, we can easily prove that D is a deadlock
marking of the MGSG.

We have demonstrated that if |ω| = k+ 1, D is a deadlock
marking of the MGSG. It is obvious that D is a deadlock
marking of the MGSG reachable fromM for any length of ω.
The proof for these different cases is shown in Fig. 5.

FIGURE 5. Four different cases of the proof.

V. EXPERIMENTAL RESULTS
Several experimental results for different PNs are shown in
this section, to demonstrate the superiority of the algorithm
proposed in this paper. Two PNs are shown in Fig. 4(a)
and Fig. 5, and the others are models of several different
systems taken from the MCC (Model Checking Contest) held
within Petri nets conferences: FMS, ClientAndServers (CAS
in short), Dining Philosophers (DP in short), and Swimming
Pool (SP in short).

First, we consider the PN4 depicted in Fig. 4(a). Its
covering step graph (CSG), maximal persistent step graph
(MPSG), and maximal good step graph (MGSG) are shown

TABLE 1. Algorithms evaluation on PN4.

FIGURE 6. A model of the PN5.

FIGURE 7. Parallel composition of n instances of PN4 (||n PN4).

in Fig. 4(b), (c) and (d), respectively. The evaluation of dif-
ferent algorithms on PN4 is summarized in Table 1, focusing
on their markings and directed edges labeled by transitions.
It is obvious that the size of MGSG is smaller than other state
graphs.

The parallel composition of the PN4 is shown in Fig. 7.
We exhibit sizes and computing times of various state graphs
with respect to these parallel PNs. These state graphs include
the reachability graph (RG) computed by the tool TINA,
the covering step graph (CSG) proposed in [52], the persistent
graph (PG), the persistent step graph (PSG) of [53], the max-
imal persistent step graph (MPSG) introduced in [54] and the
maximal good step graph (MGSG). The experimental results
are shown in Table 2.

Actually, the PSG generalizes PG and any PSG is always
smaller than the CSG [53]. For this model, the PSG and the
MPSG are identical and the MGSG provides a significant
reduction on the number of markings and edges compared
with the MPSG.

Then, we consider the model of PN5 shown in Fig. 6.
According to Definition 2, there exists a maximal sound
step τ of the initial markingM0 = p1+ p4+ p5, i.e., τ = {t1,
t4, t5}. By Theorem 1, the enabled step τ is persistent at M0
since τ is the only maximal sound step atM0. More precisely,
τ is a maximal good step at M0. Algorithm 1 establishes the
MGSG of PN5 and this graph is shown in Fig. 8.

VOLUME 7, 2019 155813

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

TABLE 2. Experimental results on parallel composition of Fig. 7.

FIGURE 8. The MGSG of the PN5.

For the model of PN5 described in Fig. 6, the evaluation of
different algorithms is shown in Table 3. This table summa-
rizes the RG, the CSG, the PG, the PSG, the MPSG and the
MGSG of PN5, focusing on their numbers of markings and
directed edges of transitions, and computing seconds. Fur-
thermore, the results of different algorithms on the n parallel
PN5 are also shown in Table 3. The parallel composition of n
instances of PN5 is represented by ||nPN5.
We can see that the PG is smaller than the CSG, the PSG

and the MPSG are identical and the MGSG improves other
partial order methods such as the PG, the CSG, and the
MPSG.

Next, we consider several PNs of different systems: the
FMS (m), the CAS (m), the DP (m), and the SP (m), where
m represents the parameter values of their initial markings.
The model FMS (m) is a strongly-connected ordinary PN.
The model CAS (m) is a strongly-connected loop-free ordi-
nary PN, where there exists no transition whose input places
are also output places. The dining philosophers is a famous

TABLE 3. Experimental results on parallel composition of the PN5.

model that states an inappropriate use of shared resources
generating deadlocks. This DP (m) is a strongly-connected
loop-free ordinary PN. The SP (m) is a strongly-connected
ordinary PN.

Indeed, MGSG provides a significant reduction on the
number of markings and directed edges, and even the com-
puting times compared with the RG for each model. In order
to illustrate the superiority of theMGSG compared with other
reduced graphs obtained by several partial order reduction
methods, Table 4 shows the experimental results, including
the state graphs computed by TINA such as the RG, the
CSG, the PG, and the PSG, and the MGSG established via
Algorithm 1. For some PNs such as the FMS (m), the PG
provides a smaller graph than CSG and PSG since the firing
of steps leads to more intermediate states compared with ones
computed after the firing of transitions within persistent sets.
Applying the MGSG method, we first obtain the maximal
good step, which is a persistent set in essence. Thus, the firing
of maximal good steps yields smaller intermediate states than
ones obtained by the firing of transitions in persistent sets. It is
obvious that the MGSG provides a significant reduction than
the PG. For some PNs such as the CAS (m), the parameter
of the initial marking influences the size of reduced graphs.
Intuitively, the PSG is smaller than the PG when m is less
than 8 and the PG is smaller than the PSG when m is higher
than 16. For the model of Dining Philosophers, the PG, PSG
and the MGSG are identical. The PSG is smaller than the PG
and CSG for themodel of Swimming Pool.More importantly,
the size of CSG, PG, PSG and MGSG does not change, with
increasing of parameters of the initial marking. For all these
examples, MGSG builds a smaller graph than CSG, PG and
PSG.Note that theMGSG technique improves or equals other
partial order reduction methods.

155814 VOLUME 7, 2019

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

TABLE 4. Experimental results on several PNs of different systems.

VI. CONCLUSION AND FUTURE WORK
Although the partial order reduction methods have made
some success in alleviating the state space explosion problem
of concurrent systems, further improvement is still needed in
the state space exploration of large systems. In this paper,
we have proposed a new partial order reduction method
namely a maximal good step graph (MGSG), based on
notions of sound and good steps. Firstly, we present a new
definition of sound steps, which breaks the previous require-
ment of covering steps. Then, a weaker sufficient condition
with practical significance is proposed, to find the set of
sound steps at each marking. Next, combining with persis-
tent sets and sound steps, the definition of good steps is
established and it plays an important role in generating the
maximal good step graph (MGSG). The MGSG generation
algorithm first determine whether there exists a maximal
good step at a marking M . If there exists one, the max-
imal good step is fired at M , otherwise the set of maxi-
mal sound steps is fired at M . Later, we have proven that
the generated maximal good step graph preserves the dead-
locks of Petri nets. Finally, the effectiveness of our pro-
posed method (MGSG) have been shown via the performed

experimental results. Compared with the covering step
graphs, persistent graphs and other reduced reachability
graphs combing the above two graphs, the MGSG is more
advantageous in state space reduction. In the future, we intend
to focus on combining step graphs with any partial order
technique as a mean to obtain a more reduction of the state
space which is of very great interest for model-checking.

REFERENCES
[1] S. Reveliotis, ‘‘Logical control of complex resource allocation systems,’’

Found. Trends Syst. Control, vol. 4, nos. 1–2, pp. 1–223, 2017.
[2] M. Khalgui, O. Mosbahi, and Z. W. Li, ‘‘On reconfiguration theory of

discrete-event systems: From initial specification until final deployment,’’
IEEE Access, vol. 7, pp. 18219–18233, 2019.

[3] K. Barkaoui and H. Boucheneb, ‘‘Introduction to special issue on verifica-
tion and evaluation of computer systems,’’ Innov. Syst. Softw. Eng., vol. 14,
no. 2, pp. 81–82, 2018.

[4] Y. Qiao, N. Wu, F. Yang, M. Zhou, and Q. Zhu, ‘‘Wafer sojourn time
fluctuation analysis of time-constrained dual-arm cluster tools with wafer
revisiting and activity time variation,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 48, no. 4, pp. 622–636, Apr. 2018.

[5] F. Yang, N. Wu, Y. Qiao, M. Zhou, and Z. Li, ‘‘Scheduling of single-
arm cluster tools for an atomic layer deposition process with residency
time constraints,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3,
pp. 502–516, Mar. 2017.

VOLUME 7, 2019 155815

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

[6] N. Q.Wu andM.C. Zhou, ‘‘Schedulability analysis and optimal scheduling
of dual-arm cluster tools with residency time constraint and activity time
variation,’’ IEEE Trans. Autom. Sci. Eng., vol. 9, no. 1, pp. 203–209,
Jan. 2012.

[7] N. Q. Wu and M. C. Zhou, ‘‘Modeling, analysis and control of dual-
arm cluster tools with residency time constraint and activity time vari-
ation based on Petri nets,’’ IEEE Trans. Autom. Sci. Eng., vol. 9, no. 2,
pp. 446–454, Apr. 2012.

[8] N. Q. Wu, F. Chu, C. B. Chu, and M. C. Zhou, ‘‘Petri net modeling and
cycle time analysis of dual-arm cluster tools with wafer revisiting,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 43, no. 1, pp. 196–207, Jan. 2013.

[9] L. Bai, N. Wu, Z. Li, and M. Zhou, ‘‘Optimal one-wafer cyclic schedul-
ing and buffer space configuration for single-arm multicluster tools with
linear topology,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 10,
pp. 1456–1467, Oct. 2016.

[10] M. Notomi and T. Murata, ‘‘Hierarchical reachability graph of bounded
Petri nets for concurrent-software analysis,’’ IEEE Trans. Softw. Eng.,
vol. 20, no. 5, pp. 325–336, May 1994.

[11] Y. Chen, Z. Li, and K. Barkaoui, ‘‘Maximally permissive liveness-
enforcing supervisor with lowest implementation cost for flexible manu-
facturing systems,’’ Inf. Sci., vol. 256, no. 1, pp. 74–90, Jan. 2014.

[12] Y. Chen, Z. Li, andM. Zhou, ‘‘Behaviorally optimal and structurally simple
liveness-enforcing supervisors of flexible manufacturing systems,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 42, no. 3, pp. 615–629,
May 2012.

[13] S. Wang, M. Zhou, Z. Li, and C. Wang, ‘‘A new modified reachability tree
approach and its applications to unbounded Petri nets,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 43, no. 4, pp. 932–940, Jul. 2013.

[14] G. Liu, P. Li, Z. Li, and N. Wu, ‘‘Robust deadlock control for automated
manufacturing systems with unreliable resources based on Petri net reach-
ability graphs,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 7,
pp. 1371–1385, Jul. 2019. doi: 10.1109/TSMC.2018.2815618.

[15] T. Murata, ‘‘Petri nets: Properties, analysis and applications,’’ Proc. IEEE,
vol. 77, no. 4, pp. 541–588, Apr. 1989.

[16] J. Ezpeleta, J. M. Colom, and J. Martínez, ‘‘A Petri net based deadlock
prevention policy for flexible manufacturing systems,’’ IEEE Trans. Robot.
Autom., vol. 11, no. 2, pp. 173–184, Apr. 1995.

[17] X. Guo, S. Wang, D. You, Z. Li, and X. Jiang, ‘‘A siphon-based deadlock
prevention strategy for S3PR,’’ IEEE Access, vol. 7, pp. 86863–86873,
2019.

[18] M. Liu, S. Wang, M. Zhou, D. Liu, A. Al-Ahmari, T. Qu, N. Wu, and Z. Li,
‘‘Deadlock and liveness characterization for a class of generalized Petri
nets,’’ Inf. Sci., vol. 420, pp. 403–416, Dec. 2017.

[19] D. You, S. Wang, and M. Zhou, ‘‘Computation of strict minimal siphons
in a class of Petri nets based on problem decomposition,’’ Inf. Sci.,
vols. 409–410, pp. 87–100, Oct. 2017.

[20] Q. Zhuang, D. You, W. Dai, S. Wang, and J. Du, ‘‘An iterative deadlock
prevention policy based on siphons,’’ in Proc. IEEE 16th Int. Conf. Netw.,
Sens. Control (ICNSC), Banff, AB, Canada, May 2019, pp. 242–246.

[21] C. Zhong, W. He, Z. Li, N. Wu, and T. Qu, ‘‘Deadlock analysis and control
using Petri net decomposition techniques,’’ Inf. Sci., vol. 482, pp. 440–456,
May 2019.

[22] K. Barkaoui and I. B. Abdallah, ‘‘A deadlock prevention method for a class
of FMS,’’ in Proc. 21st Century IEEE Int. Conf. Syst., Man Cybern. Intell.
Syst., Vancouver, BC, Canada, Oct. 1995, pp. 4119–4124.

[23] M. Gan, S. Wang, Z. Ding, M. Zhou, and W. Wu, ‘‘An improved mixed-
integer programming method to compute emptiable minimal siphons
in S3PR nets,’’ IEEE Trans. Control Syst. Technol., vol. 26, no. 6,
pp. 2135–2140, Nov. 2018.

[24] H. Chen, N. Wu, Z. Li, and T. Qu, ‘‘On a maximally permissive deadlock
prevention policy for automated manufacturing systems by using resource-
oriented Petri nets,’’ ISA Trans., vol. 80, pp. 67–76, Jun. 2019.

[25] Y. Chen, Z. Li, K. Barkaoui, N. Wu, and M. Zhou, ‘‘Compact supervisory
control of discrete event systems by Petri nets with data inhibitor arcs,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 2, pp. 364–379,
Feb. 2017.

[26] Y. Chen, Z. Li, A. Al-Ahmari, N. Wu, and T. Qu, ‘‘Deadlock recovery
for flexible manufacturing systems modeled with Petri nets,’’ Inf. Sci.,
vol. 381, pp. 290–303, Mar. 2017.

[27] S. Wang, D. You, andM. Zhou, ‘‘A necessary and sufficient condition for a
resource subset to generate a strict minimal siphon in S 4PR,’’ IEEE Trans.
Autom. Control, vol. 62, no. 8, pp. 4173–4179, Aug. 2017.

[28] D. You, S. Wang, and C. Seatzu, ‘‘Supervisory control of a class of Petri
nets with unobservable and uncontrollable transitions,’’ Inf. Sci., vol. 501,
pp. 635–654, Oct. 2019.

[29] N. Ran, S. G. Wang, and W. H. Wu, ‘‘Event feedback supervision for a
class of Petri nets with unobservable transitions,’’ IEEE Access, vol. 6,
pp. 6920–6926, 2018.

[30] D. You, S. Wang, and W. Hui, ‘‘An algorithm of recognizing unbounded
Petri nets with semilinear reachability sets and constructing their reacha-
bility trees,’’ IEEE Access, vol. 6, pp. 43732–43742, 2018.

[31] H. Boucheneb, D. Lime, O. H. Roux, and C. Seidner, ‘‘Optimal-cost
reachability analysis based on time Petri nets,’’ in Proc. 18th Int. Conf.
Appl. Concurrency Syst. Design (ACSD), Jun. 2018, pp. 30–39.

[32] Z. Ma, Y. Tong, Z. Li, and A. Giua, ‘‘Basis marking representation of Petri
net reachability spaces and its application to the reachability problem,’’
IEEE Trans. Autom. Control, vol. 62, no. 3, pp. 1078–1093, Mar. 2017.

[33] K. Barkaoui and J. F. Pradat-Peyre, ‘‘On liveness and controlled siphons in
Petri nets,’’ in Proc. 17th Int. Conf. Appl. Theory Petri Nets. Osaka, Japan:
Springer, 1996, pp.57-72.

[34] C. Chen and H. Hu, ‘‘Liveness-enforcing supervision in AMS-Oriented
HAMGs: An approach based on new characterization of siphons using
Petri nets,’’ IEEE Trans. Autom. Control, vol. 63, no. 7, pp. 1987–2002,
Jul. 2018.

[35] D. You, S. Wang, H. Dou, and W. Duo, ‘‘A resource allocation approach
for enforcing liveness on a class of Petri nets,’’ IEEE Access, vol. 6,
pp. 48577–48587, 2018.

[36] M. Liu, S. Wang, T. Hayat, A. Alsaedi, and Z. W. Li, ‘‘A resource config-
uration method for liveness of a class of Petri nets,’’ IMA J. Math. Control
Inf., vol. 33, no. 4, pp. 933–950, Dec. 2016.

[37] K. Barkaoui, J.-M. Couvreur, and K. Klai, ‘‘On the equivalence between
liveness and deadlock-freeness in Petri nets,’’ in Proc. Int. Conf. Appl.
Theory Petri Nets, Miami, FL, USA, 2005, pp. 90–107.

[38] C. Chen and H. Hu, ‘‘Time-varying automated manufacturing systems and
their invariant-based control: A Petri net approach,’’ IEEE Access, vol. 7,
pp. 23149–23162, 2019.

[39] P. Godefroid, ‘‘Using partial orders to improve automatic verifica-
tion methods,’’ in Proc. 2nd Workshop Comput. Aided Verification,
New Brunswick, NJ, USA, 1990, pp. 176–185.

[40] P. Godefroid, D. Peled, and M. Staskauskas, ‘‘Using partial order methods
in the formal validation of industrial concurrent programs,’’ IEEE Trans.
Softw. Eng., vol. 22, no. 7, pp. 496–507, Jul. 1996.

[41] P. Godefroid and P. Wolper, ‘‘A Partial approach to model check-
ing,’’ in Proc. 6th Annu. IEEE Symp. Logic Comput. Sci., Amsterdam,
The Netherlands, Jul. 1991, pp. 406–415.

[42] P. Godefroid and D. Pirottin, ‘‘Refining dependencies improves partial-
order verification methods (extended abstract),’’ in Proc. 5th Int. Conf.
Comput. Aided Verification, Elounda, Greece, 1993, pp. 438–449.

[43] P. Godefroid, J. Van Leeuwen, J. Hartmanis, G. Goos, and P. Wolper,
‘‘Partial-order methods for the verification of concurrent systems: An
approach to the state-explosion problem,’’ in Lecture Notes in Computer
Science, vol. 1032. Berlin, Germany: Springer, 1996.

[44] R. P. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigiin, ‘‘Static
partial order reduction,’’ in Proc. Int. Conf. Tools Algorithms Construct.
Anal. Syst., 1998, pp. 345–357.

[45] B. Willems and P. Wolper, ‘‘Partial-order methods for model checking:
From linear time to branching time,’’ inProc. 11th Annu. IEEE Symp. Logic
Comput. Sci., New Brunswick, NJ, USA, Jul. 1996, pp. 294–303.

[46] A. Valmari and H. Hansen, ‘‘Can stubborn sets be optimal?’’ Fundamenta
Informaticae, vol. 113, nos. 3–4, pp. 377–397, 2011.

[47] A. Valmari and H. Hansen, ‘‘Stubborn set intuition explained,’’ in Transac-
tions on Petri Nets andOtherModels of Concurrency XII. Berlin, Germany:
Springer, 2017, pp. 140–165.

[48] A. Valmari, ‘‘A stubborn attack on state explosion,’’ Formal Methods Syst.
Des., vol. 1, no. 4, pp. 297–322, 1992.

[49] D. Peled, ‘‘All from one, one for all: On model checking using representa-
tives,’’ inProc. 5th Int. Conf. Comput. Aided Verification, Elounda, Greece,
Jun. 1993, pp. 409–423.

[50] D. Peled and T. Wilke, ‘‘Stutter-invariant temporal properties are express-
ible without the next-time operator,’’ Inf. Process. Lett., vol. 63, no. 5,
pp. 243–246, 1997.

[51] H. Boucheneb and K. Barkaoui, ‘‘Delay-dependent partial order reduc-
tion technique for real time systems,’’ Real-Time Syst., vol. 54, no. 2,
pp. 278–306, 2018.

[52] F. Vernadat, P. Azéma, and F. Michel, ‘‘Covering step graph,’’ in Proc. 17th
Int. Conf. Appl. Theory Petri Nets, Osaka, Japan, 1996, pp. 516–535.

155816 VOLUME 7, 2019

http://dx.doi.org/10.1109/TSMC.2018.2815618

H. Dou et al.: MGSG Methods for Reducing the Generation of the State Space

[53] P.-O. Ribet, F. Vernadat, and B. Berthomieu, ‘‘On combining the persistent
sets method with the covering steps graph method,’’ in Proc. Int. Conf.
Formal Techn. Networked Distrib. Syst. Houston, TX, USA: Springer,
2002, pp. 344-359.

[54] K. Barkaoui, H. Boucheneb, and Z. Li, ‘‘Exploiting local persistency for
reduced state space generation,’’ in Proc. 12th Int. Conf. Verification Eval.
Comput. Commun. Syst., Grenoble, France, 2018, pp. 166–181.

[55] K. Barkaoui and H. Boucheneb, ‘‘On persistency in time Petri nets,’’ in
Proc. 16th Int. Conf. Formal Modeling Anal. Timed Syst., Beijing, China,
2018, pp. 108–124.

[56] Y. Tong, Z. Li, C. Seatzu, and A. Giua, ‘‘Verification of state-based
opacity using Petri nets,’’ IEEE Trans. Autom. Control, vol. 62, no. 6,
pp. 2823–2837, Jun. 2017.

[57] Z. Ma, Z. Li, and A. Giua, ‘‘Marking estimation in a class of time
labelled Petri nets,’’ IEEE Trans. Autom. Control, to be published.
doi: 10.1109/TAC.2019.2907413.

HAO DOU received the B.S. degree from the
School of Information and Electronic Engineering,
Zhejiang Gongshang University, China, in 2017,
where she is currently pursuing the M.S. degree.
Her current research interests include supervisory
control of discrete event systems, and Petri nets
theory and application.

KAMEL BARKAOUI received the Ph.D. degree
and the Habilitation à Diriger des Recherches
in computer science from Université Paris 6,
in 1988 and 1998, respectively. He is currently
a Professor of computer science with the Con-
servatoire National des Arts et Métiers, Paris.
He has published more than 100 refereed inter-
national journal articles and conference papers.
His research interests include formal methods for
verification, control, and performance evaluation

of concurrent and distributed systems. He received the IEEE International
Conference on System, Man, and Cybernetics Outstanding Paper Award,
in 1995. He has served as the program committee chair and organizing chairs
for numerous international workshops and conferences. He was a Guest
Editor of the Journal of Systems and Software and the International Journal
of Critical Computer-Based Systems.

HANIFA BOUCHENEB is currently a Professor
with the École Polytechnique de Montréal. Her
research interests include formal verification tech-
niques of real-time and infinite complex systems.
She has published more than 100 research articles
in international journals, conferences, workshops,
and books. She has served as a member and as
a chair in several program committees of confer-
ences and workshops.

XIAONING JIANG received the M.E. degree
in electronic engineering from Hangzhou Dianzi
University, Hangzhou, China, in 1993, and the
Ph.D. degree in computer science and technol-
ogy from Zhejiang University, Hangzhou, China,
in 2000. He is currently an Associate Professor,
a Senior Engineer with Zhejiang Gongshang Uni-
versity, and the Vice Dean of the IoT Research
Institute, Zhejiang Gongshang University. His
research interests include applied information sys-

tem, network and information security, industrial IoT, visual analytic, and
Fin-tech. He has published over 30 research articles and 10 invention patents.

SHOUGUANG WANG (M’10–SM’12) received
the B.S. degree in computer science from the
Changsha University of Science and Technology,
Changsha, China, in 2000, and the Ph.D. degree
in electrical engineering from Zhejiang University,
Hangzhou, China, in 2005.

He joined Zhejiang Gongshang University,
in 2005, where he is currently a Professor with the
School of Information and Electronic Engineer-
ing, the Director of the Discrete-Event Systems

Group, and the Dean of the System Modeling and Control Research Insti-
tute, Zhejiang Gongshang University. He was a Visiting Professor with the
Department of Electrical and Computer Engineering, New Jersey Institute
of Technology, Newark, NJ, USA, from 2011 to 2012. He was the Dean of
the Department of Measuring and Control Technology and Instrument, from
2011 to 2014. He is currently a Visiting Professor with the Electrical and
Electronic Engineering Department, University of Cagliari, Cagliari, Italy,
from 2014 to 2015. He is also an Associate Editor of IEEE ACCESS and the
IEEE/CAA JOURNAL OF AUTOMATICA SINICA.

VOLUME 7, 2019 155817

http://dx.doi.org/10.1109/TAC.2019.2907413

	INTRODUCTION
	PRELIMINARIES
	PARTIAL ORDER METHODS
	PERSISTENT SETS
	STEP GRAPHS COMBINED WITH PERSISTENT SETS

	MAXIMAL GOOD STEP METHODS
	SOUND STEP SETS
	PROBLEMS STATEMENT
	A CONSTRUCTION ALGORITHM FOR AN MGSG

	EXPERIMENTAL RESULTS
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	HAO DOU
	KAMEL BARKAOUI
	HANIFA BOUCHENEB
	XIAONING JIANG
	SHOUGUANG WANG

