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REPRESENTATION OF SIGNALS AS SERIES OF
ORTHOGONAL FUNCTIONS

E Aristidi1

Abstract. This paper gives an introduction to the theory of orthogo-
nal projection of functions or signals. Several kinds of decomposition
are explored: Fourier, Fourier-Legendre, Fourier-Bessel series for 1D
signals, and Spherical Harmonic series for 2D signals. We show how
physical conditions and/or geometry can guide the choice of the base of
functions for the decomposition. The paper is illustrated with several
numerical examples.

1 Introduction

Fourier analysis is one of the most important and widely used techniques of signal
processing. Decomposing a signal as sum of sinusoids, probing the energy con-
tained by a given Fourier coefficient at a given frequency, performing operations
such as linear filtering in the Fourier plane: all these techniques are in the toolbox
of any engineer or scientist dealing with signals.

However the Fourier series is only a particular case of decomposition, and there
exist an infinity of Fourier-like expansions over families of functions. The scope of
this course is to make an introduction to mathematical concepts underlying these
ideas. We shall talk about Hilbert spaces, scalar (or inner) products, orthogonal
functions and orthogonal basis. We shall also see that some kind of signals are
well-suited to Fourier decomposition, others will be more efficiently represented as
series of Legendre polynomials or Bessel functions. Note that this course is not
a rigorous mathematical description of the theory of orthogonal decomposition.
Readers who whish a more academic presentation may refer to textbooks in the
reference list.

The paper is organized as follows. Basics of Fourier series are introduced in
Sect. 2. A parallel is made between Fourier series and decomposition of a vector as
linear combination of base vectors. In Sect. 3 we generalise the concept to Fourier-
Legendre series and present Legendre polynomials as a particular case of the family
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of orthogonal polynomials. Sect. 4 is devoted to the expansion of two-dimensional
functions of angular spherical coordinates as series of Spherical Harmonics. Finally
Sect. 5 presents another example of decomposition using sets of Bessel functions.

2 Fourier series

First ideas about series expansions arise at the beginning of the 19th century.
Pionneering work by Joseph Fourier about the heat propagation (Fourier, 1822)
played a fundamental role in the development of mathematical analysis. Heat
propagation is described by a second-order partial differential equation (PDE). To
integrate this equation, Fourier proposed to represent solutions as trigonometric
series (denominated today as “Fourier series”). He laid the foundations of the so-
called Fourier analysis, which is now extensively used in a wide range of physical
and mathematical topics. A modern and comprehensive presentation of Fourier
series can be found in Tolstov (1976).

2.1 Fourier expansion of a periodic signal

The basic idea is that a periodic signal f(t) can be approached by a sum of
trigonometric functions. The complex form of the expansion is

f(t) =
∞
∑

n=−∞

cn exp

(

2iπnt

T

)

(2.1)

where T is the period of the signal. Discussions about the validity of the develop-
ment can be found in Tolstov (1976). The functions φn(t) = exp

(

2iπnt
T

)

are the
harmonic components of frequency n

T present in the signal, and the complex coef-
ficient cn is a weight. This relation suggests that the ensemble of the coefficients
{cn} and the period T contain the same information than the signal itself. High
frequency harmonics (large n) are generally associated to short-scale variations of
the function f (i.e. small details).

Values of the coefficients cn may be found using the following integral formula
(indeed a relation of orthogonality of the harmonics, as it will be discussed later)

∫ T

0

1

T
φn(t) φm(t) dt = δmn (2.2)

with δmn the Kronecker delta. The notation φ̄ means the complex conjugate of φ.
Combining this formula with Eq. 2.1 gives

cn =

∫ T

0

1

T
f(t) φn(t) dt (2.3)



E Aristidi: Representation of signals as series of orthogonal functions 3

2.2 Example

We consider a square wave of period T = 1 having value f(t) = 1 if |t| < 1
4 and 0

elsewhere in the interval [− 1
2 ,

1
2 ] (Fig. 1a). The Fourier coefficients cn calculated

from Eq. 2.3 are

cn =
1

2
sinc

(n

2

)

(2.4)

with sinc(x) = sin(πx)
πx the normalized sinc function. The signal f(t) can thus be

approached by the sum

SN (t) =

N
∑

n=−N

1

2
sinc

(n

2

)

e2iπnt (2.5)

SN (t) is a partial Fourier series which tends towards f(t) as N → ∞. Fig 1a
and 1b show, for N = 1 to 10, the real part of the term cne

2iπnt and the partial
sum SN (t). For N = 100 (Fig 1c), the convergence seems fairly good, excepted
at the points of discontinuity where it presents oscillations (known as the Gibbs

phenomenom). These oscillations will vanish as N increases for any point, except
the discontinuity itself. Analysis of the Gibbs phenomenom was given by Bôcher
(1906).

A plot of Fourier coefficients cn versus n is displayed in Fig 1d. As it was
said, the information contained in this graph and in the signal are the same (cn
is real here, and has no imaginary part). For this example it can be seen that cn
decreases at large n, which is quite commun for signals in physics. The decay is
low because of discontinuities, but would be faster for smooth signals.

2.3 Fourier series as a scalar product

Representation of functions as sum of harmonics has strong analogies with the
decomposition of a vector over an orthogonal basis. An historical introduction of
these ideas can be found in Birkhoff & Kreysgig (1984) and references therein. In
this section we will pick up some analogies between Fourier series and representa-
tions of vectors in the 3-dimensionnal space C3 (vectors with complex components).

2.3.1 Scalar product and norm

Vectors Consider two vectors u = (u1, u2, u3) and v = (v1, v2, v3) in C
3 where

uk and vk are complex numbers. Their scalar product (indeed hermitian scalar

product for complex vectors) is the complex number

u.v =

3
∑

i=1

uiv̄i (2.6)

The norm of the vector u is
‖u‖2 = u.u (2.7)

Minimum conditions to fulfill for a (hermitian) scalar product is to be
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Fig. 1. Fourier series of a square wave of period T = 1. (a) Signal (red dashed line) and

partial Fourier series with N = 10 (blue line). (b) Real part of the terms cn exp2iπnt

(weighted harmonics) for n = 1 to 10. (c) Partial Fourier series with N = 100. (d) Graph

of cn versus n (all even terms vanish except n = 0).

• bilinear, in the sense of (λu).v = λ(u.v), and u.(λv) = λ̄(u.v) (linear in u,
antilinear in v). λ is a constant.

• conjugate symmetric: u.v = v.u

• definite positive: the norm of a vector is always positive. If it is zero, then
the vector itself is zero.

Functions For two periodic functions f and g with period T , the following
integral

〈f, g〉 =

∫ T

0

1

T
f(t) g(t) dt (2.8)

is has the 3 properties defined above. It is the generalization for functions of
the concept of scalar product, it is generally denoted as the inner product of the
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functions f and g. These functions are treated as vectors in a space of functions
(Hilbert space).

The associated norm is

〈f, f〉 =

∫ T

0

1

T
|f(t)|2 dt (2.9)

This definition for the scalar (inner) product is well suited to Fourier series. As
we will see later, the definition is likely to change depending on the kind of de-
composition, in particular the weigthing term 1

T inside the integral.

2.3.2 Orthogonality

Two vectors u and v are orthogonal if their scalar product u.v is zero. Similarly,
two functions f ang g are said to be orthogonal if their scalar (inner) product
〈f, g〉 = 0.

2.3.3 Orthonormal base

Vectors For 3 dimensional vectors of C3, an orthonormal base is composed of 3
unit vectors (x̂, ŷ, ẑ) verifying

[

x̂.ŷ = x̂.ẑ = ŷ.ẑ = 0
x̂.x̂ = ŷ.ŷ = ẑ.ẑ = 1

(2.10)

The number of base vectors required to construct an complete orthonormal base
is the dimension of the vector space, here 3.

Functions This definition can be extended to periodic functions. Eq. 2.2 is
indeed the scalar product of the harmonics φn and φm and may be rewriten as

〈φn, φm〉 = δmn (2.11)

and suggests that the harmonics φn(t) = exp
(

2iπnt
T

)

form an orthonormal base of
the space of periodic functions of period T . Like the number of base functions,
the dimension of this space in infinite. The number of base functions is infinite,
the base is said to be complete if every function of this space can be written as a
linear combination on φn.

2.3.4 Orthogonal decomposition

Vectors Any vector u of C3 can be written as a weighted sum of the base vectors,

u = u1 x̂ + u2 ŷ + u3 ẑ (2.12)

where the numbers uk are given by the scalar products

u1 = u.x̂ u2 = u.ŷ u3 = u.ẑ (2.13)

i.e. the projection of u on the base vectors.
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Functions Analogy to periodic functions is straightforward : the definition of
the Fourier series of Eq. 2.1 is indeed a decomposition of the function f on the
base vectors φn:

f(t) =
∞
∑

n=−∞

cn φn(t) (2.14)

where cn is given by the integral relation of Eq. 2.3 which is exactly the scalar
product between f and the base function φn.

2.4 Fourier series and differential equations

Fourier series were introduced to solve the differential equation (DE) of heat prop-
agation. It is a PDE whose one dimensionnal form is

∂u

∂t
− α

∂2u

∂x2
= 0 (2.15)

The solution u(x, t) is a function of the time t and a space coordinate x. α is a
positive real number. A classical technique to solve this kind of equation is to look
for solutions of the form u(x, t) = X(x).T (t) where the dependence on x and t is
separated. Comprehensive presentations of this method of separation of variables
can be found in Mathews and Walker (1970) and in section 2 of Jackson (1998).
Substituting u back into equation 2.15 one finds

X ′′(x)

X(x)
=

T ′(t)

αT (t)
(2.16)

Since both sides of the equation depend on different variables, they must then be
equal to some constant −λ. The equation for X becomes

X ′′ + λX = 0 (2.17)

If λ is positive then Eq. 2.17 is the harmonic equation. Base solutions are X(x) =
e±ikx where k =

√
λ. k is a constant generally determined by boundary conditions.

It takes often the form k = 2π n
a where n is an integer and a a characteristical

length (if one studies the heat propagation inside a bar, then a is the length of the
bar). Hence the general solution of Eq. 2.17 is the linear combination of the base
solutions for any n:

X(x) =

∞
∑

n=−∞

cn e2iπn
x

a (2.18)

which is exactly a Fourier expansion of the function X(x).

3 Legendre polynomials

3.1 Introduction

Legendre polynomials appear for the first time in the work of Legendre (1784) in
relation to problems of celestial mechanics. He proposed series expansion of the
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Newtonian potential. Consider a punctual mass at position r′, the potential at
position R is

Φ(R) ∝ 1

|R− r′| =
1

R

[

1− 2r cos θ + r2
]−

1

2 (3.1)

where θ is the angle between the vectors R and r′ and r = r′

R . A Taylor expansion
in r, valid for r < 1 , is

[

1− 2r cos θ + r2
]−

1

2 =

∞
∑

n=0

rn Pn(cos θ) (3.2)

The coefficients Pn(cos θ) are polynoms of degree n, known today as Legendre
polynomials. Eq. 3.2 allow for example to write the potential created by any mass
(or charge) distribution as a series solution involving integrals of the mass (or
charge) density function (multipole expansion). See Jackson, (1998) for a more
complete presentation. The function

g(x, r) =
[

1− 2rx+ r2
]−

1

2 (3.3)

is called generating function for Legendre polynomials.

3.2 Legendre polynomials

The Taylor expansion as powers of r of the generating function g(x, r) gives the
following compact expression for the Legendre polynomials, valid for |x| ≤ 1,
known as Rodrigues formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (3.4)

The first polynomials are P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x

2 − 1). A graph
for polynomials P0 to P4 is given in Fig. 2. Note that polynomials corresponding
to even (resp. odd) degree n are even (resp. odd), and that Pn(1) = 1 ∀n. The
number of distinct roots in the interval [−1, 1] is also n. At large n polynoms
present oscillations whose frequency and amplitude increase as |x| → 1. Using
eq. 8.10.7 of Abramowitz & Stegun (1965), it is possible to obtain the following
approximation near the origin x ≃ 0

Pn(x) ≃ n!

Γ(n+ 1.5)

√

2

π
cos

[

n
(

x− π

2

)]

(3.5)

Fig. 2 displays the graph of P50 and its cosine approximation of Eq. 3.5. A large
number of properties and relations between Legendre polynomials are found in
Abramowitz & Stegun (1965).
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Fig. 2. Left: Legendre polynomials Pn(x) for n = 0 to 4. Right: Legendre polynomial

for n = 50 and its approximation as a cosine function.

3.3 Legendre differential equation

From the Rodrigues formula of Eq. 3.4, it comes that the polynoms Pn(x) are
solution of the following equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0 (3.6)

It is the Legendre DE and it has two independent base solutions: polynoms Pn(x),
which are regular on the interval [−1, 1], and functions Qn(x), infinite at x = ±1,
known as Legendre functions of the second kind. As the equation is linear, any
solution is a linear combination of Pn and Qn. However there is no term in Qn if
the solution is to remain finite at x = ±1.

3.4 Fourier-Legendre series

As for Fourier series, it is possible to make expansion of a function f as a sum
of Legendre polynomials. This concerns only functions with bounded support
since Pn(x) is defined for |x| ≤ 1. This is generally the case in physics or signal
processing. Following the ideas on scalar products presented in Section 2.3, one
can define a scalar product suited to Legendre polynomials (Kaplan 1992). Let f
and g two functions defined on the interval [−1, 1], then

〈f, g〉 =

∫ 1

−1

f(x) g(x) dx (3.7)

Note that this definition of the scalar product is different from the one given
in Eq. 2.8, valid for Fourier expansion. It can be demonstrated, using multiple
integration by parts, that

〈Pn, Pm〉 = 1

n+ 1
2

δmn (3.8)
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The family of polynoms Pn form a complete orthogonal base of the space of func-
tions square-summable on [−1, 1]. The base is not orthonormal since the norm
〈Pn, Pn〉 is not 1. Hence it is possible to expand a function f as the series

f(x) =

∞
∑

n=0

cn Pn(x) (3.9)

with

cn =

(

n+
1

2

)
∫ 1

−1

f(x)Pn(x) dx (3.10)

This sum is the Fourier-Legendre expansion of the function f . Its form is similar
to a Fourier series (Eqs 2.1 and 2.3). As in the case of Fourier series, polynoms
of high degree (large n in the Fourier-Legendre decomposition) are associated to
short-scale variations of the function f . Indeed Legendre polynomials for large n

approximate to high frequency cosine functions, as displayed in Fig. 2.

3.5 Example of Fourier-Legendre expansion

We consider a Gaussian function f(x) having value

f(x) = exp

(

− x2

2a2

)

(3.11)

for |x| ≤ 1 and 0 elsewhere. We took a = 0.3 for this example. Fourier-Legendre
coefficients cn are 0 for odd n. Nonzero coefficients were calculated numerically
from Eq. 3.10. We then computed partial Fourier-Legendre sums defined as

SN (x) =

N
∑

n=0

cn Pn(x) (3.12)

Fig. 3a shows the graphs of partial sums SN (x) for N = 0 to 20. The sum
converges nicely towards the function f , and the two graphs are coincident for
N ≥ 10 (i.e. a sum of 5 nonzero terms). Fig 3b displays the individual terms
of the series cn Pn(x). Fig 3c is a plot of cn as a function of n, it is then the
Fourier-Legendre spectrum of f and contains the same information.

The convergence of SN towards f is shown by Fig. 3d. For each value of N ,
we computed the Euclidian distance between f and SN , defined as

d(N) =

∫ 1

−1

(f(x)− SN (x))2 dx (3.13)

The convergence is here very fast, and the sum of only 10 nonzero terms (N = 20)
is enough to obtain a distance of 10−14 (the starting point was d(0) ≃ 0.2). Every
term added to SN divides the distance by about 50.
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Fig. 3. Fourier-Legendre reconstruction of the Gaussian function of Eq. 3.11 with a= 0.3.

(a) Function and partial sums SN (x) up to N = 20. (b) Individual terms of the series

cnPn(x) for n = 1 to 20. (c) Graph of cn versus n (all odd terms vanish). (d) Euclidian

distance d(N) between the function and SN .

3.6 Solution for Laplace equation in spherical coordinates with azimuthal

symmetry

As it was said in Sect. 3.1, Legendre polynomials were introduced to express the
Newtonian potential of a mass or charge ditribution. This connection with physics
can be made in a more general way through the DE of the potential. We consider
here a charge distribution presenting the azimuthal symmetry around the z axis.
And we will express the potential in spherical coordinates (r, θ, φ) of the Fig. 4
with the condition V independent of φ (azimuthal symmetry).

The potential obeys Laplace’s equation

∆V = 0 (3.14)

which becomes, in spherical coordinates

1

r2
∂

∂r

(

r2
∂V

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂V

∂θ

)

= 0 (3.15)
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Fig. 4. Spherical coordinate system: r is the distance from the center, θ the colatitude

(zero at North pole) and φ is the longitude (zero on the x axis).

We apply the technique of separation of variables (see Sect. 2.4) and seek solutions
of the form

V (r, θ) = f(r).g(θ) (3.16)

Eq. 3.15 can be rewriten as

1

f

d

dr
(r2f ′) = − 1

g sin θ

d

dθ
(sin θ g′) (3.17)

the two sides of this equation must be constant since they depend on different
variables, so that











1

f

d

dr
(r2f ′) = Cte = α(α+ 1)

1

g sin θ

d

dθ
(sin θ g′) = −α(α+ 1)

(3.18)

where the constant was written as α(α+ 1) for convenience. The solution for f is
of the form

f(r) = A1 r
α +A2 r

−1−α (3.19)

where A1 and A2 are constants. For g, the substitution x = cos θ gives

(1− x2)g′′ − 2xg′ + α(α+ 1)g = 0 (3.20)

which has regular solutions at x = 1 if α = n with n a positive integer. This
equation is then exactly the Legendre’s DE of Eq. 3.6. Hence g is the linear
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combination of the base solutions corresponding to any n

g(θ) =

∞
∑

n=0

cnPn(cos θ) (3.21)

and the complete solution for the potential is the Fourier-Legendre series

V (r, θ) =

∞
∑

n=0

(An r
n +Bn r

−1−n) Pn(cos θ) (3.22)

Coefficients An and Bn are determined by boundary conditions. This example
shows how a Fourier-Legendre series appear as the natural expansion of V in this
coordinate system with the condition of azimuthal symmetry.

3.7 Other orthogonal polynomials

The Sturm-Liouville problem Fourier and Fourier-Legendre series are indeed
particular cases of a more general problem explored by Sturm and Liouville in
the early 1800 (Liouville, 1836). See the book by Brown & Churchill, (2011) for
a modern presentation. The Sturm-Liouville (SL) theory explores solutions of
second-order DE of the form

d

dx
[p(x)y′] + (λρ(x) + q(x))y = 0 (3.23)

where y(x) is the solution, defined on an interval x ∈ [a, b] with fixed boundary
conditions on y and y′ at x = a and x = b. The key result of the SL theory is
that the problem has a solution for particular values λn of λ. And that solutions
yn corresponding to each value of n are orthogonal with respect to the weight
function ρ(x). Series expansion on Fourier harmonics or Legendre polynomials
can be considered as a special case of the SL boundary value problem. As an
example, the Legendre equation of Eq. 3.6 is equivalent to the following form

d

dx

[

(1− x2)y′
]

+ n(n+ 1)y = 0 (3.24)

i.e. a SL problem with p(x) = (1− x2), q(x) = 0, ρ(x) = 1 and λn = n(n+ 1).
SL problems occur frequently in physics since a wide class of phenomena are

described by a second order PDE. Depending on the coordinate system or circum-
stances, one may find solutions as series expansion of different kind of functions.
Fourier series are likely to occur in cartesian coordinates while Fourier-Legendre
series are often met in spherical coordinates for problems having azimuthal sym-
metry (Jackson, 1998).

Hereafter we give two examples of orthogonal polynom families, related to
particular Sturm-Liouville problems. Hermite and Laguerre polynoms have appli-
cations in quantum mechanics (Griffiths, 2005). And in Sect. 5 we present another
example with series of Bessel functions.



E Aristidi: Representation of signals as series of orthogonal functions 13

Laguerre polynomials Ln(x)

Definition domain D = [0,+∞[

Weight of the scalar product ρ(x) = e−x

Orthogonality 〈f, g〉 =

∫ ∞

0

e−x Ln(x)Lm(x) dx = δmn

Coefficient determination for

the expansion f(x) =
∞
∑

n=0

cnLn(x) cn = 〈f, Ln〉 =

∫ ∞

0

e−x f(x)Ln(x) dx

Generating function (for |t| < 1) :
1

(1− t)
exp

(

− xt

1− t

)

=

∞
∑

n=0

Ln(x) t
n

Rodrigues formula Ln(x) =
ex

n!

dn

dxn
(xne−x)

DE xy′′ + (1− x)y′ + ny = 0

Hermite polynomials Hn(x)

Definition domain D =]−∞,+∞[

Weight of the scalar product ρ(x) = e−x2

Orthogonality
〈f, g〉 =

∫ ∞

−∞

e−x2

Hn(x)Hm(x) dx

=
√
π2nn! δmn

Coefficient determination for

the expansion f(x) =

∞
∑

n=0

cnHn(x) cn =
1√

π2nn!

∫ ∞

−∞

e−x2

f(x)Hn(x) dx

Generating function : exp(2xt− t2) =
∞
∑

n=0

Hn(x)
tn

n!

Rodrigues formula Hn(x) = (−1)nex
2 dn

dxn
(e−x2

)

DE y′′ − 2xy′ + 2ny = 0



14 Title : will be set by the publisher

4 Spherical harmonics

4.1 Associated Legendre functions

The associated Legendre functions are defined as

Pm
l (x) = (−1)m(1− x2)m/2 dm

dxm
Pl(x) (4.1)

with m a positive integer and m ≤ l. The relation

P−m
l (x) = (−1)m

(l −m)!

(l +m)!
Pm
l (x) (4.2)

makes it possible to define Pm
l for −l ≤ m ≤ l. For m = 0 we have

P 0
l (x) = Pl(x) (4.3)

Legendre associated functions are not polynoms if m is odd. They can be con-
sidered as a generalization of Legendre polynomials. Orthogonality relations exist
for the Pm

l , for fixed l or m (Abramowitz & Stegun, 1965).
As for Legendre polynomials, the Pm

l functions obey a Sturm-Liouville DE:

(1− x2)y′′ − 2xy′ +

[

l(l + 1)− m2

1− x2

]

y = 0 (4.4)

This equation is the associated Legendre DE. It has regular solutions at x = 1 if
−l ≤ m ≤ l.

4.2 Laplace equation and spherical harmonics

In Sect. 3.6 we showed that the general solution of the Laplace equation in spheri-
cal coordinates is a Fourier-Legendre series in case of azimuthal symmetry. In the
general case where the potential V is a function of the three coordinates (r, θ, φ),
the Laplace equation expresses as

1

r2
∂

∂r

(

r2
∂V

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂V

∂θ

)

+
1

r2 sin θ

∂2V

∂φ2
= 0 (4.5)

Seeking solutions of the form V (r, θ, φ) = f(r).g(θ).h(φ) gives a system of 3 DE
similar to Eq. 3.18. The equation for f in unchanged. The equation for h(φ) is an
harmonic equation whose solution takes the form

h(φ) = α1e
imφ + α2e

−imφ (4.6)

with m an integer (since the potential must have 2π periodicity in φ), and α1

and α2 complex coefficients. The DE for g is slightly different from the azimuthal
symmetry problem (second equation of the system 3.18)
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1

sin θ

d

dθ
(sin θ g′) +

(

α(α+ 1)− m2

sin2 θ

)

g = 0 (4.7)

which takes the form of the associated Legendre DE (Eq. 4.4) with the substitution
x = cos θ. Thus, g is an associated Legendre function Pm

l (cos θ). And the final
solution of the Laplace equation in spherical coordinates takes the form of the
following series

V (r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

(

Almrl +Blmr−1−l
)

Y m
l (θ, φ) (4.8)

where

Y m
l (θ, φ) =

√

2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) eimφ (4.9)

is the spherical harmonic (SH) function, first introduced by Laplace (1782), though
the denomination “spherical harmonic” was introduced later (see MacRobert &
Sneddon, 1967 for more details about the history of the SH). The number l is the
degree of the SH, and the number m is its order (we recall that −l ≤ m ≤ l)

Sometimes a multiplicative factor (−1)m is prepended to the definition of the
SH. This factor is the Condon-Shortley phase and may rather be included in the
definition of the associated Legendre functions (Eq. 4.1), as it is the case here.

We shall see in Sect. 4.4 that the SH functions are orthogonal. They are indeed
a basis for representing 2D functions f(θ, φ) defined for fixed r over the sphere.
They are the spherical analogue of the 1D Fourier series and play a very important
role in physics.

4.3 Some properties and symmetries

The first SH are

Y 0
0 =

1√
4π

Y 0
2 =

√

5

4π
P2(cos θ)

Y 0
1 =

√

3

4π
cos θ Y 1

2 = −
√

15

8π
sin θ cos θ eiφ = −Y −1

2

Y 1
1 = −

√

3

8π
sin θ eiφ = −Y −1

1 Y 2
2 =

√

15

32π
sin2 θ e2iφ = Y −2

2

(4.10)

SH are functions of the two angles (θ, φ) of the spherical coordinates. Various
graphic representation are found in the litterature. Fig. 5 displays the real part
of the functions Y m

1 for l = 1 and m = −1, 0,+1. Plots (d), (e) and (f) of Fig. 5
are spherical representations: the surface of a sphere is painted in false colours
according to the variation of the SH with spherical coordinates angles (θ, φ).
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θθθ

φφ

l=1, m=−1 l=1, m=0

(b)(a)

(c) (d)

(e)

φ

l=1, m=+1

(f)

Fig. 5. Representations of the real part of the SH Y m

l (θ, φ) for l = 1 and the 3 possible

values of m. (a) and (c): m = −1, (b) and (d): m = 0, (e) and (f): m = 1. Graphs (a),

(b) and (e) presents false colour plots of the SH in the plane (θ, φ). Graphs (c), (d) and

(f) displays the same information on the surface of a sphere, as if the sphere was painted

with false colours according to the variation of the SH. Angles θ and φ are the colatitude

and longitude as defined in Fig. 4.
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The case m = 0 corresponds to azimuthal symmetry and the corresponding SH
Y 0
l (θ) is proportionnal to the Legendre polynomial Pl(cos θ). The series solution

of the Laplace equation in the general case (Eq. 4.8) is identical to the Fourier-
Legendre expansion valid for azimuthal symmetry (Eq. 3.22).

As for Legendre functions, a number of relations exist between SH (Abramowitz
& Stegun, 1965). For negative m one can use the expression

Y −m
l (θ, φ) = (−1)m Y m

l (θ, φ) (4.11)

Parity in cos θ is the following

• if l+m is even, the SH is even in cos θ, i.e. the equator (z = 0) is a plane of
symmetry

• if l + m is odd, the SH is odd in cos θ and the equator is a plane of anti-
symmetry

Examples of both cases are diplayed in Fig. 6. In the SH expansion of the solution
to Laplace equation (Eq. 4.8), a charge distribution presenting a symmetry plane
at the equator will create a potential having only even SH in its expansion.

The period of the SH Y m
l (θ, φ) in the direction φ is 2π

m (if m 6= 0). The real
part of this function has 2|m| zeros in the interval φ ∈ [0, 2π[. In the direction
θ, the SH has l − |m| zeros in the interval θ ∈]0, π[ (excluding the poles). In the
spherical representation, the lines corresponding to ℜ[Y m

l (θ, φ)] = 0 are denoted
as nodal lines. In the direction φ they are meridian circles passing through the
poles. In the direction θ they are latitude circles parallel to the equator. Fig. 7
shows nodal lines corresponging to the cases (l,m) = (10, 1) and (10, 4).

SH corresponding to large |m| (resp. large l−|m|) have a high angular frequency
along the axis φ (resp. θ). In the SH expansion of a function f(θ, φ) they play the
same role than high frequency harmonics in a Fourier series: they are associated
to short scale variation (small details) of the function f .

4.4 Orthogonality and series expansion

We consider a function of two angular variables f(θ, φ), defined on a sphere in the
3D space, for θ ∈ [0, π] and φ ∈ [0, 2π]. At it was said before, it is possible to
make an expansion of f as a sum of SH. One needs to define the following scalar
(inner) product between two complex-valued functions f and g:

〈f, g〉 =

∫ π

θ=0

∫ 2π

φ=0

f(θ, φ) g(θ, φ) sin θ dθ dφ (4.12)

It is easy to show that
〈Y m

l , Y m′

l′ 〉 = δll′ δmm′ (4.13)

i.e. that SH forms an orthonormal basis of the space of functions defined on the
sphere. The series expansion in SH is then

f(θ, φ) =
∞
∑

l=0

l
∑

m=−l

alm Y m
l (θ, φ) (4.14)
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(a) l=2, m=2

θ

φ
(b)

φ

θ

l=3, m=2

Fig. 6. False color plots of the real part of the SH Y m

l (θ, φ) for (a): l = 2,m = 2 (l+m

even, parity in cos θ, symmetry plane at the equator) and (b): l = 3,m = 2 (l +m odd,

anti-symmetry plane at the equator).

where the coefficients alm are calculated by the scalar product

alm = 〈f, Y m
l 〉 =

∫ π

0

∫ 2π

0

f(θ, φ)Y m
l (θ, φ) sin θ dθ dφ (4.15)

The norm of the function f is

〈f, f〉 =
∞
∑

l=0

[

l
∑

m=−l

|alm|2
]

(4.16)
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l=10, m=1(a)

θ

φ

(b)

φ

θ

l=10, m=4

Fig. 7. False color plots of the real part of the SH Y m

l (θ, φ) for (a): (l = 10,m = 1) and

(b): (l = 10,m = 4). Dashed lines are nodal lines corresponding to ℜ[Y m

l (θ, φ)] = 0.

The number of nodal lines is 2|m| in the φ direction and l − |m| along the θ axis.

The term between brackets is the usual definition of the angular power spectrum

of f .

4.5 Example

As an example of SH decomposition, we consider the function

f(θ, φ) = exp

(

− (θ − θ0)
2 + φ2

δ2

)

(4.17)
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with θ0 = 0.5 rad and δ = 0.5 rad. The function is drawn in the (θ, φ) plane in
Fig. 8a and over a sphere in Fig. 8b. It may represent a bright spot at the surface
of a star. Coefficients of the SH decomposition of f were numerically computed
using Eq. 4.15. We then computed the truncated SH decomposition defined as

SL(θ, φ) =
L
∑

l=0

l
∑

m=−l

alm Y m
l (θ, φ) (4.18)

The results are shown in Fig. 8c, d, e, and f for L = 1, 2, 5 and 12. For a
given L this corresponds to (L + 1)2 terms in the sum SL. We can see that the
function appears to be well reconstructed for L = 12. Fig. 8g (top graph) shows
the modulus of coefficients alm in the (l,m) plane, for positive m (negative m

verify al,−m = (−1)m alm since f in even in φ). Largest coefficients are obtained
for small m and l, just as it is for 1D Fourier decomposition of a Gaussian signal.
The angular power spectrum

∑l
m=−l |alm|2 is plotted in the bottom graph and

confirms this trend. The convergence of the series is shown in Fig. 8h. It is a plot
of the least-square distance between f and SL as a function of L. The distance
was normalized to 1 for L = 0.

SH decomposition is widely used in domains of physics described by a second
order PDE such as the Laplace, Schrödinger or the wave equation. For example
stellar oscillations are often described in terms of standing waves whose angular
part in spherical coordinates is a SH (see chapter 8 of Collins, 1989 for a rewiew
about stellar pulsations). Another application is to use SH decomposition for de-
composition of functions defined over the sphere. It is indeed an image processing
technique analog to 2D Fourier decomposition of an image defined on a rectangle.
For example in cosmology, the brightness distribution over the whole sky of the
Cosmic Microwave Background (CMB) is analyzed in terms of SH series. The
angular power spectrum provides informations about the statistical properties of
the CMB. Hinshaw et al., (2007) present an extensive analysis of data from the
WMAP spacecraft.

5 Bessel functions

Bessel functions were introduced after the work by Bessel (1824) about the motion
of the planets around the Sun. Bessel expressed the position r(t) of the planet
as a temporal Fourier series whose coefficients were defined by integrals. In his
memoir, Bessel made systematics investigation of the properties of these integrals
who now bear his name. An extensive treatise about Bessel functions is that
of Watson (1966) and includes an historical introduction (one can also refer to
Dukta, 1995).

5.1 Bessel differential equation

Bessel functions are often introduced via the Bessel DE

x2y′′ + xy′ + (x2 − n2)y = 0 (5.1)
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Test function Test function

Partial series : L=1 Partial series : L=2

Partial series : L=5 Partial series : L=12

Power spectrum

(a) (b)

(c) (d)

(e) (f)

a lmCoefficients

0.5

0

l l

m

l

(g) (h)Least−square distance

θ

θ θ

θθ

φ

φ φ

φ φ

Fig. 8. Example of SH decomposition of a 2D Gaussian test function (Eq. 4.17). (a)

false color plot of the test function in the plane (θ, φ). (b): spherical representation. (c)

to (f): plot of the partial SH sum (Eq. 4.18) up to L = 1, 2, 5 and 12. (g): the top

graph is a false color plot of the amplitude of the coefficients alm for m ≥ 0 in the plane

(l,m). The bottom graph is the angular power spectrum as a function of l. (h) is the

least-square distance between the test function and the partial SH sum.
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Fig. 9. Plots of the first Bessel functions for positive argument x. Left: Jn(x) for n = 0

to 4. Right: Yn(x) for n = 0 to 4.

where n is an arbitrary complex number, but in the present paper we shall re-
strict to integer n. The Bessel equation is indeed a Sturm-Liouville problem (see
Sect. 3.7) with p(x) = x, q(x) = x, ρ(x) = − 1

x and λ = n2. Series solutions of the
DE can be obtained by the Frobenius method (Mathews & Walker, 1970). This
equation has two independent base solutions: first kind and second kind Bessel
functions Jn(x) and Yn(x). The function Jn is regular at x = 0 for all n, while Yn

diverges at x = 0 and is complex-valued for x < 0. Plots of the first Jn and Yn

are shown in Fig. 9.

The zoology includes also modified Bessel functions In and Kn, Hankel func-
tions Hn and cylindrical Bessel functions jn and yn. These functions are of com-
mon use in various domains (for example the spherical Bessel functions have ap-
plications in quantum mechanics, see chapter 4 of Griffiths 2005). In this paper
we shall focus our presentation to the Jn family.

5.2 Bessel functions of the first kind Jn(x)

In Sect. 3.1 we introduced the Legendre polynomials by means of a Taylor ex-
pansion of a generating function. The same can be made for Jn, the generating
function g(x, t) being (Watson, 1966):

g(x, t) = exp

[

x

2

(

t− 1

t

)]

=

∞
∑

n=−∞

tn Jn(x) (5.2)

Or the equivalent trigonometric form (variable change t = eiφ)

eix sinφ =

∞
∑

n=−∞

Jn(x) e
inφ (5.3)
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which is the Fourier series of the function eix sinφ, 2π-periodic in φ, and Jn(x) is
the Fourier coefficient calculated by Eq. 2.3

Jn(x) =
1

2π

∫ 2π

0

eix sinφ e−inφ dφ (5.4)

This important formula is an integral representation of Jn which has many appli-
cations, for example in optics to calculate diffraction patterns of screens having
rotational invariance (Born & Wolf, 2000). It is also very close to the coefficients
introduced in the memoir of Bessel (1824).

Basic properties of the functions Jn include

• Parity: same as n

• Negative order: J−n(x) = (−1)nJn(x)

• Value at the origin: Jn(0) = 0 for n > 0 and J0(0) = 1

• Behaviour for small x: Jn(x) ≃
1

n!

(x

2

)n

• Asymptotic limit (x → ∞): Jn(x) ≃
√

2

πx
cos

(

x− nπ

2
− π

4

)

All Jn functions behave like damped sinusoids with an infinite number of roots
on the real axis. The position of these zeros is not periodic. They play a role in
Fourier-Bessel expansion, as it will be further discussed in Sect. 5.3.

Various expansions of functions in series of Bessel functions exist, see Wat-
son (1966) for a review. Eqs. 5.2 and 5.3 are two examples of Neumann series of
the type

f(x) =
∞
∑

n=−∞

anJn(x) (5.5)

In next section, we focus on a special case of orthogonal expansion involving Bessel
functions, which has many connections with physics: the Fourier-Bessel series.

5.3 Fourier-Bessel series

5.3.1 Vibrations of a drum membrane

In Sect. 2.4, 3.6 and 4.2 we showed that a DE representing a particular problem
would led to series solutions depending on the geometry: Fourier expansion for
rectangular coordinates, Fourier-Legendre or SH series for spherical coordinates.
Here we explore solutions of the equation describing oscillations of a drum circular
membrane of radius R in polar coordinates (ρ, φ) (origin at the center of the
membrane). The function s(ρ, φ, t) describing the displacement of the membrane
obeys the wave equation

∆s− 1

c2
∂2s

∂t2
= 0 (5.6)
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where c is the speed of propagation. We apply the technique of separation of
variable (as in Sect.2.4 and 4.2) and look for solutions of the form s(ρ, φ, t) =
f(ρ).g(φ).h(t). The wave equation is then equivalent to the following system













h′′ + k2c2 h = 0

g′′ + n2g = 0

ρ2f ′′ + ρf ′ + (k2ρ2 − n2)f = 0

(5.7)

where k and n are constant (k is positive to have oscillatory solutions for h(t), n
is integer to ensure 2π periodicity in φ). A more detailed step-by-step calculation
can be found in Asmar (2004). It can be noticed that the equation for f is indeed
a Bessel DE (Eq. 5.1) whose base solution is

f(ρ) = Jn(kρ) (5.8)

An important condition is the boundary value, i.e. the membrane must be mo-
tionless at its extremities (ρ = R), so that f(R) = 0 whatever n. Hence k must
have the form k = αnm

R with αnm the m-th positive root of the function Jn. The
general solution is the linear combination of base solutions (i.e. modes) for every
possible m and n:

s(ρ, φ, t) =

∞
∑

n=−∞

∞
∑

m=1

Amn Jn

(αnmρ

R

)

einφ eiωmnt (5.9)

with Anm a constant and ωmn = kc = αnmc
R the temporal pulsation of the mode.

This double sum is indeed a Fourier series for the variable φ and a Fourier-Bessel
series for the variable ρ.

5.3.2 Fourier-Bessel expansion

As for Fourier or Fourier-Legendre series, it is possible to make orthogonal expan-
sions of functions as series of Bessel functions. This concerns continuous functions
with bounded support [0, 1] who verify f(1) = 0. One needs to define the following
scalar product:

〈f, g〉 =
∫ 1

0

x f(x) g(x) dx (5.10)

Note that this scalar product, suited for Fourier-Bessel expansion, is different from
those defined in Eqs 2.8 and 3.7. It can be shown (Watson, 1966) that

〈Jn(αnmx), Jn(αnpx)〉 =
J2
n+1(αnm)

2
δmp (5.11)

so that the functions jm(x) = Jn(αnmx) form a complete set of orthogonal func-
tions. As an example Fig. 10 shows the graph of the base functions J0(α0mx)
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Fig. 10. Graph of the functions J0(α0mx) for m = 1 to 4. Corresponding roots of J0 are

α01 = 2.4, α02 = 5.5, α03 = 8.7, α04 = 11.8. These functions are orthogonal with respect

to the scalar product defined by Eq. 5.10. All functions vanish at x = 1.

for m = 1 to 4. All of them are stretched version of J0 with a stretching factor
depending on the root α0m. Any function f(x) continuous on [0, 1] with f(1) = 0
can be expanded as a series of jm

f(x) =

∞
∑

m=1

cmJn(αnmx) (5.12)

with the coefficient

cm =
2

J2
n+1(αnm)

〈f, jm〉 =
2

J2
n+1(αnm)

∫ 1

0

x f(x) Jn(αnmx) dx (5.13)

This expansion is denoted as Fourier-Bessel expansion of f . Note that the choice
of n, the order of the Bessel function, is arbitrary (or suggested by physics): an
infinity of Fourier-Bessel expansions exist for a given function.

5.3.3 Exemple of Fourier-Bessel expansion

We consider the following function for x ∈ [0, 1]

f(x) = e−3x cos

(

3πx

2

)

(5.14)

This function vanishes at x = 1, as required to make a Fourier-Bessel expansion.
Also since f(0) = 1 we choose to expand it on the basis of J0(α0mx). Coefficients
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(a)

(d)(c)

(b)

Fig. 11. Fourier-Bessel reconstruction of the function defined by Eq. 5.14, on the base

of orthogonal function J0(α0mx). (a) function and partial sums SN (x) for N = 1 to 20.

(b) individual terms of the series. (c) graph of cm versus m. (d) Least square distance

dN between the function and the sum for two intervals (Eq. 5.16).

of the series were calculated numerically from Eq. 5.13. We computed the partial
series

SN (x) =

N
∑

m=1

cmJn(αnmx) (5.15)

up to N = 20. Results are shown in Fig. 11. The convergence is fairly good for
N = 20, excepted near x = 0 where more terms are required to fit the function.
This is due to the fact that J0 derivative is zero at x = 0 while it is not for the
function. In Fig. 11d, we display the least-square distance dN between the function
and the partial sum as a function of N :

dN =

∫ 1

a

(f(x)− SN (x))2 dx (5.16)

Two curves are shown: one for a = 0 (whole interval), the other one for a = 0.1.
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As we see, the second curve is two decades below the first for N = 20, it means
that the interval [0, 0.1] contains 99% of the reconstruction residuals.

Fourier-Bessel expansion can be made using higher order Bessel functions Jn,
but for this particular example the convergence is very slow near x = 0 and
hundreds of terms are required in the series.

6 Conclusion

This presentation aimed at introducing the mathematical concept of representing
a function or a signal as a series of orthogonal functions. We focused on four
particular cases: the Fourier series, the Fourier-Legendre series, the Spherical
Harmonic decomposition and the Fourier-Bessel expansion. A basic presentation
of each set of orthogonal functions was given, together with a list of references
for further reading. The central concept of inner/scalar product of functions was
introduced by analogy with “classical” vectors in the three-dimensional space. All
series expansions were illustrated by a numerical example.

The connexion with physics was enlighted each time, and we showed that the
link is often made via differential equations of the physical phenomenom. The
geometry often gives a “natural” basis for series expansion. Hence Fourier series
are often used in rectangular coordinates, SH are the natural base in spherical
coordinates and Fourier-Bessel expansions are met in cylindrical or polar coordi-
nates.

A wide variety of series expansions on orthogonal set of functions exist in the
field of functionnal analysis, and this presentation is far from exhaustive. For
example we did not explore the decomposition of a two-dimensional function in
Zernike modes, widely used in adaptive optics (Noll, 1976).

Also, it is not the sake of this paper to present FFT-like fast algorithms to
compute various transforms such Fourier-Legendre or Spherical Harmonics. There
is indeed an abundant litterature on this topic and the reader may refer to O’Neil
et al. (2010) and references therein.

This paper could hopefully be used as a starting point or a reminder, in par-
ticular for students. The reference list gives a number of classical textbooks with
much details and exercices.
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