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Abstract—Smart charging is becoming an important and 

indispensable asset for electric bus fleet to become economically 

competitive. This paper proposes an innovative approach for 

setting overnight charging schedules of electric bus fleet. This 

approach uses nonlinear programming in order to minimize both 

the electricity cost and the battery aging. The optimization is 

constrained by the operating buses conditions, the electric vehicle 

supply equipment, and the power grid. A comparison between the 

nonlinear programming results and non-dominated sorted genetic 

algorithm (NSGA-II) will show the difference and 

complementarities of both approaches and proposes a number of 

trade-off optimal solutions. 

Keywords—multi-objective optimization problem (MOP), battery 

aging, electric vehicles (EVs), electric buses (EBs), Pareto front, 

non-dominated sorted genetic algorithm (NSGA), nonlinear 
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I. INTRODUCTION  

Electro-mobility in urban public transport is set to play a 
larger role to reduce greenhouse emissions and local pollutants. 
However, as a result of a possible large-scale deployment of 
electric buses (EBs), the power grid should be strengthened to 
avoid the overloading, the peak-demand and network congestion 
problems [1]. On the other hand, the EBs purchase costs should 
be mitigated by low operational costs. 

Many fleet operators (FO) are increasingly interested in the 

viability of the electric bus system. Therefore, new methods are 

required to optimize the operation cost of EB depots substation. 

To this end, the EVs smart charging is one of the main tools to 

be deployed. Regarding centralized overnight charging for 

large and small-scale EVs fleets, several optimization methods 

(e.g. dynamic programming, non-linear programming, 

(meta)heuristic optimization) were compared through an 

extensive literature review [2]. Some studies [3-11] have 

investigated EBs fleets with overnight charging on centralized 

bus depots. Nevertheless, they analyzed large and small-scale 

bus depots mostly from the perspective of minimizing the 

operational costs or the load peak without taking into account 

the aging of batteries, while using a mono-objective 

optimization algorithms. In this work, we investigate more 

precisely the battery electro-thermal and aging behavior of a 

large-scale EBs fleet while handling a multi-objective 

optimization problem. In our previous work [12], NSGA-II 

method has been tested with success for sloving multiobjective 

problem. The main drawback was the processing time and the 

possibility of considering only a weak number of buses. In this 

work, a nonlinear programming (NLP) algorithm has been used 

to cope with non-linear problems such as battery aging while 

ensuring a reasonable processing time that will allow to deal 

with substantial number of buses.  

The remainder of the paper proceeds as follows. In Section 

II, we introduce our proposed approach for smart charging 

strategy of EBs and the system modeling. In Section III, we 

detail our approach used for multi-objective optimization 

problem and we present the mathematical formulation of the 

problem. Section IV presents the case study of an EB that 

operates during the day an existing conventional bus line. The 

optimization takes place during the overnight charging. We 

present and discuss our results in Section V. The results of the 

optimization problem will be compared to the previous NSGA-

II algorithm taken as a reference for a small number of buses 

[12]. Finally, Section VI draws some conclusions and 

introduces future work.     

II. PROPOSED APPROACH & SYSTEM MODELING  

A. Multi-objective optimization methodology for EBs fleet 

charging  

This part introduces a methodological approach (Fig. 1) for 

the management of EBs fleet overnight charging. The 

optimization methodology has been developed in 

Matlab/Simulink environment. This approach uses NLP to find 

an optimal charging power profile for each bus depending on 

objectives and respecting all the constraints while minimizing 

the charging cost and battery aging cost as well. The fitness 

function is evaluated using a converter and a battery-coupled 

model. The optimization takes into account several constraints:  

 Operating constraints (number of buses, initial state of 

charge (SoC) and battery temperature (T), the targeted 

SoC, arrival and departure time, maintenance period) 

 Charging station constraints (number of charging points, 

maximum charging power…) 

 Power grid constraints (time-of-use, power peak demand)  



  

Fig. 1. Multi-objective optimization methodology for the management of EBs fleet charge  [13]

B. Coupled Electro-Thermal Aging based battery model 

To make the entire battery model complete and more 

accurate, three sub-models are coupled in Fig. 2. We used an 

electric model based on an equivalent electrical circuit 

previously developed on VEHLIB [14]. The battery thermal 

model used is a simple model of a prismatic lithium-ion 

battery (LiFePO4/graphite) based on an equivalent electrical 

circuit [15]. The equivalent electric circuit equation is given 

by: 

Ubat= OCV − Req × Ibat (1) 

This model implements an ideal voltage source OCV  that 

represents the open circuit voltage of the battery, and a 

resistor Req that includes an ohmic, double layer and 

diffusion resistance. Ibat is the battery current with a positive 

value when discharging and a negative value when charging. 

Ubat is the battery voltage. 

The temperature change of the battery is the effect of heat 

generated by the battery and the heat dissipated from the 

battery.  

Cth

dTbat

dt
= Ibat (Ubat

− OCV) − h (T
bat

− Tamb) (2) 

Where Ibat  is the battery charge current, Ubat  is the battery 

voltage, OCV is the open circuit voltage, Cth is the specific 

thermal capacity of the battery.  

The heat capacity and heat transfer coefficient were 

estimated by experiments [16] and were compared with 

experimental values from the literature. As the battery 

thermal characteristics are strongly dependent on the battery 

pack configuration, we assumed that we have a configuration 

similar to that of [16], homogeneous temperature in the 

battery pack, with no thermal insulation, no forced air 

convection and no cooling system. The battery pack electro-

thermal and aging characteristics are presented in Table II. 

Battery aging mechanisms depend on battery conditions (T, 

SoC) and battery current (I). Over the time, battery’s 

performances (power, capacity) decay and can be categorized 

into calendar (I=0) and cycling aging (I≠0). In this work, it 

must be highlighted that cycling aging could be neglected 

over the period of slow charging as current is very low 

(C- rate ≤ C/6) and the ambient temperature is set to 25°C 

[17]. As for battery calendar aging evaluation, we used an 

empirical model proposed by [18] to describe the calendar 

capacity loss as a function of time.  

 
Fig. 2. Coupled Electro-Thermal Aging based battery model 

 

The formula of this semi-empirical model is based on the 

Eyring equation:  

�̇�loss= A . exp (—
Ea

k T
 + B . Q

a
)  (3) 

Here, �̇�
loss

 is the capacity loss rate (p.u./day), A is the pre-

exponential factor (p.u./day), Ea  represents the activation 
energy for the reaction (eV), k  the Boltzmann constant 
(eV/K), 𝑇  the absolute temperature (K), 𝐵  the quantity of 

charge factor (no units), Q
a
 the available quantity of charge 

(p.u.) and 𝑡 time (day). All the aging parameters values are 
presented in Table II. The capacity loss is determined by 
integrating (1) with a 30 min time step. 

 

 

 



 

 aNP-hard:   NP-hard problems are problems for which there  

is no known polynomial algorithm, so that time to find a  

solution grows with problem size.  

III. MULTI-OBJECTIVE OPTIMIZATION PROBLEM 

FORMULATION 

Multi-objective optimization is an area of multiple criteria 
decision making that is concerned with mathematical 
optimization problems involving more than one objective 
function to be optimized simultaneously. A multi-objective 
optimization problem (MOP) can be defined by: 

Optimize ∫ f(x) = ( f
1
(x), f

2
(x),…, f

n
(x) )  x ∈ F                   (4) 

Where 𝑛 is the number of objectives (n ≥ 2), x = (x1, x2,..,xk) 

is the vector representing the decision variables, 𝐹 represents 

the set of feasible solutions and each of the functions f
i
(x) 

represents a particular objective. Unlike single-objective 

optimization problems, the solution to this problem is a set of 

non-dominated solutions, known as the Pareto front [19]. 

A. Approach to solve multi-objective problems 

Several approaches for solving multi-objective NP-harda 

problems optimization exist. We can classify the optimization 
methods into two major approaches:  

 Transformation of MOP into mono-objective problems         
(weighted aggregation method, two-phase method, ε-
constraint method…)  

 Multi-objectives Pareto approach 

In this work, we will focus on the transformation of MOP 

into a mono-objective problem. In a first step, we used the 

first phase of the two-phase method (TPM) that solves a 

series of mono-objective problems with NLP. The mono-

objective problems are obtained by performing a linear 

weighting of the two objectives. The method begins by 

finding the extreme points (Fig. 3.a) by solving optimally 

each objective, and then sub problems are created by 

weighting the objective functions  α1 f
1
 and  α2 f

2
 (Fig. 3.b). 

The method is then iterated (Fig. 3.c) via a dichotomic search. 

We then obtain optimal Pareto set points (Fig. 3.d) [20,21]. 

 

Fig. 3. Multi-objective proposed optimization method [20] 

In this work, we used the two-phase method (TPM) to solve 

the multi-objective problem. The results obtained will be 

compared to NSGA-II method which performs a real multi-

objective optimization. 

B. Representation and evaluation 

In this work, the optimization variable represents the 

charging power P of the bus fleet in an (n × m) matrix:   

Optimization variable 

P = (

p
1,1

 p
1,2

….  p
1,m

.   …        …..  ….

.   …        …..  ….

p
n,1

 p
n,2

….  p
n,m

) = ( p
i,j 

) | {
i=1,2...,n

 j=1,2,..,m
}      

(5) 

  
Where n is the total number of EB and m the number of 

time slots,  p
i,j 

is the charging power for EB number i during 

a time slot j. 

Objective function 

The aim is to minimize the overall cost of charging as well 

as the battery aging cost. This problem can be formulated as 

follows :  

min ∑ ∑  α1 ( p
i,j 

. ∆t . Ecj ) + α2 (
∆Q

lossi,j

Q
EoL

. Batprice . Ebat i,j )

m

j=1

n

i=1

 (6) 

The charging cost is expressed as a linear function, where  p
i,j 

 

denotes the charging power of EB number i during a time 

slot j (kW), ∆t represents the time-slot of 30 min (h), Ecj the 

electricity cost during a time slot j (€/kWh). The battery aging 

cost represents the cost of replacing the battery spread over 

the battery lifetime. This cost is expressed as an nonlinear 

function where ∆Q
lossi,j

 is the capacity loss rate of EB number 

𝑖 during a time slot 𝑗 (p.u./day), Q
EoL

 is the capacity  loss at 

end of life (p.u.), Batprice is the price of the LiFePO4 battery 

(€/kWh) and Ebat i,j  is the amount of energy of EB number i 

required during a time slot j (kWh), α1  and  α2  represent the 

weighting factors that define the search direction. 

Linear equality and inequality constraints 

During optimization, the maximum charging power 𝑝𝑚𝑎𝑥  

delivered by the charging infrastructure imposes a bound 

constraint to all elements of the optimization variable 𝑃. 

0 ≤  𝑝𝒊,𝒋 ≤ 𝑝𝑚𝑎𝑥     {
i = 1,2. . . , n

 j = 1,2, . . , m
} (7) 

The charging infrastructure subscribed power 𝑝𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑  

imposes an inequality constraint to the submatrix 𝑃{𝒋}. 

𝐴 × 𝑃{𝒋} ≤ 𝑝𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑  (8) 

A denotes an all-ones (1×n) matrix, 𝑃{𝒋} is an (n×1) refers 

to the charging power for all the buses in a time slot j. 

The operating bus constraints (the bus arrival and departure 

time) impose an equality constraint to the submatrix 𝑃{𝒊}. 

𝐵 × 𝑃{𝒊}
𝑇 = 0 (9) 

B denotes an all-ones (1×m) matrix that will take 0 

between the bus arrival and departure time, 𝑃{𝒊}
𝑇  (the   

transpose of the matrix 𝑃{𝒊}) is an (m×1) matrix that represents 

the charging power of EB number I during the total time slots.

 

 

 



 

  

The operating bus constraint (number of km to be covered 

during the following day) will define the final battery SoC to 

reach. It also imposes the amount of energy required to reach 

the targeted SoC as an equality constraint to the submatrix 

𝑃{𝒊}. 

𝐶 × 𝑃{𝑖}
𝑇 =

(𝑆𝑜𝐶𝑓𝑖𝑛𝑎𝑙(𝑖) − 𝑆𝑜𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖)) × 𝑄𝑏𝑎𝑡(𝑖) ×  𝑉𝑏𝑎𝑡(𝑖)

100 × ∆𝑇 × 𝜂𝑐ℎ(𝑖) × 𝜂𝑏𝑎𝑡(𝑖)
 (10) 

C denotes an all-ones (1×m) matrix, 𝑃{𝒊}
𝑇  is an (m×1) 

matrix that represents the total charging power of EB 

number 𝑖  (W),  𝑆𝑜𝐶𝑓𝑖𝑛𝑎𝑙(𝑖)  is the final state of charge of EB 

number i (%), 𝑆𝑜𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖) is the initial state of charge of EB 

number i (%),  ∆𝑇 the time-slot of 30 min (h), 𝑄𝑏𝑎𝑡(𝑖) denotes 

the total battery capacity of EB number 𝑖 (Ah), 𝜂𝑐ℎ(𝑖) is the 

average charger efficiency of EB number 𝑖 (%), 𝜂𝑏𝑎𝑡(𝑖) is the 

average battery efficiency of EB number 𝑖  (%), 𝑉𝑏𝑎𝑡(𝑖)  the 

average battery voltage of EB number 𝑖  (V). The average 

values are calculated during a pre-optimization process which 

provides gross values of the optimization constraints. 

 
Nonlinear equality and inequality constraints 

The charging process of a lithium-ion battery contains a 

constant current phase and a final constant voltage (CV) phase 

dedicated to the end of the charging process. Considering the 

slow charging rate used in the case studied, we assumed that 

the CV phase lasts one hour (2 slots of 30 min). As the CV 

phase is used to limit the current, we set the power in such a 

way that the CV phase charging allows the SoC to increase 

from 95 to 100% during two slots of 30 min. As a first step, 

the end of charging process is not included on the optimization 

results facilitating a better understanding of the results. 

IV. CASE STUDY 

A case study was performed to illustrate the optimization 

of an EBs fleet. The EBs fleet will operate during the day an 

existing conventional bus line. The optimization takes place 

during the night when the EB fleet returns to the depot. The 

EBs fleet is charged only at the depot during a period of 13.5 

hours (from 𝑡0 to 𝑡0 + 14h) divided into 27 time-slots of 30 

min each, which results in a reasonable search space. The 

battery price was set at 500 €.kWh-1[22]. Table I presents the 

simulation parameters: 

TABLE I.  SIMULATION PARAMETERS OF THE OPTIMIZATION 

PROBLEM 

Parameters Value / Specification 

Number of buses 2 

Number of simulated days 1 day 

Charging time period 13.5 h 

Charging slot ∆𝑡 30 min 

Charging power for 1 charger 𝑃𝑚𝑎𝑥 

Number of charging time slots 27 

Initial state of charge 10 % 

Initial battery temperature 25 °C 

Initial battery capacity loss 0 % 

Fixed outside temperature 25 °C 

The battery pack electro-thermal and aging characteristics are 

presented in Table II. 

TABLE II.  BATTERY ELECTRO-THERMAL AGING CHARACTERISTICS 

Parameters 

Battery type LIFePO4 or LFP 

Nominal energy/capacity 311 kWh / 540 Ah 

Pack surface for thermal exchange 18.79 m² 

Weight 2500 kg 

Specific heat capacity 900 J.kg-1.K-1 

Heat transfer coefficient 5 W.m-2.K-1 

A :  pre-exponential factor 4.35×107 p.u.day-1 

Ea: activation energy 0.719 eV 

K : Boltzmann constant 8.617×10-5 eV.K-1 

B : quantity of charge factor 1.104 

QEoL : Capacity loss at end of life 0.2 p.u 

Batprice: Battery price 500 €.kWh-1 

The optimization constraints are shown in Table III. 

TABLE III.  EBS FLEET OPERATING CONSTRAINTS FOT TWO DAYS 

Parameters 
Number of bus fleet  

EB 1 EB 2 

Initial SoC  Day j 10 %    13 % 

Targeted SoC Day j 100 %  40 %  

Arrival time  Day j 18:00 23:00 

Departure time  Day j+1 07:30 05:00 

Length of the trip  Day j+1 179 km  66 km  

Maximum charging power  60 kW 60 kW 

Subscribed power  100 kW 

V. RESULTS AND DISCUSSIONS 

This section presents some results of the proposed method 

applied to the considered case study. In a first step, we focus 

on mono-objective optimization of a fleet of 2 EBs with 

variant operating constraints by minimizing the electricity 

cost (α1 = 1 , α2 = 0) or the battery aging cost (α1 = 0 , α2 = 1). 

As a final step, a multi-objective optimization of the charging 

and battery aging cost will be performed with a Pareto front 

representation using variable α1,  α2 values. The Pareto front 

optimization results will be compared to the NSGA-II results. 

To illustrate the potential economic gain, we will compare 

our optimal strategy to a “Greedy” baseline method, which 

represents one typical behavior that charges the EB with the 

maximum power as soon as possible, ignoring electricity and 

battery aging cost, until it is fully charged. 



 

  

A. Mono-objective optimization of the electricity cost for an 

EBs fleet charging (α1 = 1 , α2 = 0) 

The results of mono-objective optimization for minimizing 

electricity cost in Fig. 4 regardless of the battery aging show 

that the optimal charging power (EB1, EB2) agrees perfectly 

with the variation of the electricity cost while respecting 

operating constraints for both EBs. In addition, the algorithm 

ensures that the total charging power will not exceed the 

subscribed one.  

 

Fig. 4. Optimal charging power to minimize electricity cost of two EBs 

B. Mono-objective optimization of the aging cost for one 

EBs fleet charging (α1 = 0 , α2 = 1) 

The results of mono-objective optimization for minimizing 

battery aging cost in Fig. 5 show that the optimal charging 

power (EB1, EB2) tends to increase gradually. This seems 

logical according to the aging fitness function defined in (4). 

The optimal charging power profile decides to delay the 

charge to minimize calendar aging due to higher values of 

SoC and gradually increases the power to avoid power peaks 

that will cause battery overheating. The EB2 starts charging 

late and stops charging earlier due to the operating 

constraints. It can be noticed that the EB2 does not reach its 

maximum power to not exceed the subscribed power.   

 
Fig. 5. Optimal charging power to minimize battery aging cost of two EBs 

C. Multi-objective optimization of both electricity and 

aging cost for one EB charging  

The results of NLP multi-objective optimization are 

compared to NSGA-II algrotihm results and to a Greedy 

baseline solution in Fig. 6. The Pareto front expresses the 

trade-off between these two competing objectives and 

proposes different optimal solutions. NSGA-II Pareto front 

comes close to NLP and explore a much larger area but is not 

able to converge well particularly for the battery aging cost 

objective. This is due to the limit of the optimization variable 

that is discrete in the NSGA-II problem optimization (more 

details in [12]) and continuous in NLP optimization. 

 
Fig. 6. Multi-objective optimization of both the electricity and aging cost 

for one EB charging  
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The results of the simulation show that a potential solution 

from the Pareto front that satisfies both objectives has been 

able to achieve a 20 % reduction in the annual electricity cost 

as well as a 48 % reduction in the battery aging cost compared 

to the greedy baseline solution. 

VI. CONCLUSION AND FUTURE WORKS 

This paper introduces a smart charging method for an EB 
fleet. A case study has been presented and  analyzed. The 
implemented optimization algorithm namely NLP achieves 
good performance after only 2 minutes of computing time for 
one EB that makes possible to deal with large fleet of several 
hundred buses. The comparison between the two methods 
showed that NSGA-II explored a larger area of potential 
solutions but does not perform very well in some regions 
while consuming much more CPU processing time.  

In future work, the purpose is to deal with a larger problem 
with different sizes of bus fleets to see how the algorithm 
performs. The end of the charging process will be also 
included as it constrains the available optimization period. 
Particular attention will be paid to include the battery cycling 
aging mainly during the charge at cold temperatures. The 
battery thermal model sensitivity has to be carefully studied. 
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