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Introduction

Everywhere below a trinomial is an abbreviation for a monic trinomial nonvanishing at 0; in other words, a polynomial of the form X m + AX n + B with B = 0.

Let Ω ⊂ C × be a finite set of non-zero complex numbers. In this note we study the trinomials vanishing at all elements of Ω.

Surely, infinitely many trinomials vanish at Ω if #Ω ≤ 2. More generally, call α, β ∈ Ω equivalent if α/β is a root of unity. Then the following statement is obviously true: if Ω splits into 2 or less equivalence classes, then infinitely many trinomials vanish at Ω. Indeed, in this case Ω is a subset of the roots :: of a polynomial of the form g(X k ), where g is of degree 2 and k is some positive integer, and this g(X k ) divides infinitely many trinomials. More generally, if Ω splits into -1 or less equivalence classes, then infinitely many -nomials vanish at Ω.

Using known results about linear equations in multiplicative groups, it is not hard to show the following.

Theorem 1.1. Assume that Ω splits into 3 or more (non-empty) equivalence classes (in the sense defined above). Then the number of trinomials vanishing at Ω is bounded by an absolute effective constant.

This result ::::

Note :::: that ::: in :::: the ::::::::: statement ::: of :::: this :::::::: theorem, ::: as :::: well ::: as :: of :::: the ::::::::::

subsequent :::::::: Theorem ::: 1.2 ::: we ::: do :::: not ::::::: formally :::::::: exclude ::::::::: binomials :::::::: X m + B, :::::: which :::

can ::: be :::::: viewed ::: as ::::::::: trinomials ::::::::::::::: X m + AX n + B ::::: with :::::: A = 0. ::::::::: However, :: a :::::::: binomial :::

can ::::::: vanish :::: only ::: at :: a :::: set :: Ω :::::::::: consisting ::: of :: a :::::: single ::::::::::: equivalence ::::: class, ::: so :::: the :::::::

(finitely :::::: many) :::::::::: trinomials :::::::: featured ::: in ::::: these ::::::::: theorems ::: are :::::::: genuine :::::::::: trinomials, ::::

with :::::::: AB = 0. : ::::::::

Theorem ::: 1.1 : is not really new: it can be obtained by combining the proof of Theorem 1 in [START_REF] Evertse | On S-unit equations in two unknowns[END_REF] with the results from [START_REF] Amoroso | Small points on subvarieties of a torus[END_REF][START_REF] Evertse | Linear equations in variables which lie in a multiplicative group[END_REF], which were not available at the time when [START_REF] Evertse | On S-unit equations in two unknowns[END_REF] was written. However, since we did not find in the literature exactly this statement, we include a short proof in Section 3.

Our principal result concerns the case when Ω consists of algebraic numbers. We denote by h(•) the absolute logarithmic height of an algebraic number or of a polynomial, see Section 2. Given a finite set Ω ⊂ Q, we denote h(Ω) = max{h(α) : α ∈ Ω}.

Theorem 1.2. In the set-up of Theorem 1.1 assume that the elements of Ω generate a number field of degree d. Then every trinomial vanishing at Ω is of degree not exceeding 10 60 e 10d 2 (h(Ω)+1) and of height not exceeding 10 70 e 10d 2 (h(Ω)+1) . In particular, the problem of determining all trinomials vanishing at Ω is decidable.

This theorem is proved in Section 4. Let K be a field of characteristic 0 and α ∈ K an element algebraic over K.

For certain applications one needs information about trinomials over K vanishing at α. Clearly, if for some positive integer k we have [K(α k ) : K] ≤ 2 then infinitely many trinomials vanish at α. Corollary 1.3. Let K be a field of characteristic 0 and let α ∈ K be such that

[K(α k ) : K] ≥ 3 (k = 1, 2, . . .). (1.1)
Then the number of trinomials in K[X] vanishing at α is bounded by an absolute effective constant. Moreover, if K is a number field then each such trinomial is of degree not exceeding 10 60 e 10d 2 ν 6 (h(α)+1) and of height not exceeding 10 70 e 10d 2 ν 6 (h(α)+1) , where d = [K : Q] and ν = [K(α) : K]. In particular, the problem of determining all trinomials over K vanishing at α is decidable.

To deduce the corollary from Theorems 1.1 and 1.2, just apply them for the set Ω = {α, β, γ}, where β and γ are two conjugates of α over K such that none of the quotients α/β, α/γ, β/γ is a root of unity. Existence of such β and γ follows from hypothesis (1.1).

Generalities about heights

In this section we very briefly recall definitions and basic facts about absolute logarithmic heights. The height of a point a = (a 0 :

• • • : a n ) ∈ P n ( Q) in the projective space is defined by h(a) = 1 [K : Q] v∈M K [K v : Q v ] log max{|a 0 | v , . . . , |a n | v },
where K is a number field containing a 0 , . . . , a n and the absolute values on K are normalized to extend standard absolute values on Q. The right-hand side is independent of the choice of K and of the homogeneous coordinates a 0 , . . . , a n . For α ∈ Q we abbreviate h(1 : α) = h(α) and call this the height of the algebraic number α.

The height of a polynomial with algebraic coefficients is the height of a point in the projective space whose homogeneous coordinates are the coefficients of the polynomial.

We use, without special mention, the standard properties of the heights: for α, β ∈ Q we have

h(α + β) ≤ h(α) + h(β) + log 2, h(αβ) ≤ h(α) + h(β), h(α n ) = |n|h(α),
etc. If α and β are conjugate over Q then h(α) = h(β). This implies, in particular, that h(|α|) ≤ h(α) for a complex algebraic number α.

We also systematically use the Louiville inequality: if α is a non-zero complex algebraic number of degree d then e -dh(α) ≤ |α| ≤ e dh(α) . Moreover, in these estimates one may replace d by d/2 if α / ∈ R but we will never use it.

One special case will be frequently used.

Proposition 2.1. Let θ is a complex algebraic number of degree d such that

|θ| = 1. Then 1 -|θ| ≥ e -d 2 (h(θ)+log 2) . 1 -|θ| ≥ e -d 2 (h(θ)+log 2)
.

::::::::::::::::::::::

(2.1)

Proof. We only have to note ::::: Note that the degree of |θ| does not exceed d 2 (because the degree of . :::::::: Indeed, :::: this :: is ::::::: obvious ::::: when :::::: θ ∈ R. of :::::::: Theorem :::: 1.2. :

3 Proof of Theorem 1.1

Our principal tool will be the fundamental result of Evertse, Schlickewei and Schmidt [START_REF] Evertse | Linear equations in variables which lie in a multiplicative group[END_REF] about linear equations in multiplicative groups. See also Theorem 6.2 of Amoroso and Viada [START_REF] Amoroso | Small points on subvarieties of a torus[END_REF] for a quantitative improvement.

Theorem 3.1. Let Γ be a subgroup of C × of finite rank r, and a 1 , . . . , a s ∈ C × . Call a solution (x 1 , . . . , x s ) ∈ Γ s of

a 1 x 1 + • • • + a s x s = 0 (3.1)
primitive if no proper sub-sum of a 1 x 1 + • • • + a s x s vanishes, and call two solutions (x 1 , . . . , x s ), (x 1 , . . . , x s ) ∈ Γ s proportional if there exists λ ∈ Γ such that x i = λx i for i = 1, . . . , s. Then the number of non-proportional primitive solutions of (3.1) is bounded by an effectively computable quantity depending only on r and s.

Note that Γ in [START_REF] Amoroso | Small points on subvarieties of a torus[END_REF][START_REF] Evertse | Linear equations in variables which lie in a multiplicative group[END_REF] corresponds to our Γ s , and r in [START_REF] Amoroso | Small points on subvarieties of a torus[END_REF][START_REF] Evertse | Linear equations in variables which lie in a multiplicative group[END_REF] corresponds to our rs.

In addition to this theorem, we will need a simple technical lemma.

Lemma 3.2. Let α, β, γ ∈ C × and m, n, m , n ∈ Z be such that m = n, m, n = 0, m = n , m , n = 0, (m, n) = (m , n ). Consider the sets 1 S = {α m β n , α n β m , α m γ n , α n γ m , β m γ n , β n γ m }, S = ({ : α m β n , α n β m , α m γ n , α n γ m , β m γ n , β n γ m )} : .
To every x ∈ S we associate x ∈ S in the obvious way (for instance, for x = α m β n we define x = α m β n ). such :::: that ::: the ::::::::: quotients ::::::::::::::::: x 1 /y 1 , x 2 /y 2 , x 3 /y 3 ::: are ::: all : roots of unity. Then one of the numbers α/β, α/γ, β/γ is a root of unity.

2. Assume that S admits a partition S = T ∪ U into two sets (one of which is allowed to be empty) such that for any x, y ∈ T we have x/x = y/y , and the same holds true for any two elements of U . Then one of the numbers α/β, α/γ, β/γ is a root of unity.

1 Perhaps, it would be more proper to call them multi-sets because some of the listed numbers may accidentally be equal. However, we prefer to say simply "sets", hoping that this formal inaccuracy does not produce any confusion. To :: be ::::::: precise, : a ::::::: partition :: of ::: the :::::::: multi-set : S :::: into :: 3 ::::::::: two-element :::::::: muti-sets; :::: say, :: we :::: may ::: In :::: the ::::: proof ::: of ::::: item : 2 :::: we :::: may :::::::: assume :::: that :::::::: #T ≥ 3. :: Assume first that m = m . Then n = n . After re-defining, we ::: We : may assume that α m β n ∈ T . Since #T ≥ 3, it must contain one of α n β m , α m γ n , α n γ m , β m γ n . If, for instance, α n β m ∈ T then (α/β) n-n = 1. The other three cases are settled similarly. This completes the proof in the case m = m .

The case n = n is analogous. Now assume that m -m = n -n . Multiplying the elements of S and S by (αβγ) -n and (αβγ) -n , respectively, we reduce this to the case m = m , with m -n = m -n as m and m , with -n as n and with -n as n .

From now on

m = m , n = n , m -m = n -n .
We may again assume that

α m β n ∈ T . If α m γ n ∈ T then (β/γ) n-n = 1, if β n γ m ∈ T then (α/γ) m-m = 1, and if α n β m ∈ T then (α/β) (m-m )-(n-n ) = 1.
We are left with the case

T = {α m β n , β m γ n , γ m α n }, U = {α n β m , β n γ m , γ n α m }.
In this case we have

α m-m β n-n = β m-m γ n-n = γ m-m α n-n , α n-n β m-m = β n-n γ m-m = γ n-n α m-m .
Dividing term by term, we obtain

(α/β) (m-m )-(n-n ) = (β/γ) (m-m )-(n-n ) = (γ/α) (m-m )-(n-n ) .
Since the product of the three numbers is 1, we obtain

(α/β) 3((m-m )-(n-n )) = (β/γ) 3((m-m )-(n-n )) = (γ/α) 3((m-m )-(n-n )) = 1.
The lemma is proved. Without loss of generality we may assume that Ω = {α, β, γ} such that neither of α/β, α/γ, β/γ is a root of unity. Let Γ be the multiplicative group generated by α, β, γ and -1. For a positive integer s let κ(s) be the number of non-proportional primitive solutions of

x 1 + • • • + x s = 0 in x 1 , . . . , x s ∈ Γ. Clearly, κ(1) = 0, κ(2) = 1,
and Theorem 3.1 implies that κ(s) is bounded by an effectively computable quantity depending only on s. We set κ(0) = 0 ::::::: κ(0) = 1. Call a pair (m, n) ∈ Z 2 with m > n > 0 suitable if there exists a trinomial of the form X m + AX n + B vanishing at Ω. Note that the coefficients A and B are uniquely determined in terms of (m, n) using the formulas

A = - α m -β m α n -β n , B = - α m-n -β m-n α -n -β -n . (3.2)
This means that the Theorem 1.1 will be proved if we show that the number of suitable pairs (m, n) is bounded by an absolute constant. We are going to show that this number does not exceed 20κ(3) + 15κ(4) + κ(6) + 15 ::::::::::::::::::::: 10κ(3) 2 + 15κ(4) + κ( 6).

Fix a suitable pair (m, n). Since α, β and γ are roots of a trinomial of the form X m + AX n + B, we have

α m α n 1 β m β n 1 γ m γ n 1 = 0. (3.3)
This can be re-stated as follows:

(x 1 , . . . , x 6 ) = (α m β n , -α n β m , -α m γ n , α n γ m , β m γ n , -β n γ m )
is a solution of the equation

x 1 + • • • + x 6 = 0.
This solution is not, in general, primitive, but Item :::: item 1 of Lemma 3.2 implies that there is a partition {1, 2, . . . , 6} = V ∪ W such that the following holds: [START_REF] Habegger | The norm of Gaussian periods[END_REF][START_REF] Evertse | On S-unit equations in two unknowns[END_REF], (6, 0)};

• (#V, #W ) ∈ {(3, 3),
• i∈V x i = i∈W x i = 0;
• no proper sub-sum of i∈V x i vanishes, and neither does any proper subsum of i∈W x i ; in other words, (x i ) i∈V and (x i ) i∈W are primitive solutions of the corresponding equations.

We will say that (m, n) is a suitable pair of type (V, W ). (We identify types (V, W ) and (W, V ) when #V = #W = 3.) Now let (m , n ) be another suitable pair of the same type (V, W ). Item 2 of Lemma 3.2 implies that either (x i ) i∈V and (x i ) i∈V are not proportional, or (x i ) i∈W and (x i ) i∈W are not. Hence there can exist at most κ(#V ) + κ(#W ) :::::::::::::

κ(#V )κ(#W ) suitable pairs of a given type (V, W ).
Since a set of 6 elements admits 10 partitions of signature [START_REF] Evertse | Linear equations in variables which lie in a multiplicative group[END_REF][START_REF] Evertse | Linear equations in variables which lie in a multiplicative group[END_REF] and 15 partitions of signature (4, 2), the total number of suitable pairs is bounded by 10(κ(3)+κ( 3)) + 15(κ(4)+κ( 2)) + κ(6) = 2010 :: κ(3) 2 + 15κ(4) + κ(6)+15.. The theorem is proved.

Using the explicit bound from [1, Theorem 6.2], one can produce a ridiculously big explicit value 10 300000 for the constant in Theorem 1.1. Perhaps, this can improved by using some careful ad hoc arguments.

Proof of Theorem 1.2

In this section we fix, once and for all, an embedding Q → C. ::

To ::::: start ::::: with, ::

let ::: us ::: fix ::::: some ::::::::::: conventions. :

• :: In :::: this :::::: section ::: we :::: fix, :::: once :::: and ::: for :::: all, :: an :::::::::: embedding :::::::: Q → C. :

• ::: We ::: say :::: that ::::: log z :: is ::: the ::::::::: principal ::::: value :: of ::: the :::::::: complex ::::::::: logarithm :: of :::::: z ∈ C : if ::::::::::::::::: -π < Im log z ≤ π. :

Our principal tool will be Baker's inequality in the form given by Matveev [6, Corollary 2.3], reproduced below. Theorem 4.1 (Matveev). Let θ 1 , . . . , θ s be non-zero algebraic numbers belonging to a number field of degree d, and log θ 1 , . . . , log θ s some determinations of their complex logarithms. Let b 1 , . . . , b s ∈ Z be such that

Λ = b 1 log θ 1 + • • • + b s log θ s = 0.
Let A 1 , . . . , A s , B be real numbers satisfying

A k ≥ max{dh(θ k ), | log θ k |, 0.16} (k = 1, . . . , s), B ≥ max{|b 1 |, . . . , |b s |}. Then log Λ ≥ -2 6s+20 d 2 (1 + log d)A 1 • • • A s (1 + log B).
Here is a useful consequence. 

|α k -β k | ≥ |α| k e -d 2 (h(α/β)+1) if |α| > |β|, (4.1) 
|α k -β k | ≥ |α| k e -10 12 d 4 (h(α/β)+1) log(k+1) if |α| = |β|. (4.2)
Now we are ready to prove Theorem 1.2. As we will see, a more natural parameter for our estimates is not h(Ω), but the quantity h(Ω) = {max h(α/β) : α, β ∈ Ω}.

Clearly, h(Ω) ≤ 2h(Ω).

As in Section 3 we may assume that Ω = {α, β, γ}, where none of the quotients α/β, α/γ, β/γ is a root of unity. Lemma 4.3 implies that α, β, γ are not all three of the same absolute value, so we may assume that either |α| > |β| ≥ |γ| or |α| < |β| ≤ |γ|. If α, β, γ are roots of a trinomial, then α -1 , β -1 , γ -1 are roots of a trinomial of the same degree and height. Hence we may assume that

|α| > |β| ≥ |γ|.
Let X m + AX n + B be the : a trinomial vanishing at α, β, γ. Recall that, as usual, m > n > 0 and B = 0. We are going to estimate m -n in terms of n, and afterwards n in terms of m -n. The two estimates will yield the desired conclusion.

Estimating m -n in terms of n

We

have A = - α m -β m α n -β n = - β m -γ β n -γ n ,
Using Corollary 4.2, this implies the following lower and upper bounds for |A|: where we abbreviate h = h(Ω). This implies that m -n ≤ 10 13 d 4 ( h + 1) log |α/β| log(n + 1).

|A| ≥ |α m -β m | 2|α| n ≥ 1 2 |α| m-n e -d 2 ( h+1) , |A| ≤ 2|β| m |β m -γ m | 2|β| m |β n -
Proposition 2.1 implies that

log |α/β| ≥ 1 2 e -d 2 ( h+1) , (4.3) 
and we obtain m -n ≤ 10 16 e 2d 2 ( h+1) log(n + 1). (4.4) This is the promised estimate of m -n in terms of n.

Estimating n in terms of

m -n Write a = α m-n , b = β m-n , c = γ m-n . Then 0 = aα n α n 1 bβ n β n 1 cγ n γ n 1 = (a -b)(αβ) n + (b -c)(βγ) n -(a -c)(αγ) n .
Dividing by (a -c)(αγ) n , we obtain

ϑ(β/γ) n -1 = |η||α/β| -n , where ϑ = a -b a -c = 1 -(β/α) m-n 1 -(γ/α) m-n , η = b -c a -c = 1 -(β/γ) m-n 1 -(α/γ) m-n . We have clearly h(ϑ), h(η) ≤ 2 h(m -n) + 2 log 2. ( 4.5) 
In particular, |η| ≤ e 2d( h(m-n)+1) .

If |η||α/β| We ::::: Then :: Λ :: is :::: the :::::::: principal ::::: value :: of ::::::::::::: log(ϑ(β/γ) n ), :::: and ::: we have Λ = 0, because ϑ(β/γ) n = 1.

From : If :: z :: is :: a ::::::::: complex ::::::: number ::::::::: satisfying ::::::::::::: |z -1| ≤ 1/2 :::: and ::::: log z :: is :::: the :::::::: Thus, we have either (4.7) or (4.10). Since the latter is formally weaker than the former, we always have (4.10).

Conclusion

Substituting (4.4) into (4.10), we obtain n ≤ 10 36 e 4d 2 ( h+1) (log(n + 1)) 2 .

This implies that n ≤ 10 50 e 5d 2 ( h+1) . Substituting this into (4.4), we deduce that m -n ≤ 10 30 e 3d 2 ( h+1) . Hence m ≤ 10 60 e 5d 2 ( h+1) . Since h ≤ 2h(Ω), this proves that m ≤ 10 60 e 10d 2 (h(Ω)+1) , which is the wanted bound for the degree of the trinomial. Finally, from (3.2) we deduce that h(A), h(B) ≤ 10 65 e 10d 2 (h(Ω)+1) , which implies the wanted bound for the height of the trinomial. Theorem 1.2 is proved.

::::::::::::::::::

  ::::: And :: if ::::: θ / ∈ R ::::: then |θ| 2 = θ θ ::::::: belongs :: to :::: the :::::::: number :::: field ::::::::::: Q(θ, θ) ∩ R ::: of :::::: degree :::: not ::::::::: exceeding ::::::::::: d(d -1)/2. ::::: Hence :::: the :::::: degree :: of ::: |θ| :: in :::: this :::: case : does not exceed d(d -1)/2), and :::::::: d(d -1). : ::::: Since the height of 1 -|θ| is at most h(θ) + log 2, :::: the ::::: result ::::::: follows. :::::: Philipp :::::::::: Habegger ::::: drew ::: our ::::::::: attention ::: to ::::::::: Theorem :: 2 :: of ::::::: Mahler ::: [5] : , :::::: which ::::: allows :::: one ::: to ::::::: replace :::::::::::::: d 2 (h(θ) + log 2) ::: in : (2.1) :: by :::::::::::::::::: O(d 2 h(θ) + d log d); ::: for :::: the :::::: details ::: see :::::::::::::: [4, Lemma 3.2] : . :::: This ::::: leads ::: to : a ::::::: similar :::::::::: amendment ::: in ::: the ::::::::: statement ::

1 .

 1 Assume that S has four distinct elements x, y, u, v such that x/y and u/v are :::::: admits :: a :::::::: partition :::::::::::::::::::::::::::::: S = {x 1 , y 1 } ∪ {x 2 , y 2 } ∪ {x 3 , y 3 } :::: into :: 3::::::::::two-element :::: sets 2 ::::

  have :::::::::: x 1 = α m β n , ::::::::: y 1 = α n γ m ::or ::::::::: x 1 = α m β n , ::::::::: x 2 = α n γ m :::: even :: if ::::::::: accidentally ::::::::::::α m β n = α n γ m .Proof. Item 1 being very easy, we prove only item 2. Without :: In ::::: item :: 1 ::: we :::: may ::::::: assume, :::::::: without :::: loss :: of :::::::::: generality, ::::: that ::::::::::: x 1 = α m β n . ::: If :::::::::: y 1 = α n β m ::::: then ::::::::: (α/β) m-n :: is :: a ::::: root :: of :::::: unity, :::: and ::: we :::: are :::::: done. :::::: Hence :::: we :::: may ::::::: assume ::::: that :::::::::: x 2 = α n β m . ::: If ::::::::::: y 1 = α m γ n ::::: then :::::: (β/γ) n ::: is :: a :::: root ::: of ::::: unity, ::::: and :: if :::::::::: y 1 = β n γ m :::: then ::::::: (α/γ) m :: is : a ::::: root :: of ::::: unity. :::::: Hence ::: we ::::: may :::::: assume ::::: that :::::::::::::::::: y 1 ∈ {α n γ m , β m γ n }, :::: and, ::::::: without : loss of generality, ::::::::::: y 1 = α n γ m . : :::::::: Similarly, : we may assume that #T ≥ 3. ::::::::::::::::: y 2 ∈ {α m γ n , β n γ m }. ::: If :::::::::: y 2 = α m γ :::: then ::::::::::::::::::::::: {x 3 , y 3 } = {β m γ n , β n γ m }, :::: and :::::::::: (β/γ) m-n :: is : a ::::: root :: of :::::: unity. :: If :::::::::: y 2 = β n γ m :::: then ::::::::::::::::::::::: {x 3 , y 3 } = {α m γ n , β m γ n } ::::: and ::::::: (α/β) m :: is :: a ::::: root ::: of :::::: unity. ::::: This ::::::: proves :::: item :: 1. : ::

Now we are ready to prove Theorem 1 . 1 .

 11 As indicated in the Introduction, the argument is, essentially, due to Evertse et al [2, Theorem 1].

Corollary 4 . 2 .

 42 Let α and β be non-zero algebraic numbers contained in a number field of degree d, and k a positive integer. Assume that |α| ≥ |β| and that α k = β k . Then

  γ n | :::::::: ≤ 2|β| m-n e 10 12 d 4 ( h+1) log(n+1)

  that :: is, :::::::::::::: -π < λ, µ ≤ π. : Let be the nearest integer to (λ + nµ)/(2π). Clearly, | | ≤ (n + 2)/2. Define Λ = log ϑ + n log(β/γ) -2πi .

  principal ::::: value :: of ::: its ::::::::: logarithm ::::: then :::::::::::::::: | log z| ≤ 2|z -1|. :::::: Hence : (4.8) we deduce :::::: implies : the upper bound |Λ| ≤ 2|η||α/β| -n . (4.9)To estimate |Λ| from below, we use Theorem 4.1 with the following parameters:s = 3, θ 1 = ϑ, θ 2 = β/γ, θ 3 = -1, b 1 = 1, b 2 = n, b 3 = -2 , A 1 = πd(m -n)( h + 1), A 2 = πd( h + 1), A 3 = π, B = n + 2.(Note that h(ϑ) ≤ 2 h(m -n) + 2 by (4.5), which means that our choice of A 1 fits the hypothesis of Theorem 4.1.) We obtain|Λ| ≥ e -10 16 d 5 ( h+1) 2 (m-n) log(n+1)Comparing this with the upper bound (4.9) and taking into account the estimates (4.3), (4.6), we obtain n ≤ 10 16 d 5 ( h + 1) 2 (m -n) log(n + 1) + log(2|η|) log |α/β| ≤ 10 20 e 2d 2 ( h+1) (m -n) log(n + 1). (4.10)
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Proof. Set θ = β/α. If |α| > |β| then we apply Proposition 2.1: +log 2) . Now assume that |α| = |β|. In this case we use the equality

We have |θ| = 1, and we let log θ to be the principal value of the logarithm; that is log θ = λi with -π < λ ≤ π. We set to be the nearest integer to kλ/(2π), and we define Λ = k log θ -2πi .

Note that | | ≤ (k + 1)/2and , ::::: that :: Λ : is :::: the :::::::: principal ::::: value ::: of ::::::: log(θ k ), :::: and :::: that Λ = 0 (because α k = β k ).

We have : If ::::::::::: u ∈ [-π, π] :::: then :::::::::::::::::: |1 -e ui | ≥ (2/π)|u|. :::::: Hence :

To estimate |Λ| we use Theorem 4.1 with the following parameters:

We obtain, after easy calculations, the estimate

This proves (4.2).

We will also need a simple, but crucial lemma. and :::: this : proves the lemma.