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Online diagnosis of PEMFC by analyzing individual cell voltages

Zhongliang Li, Rachid Outbib, Daniel Hissel, and Stefan Giurgea

Abstract— Polymer Electrolyte Membrane Fuel Cell
(PEMFC) is a promising power source for a wide range of
applications. Fault diagnosis, especially online fault diagnosis, is
an essential issue to promote the development and widespread
use of PEMFC technology. This paper proposes a diagnosis
approach for large PEMFC stack. In this approach, flooding
fault is concerned, individual cell voltages are chosen as
original variables for diagnosis. A dimension reduction method
Fisher linear discrimination (FDA) is adopted to extract the
features from the cell voltage composed vectors, after that, a
classification methodology Gaussian mixture model (GMM)
is applied for fault detection. Flooding experiments were
conducted on a 20-cell stack to test the approach, the obtained
results showed that data points can be classified to different
states of health with a high accuracy. It is also verified that
the real-time implementation of the algorithm is feasible.

I. INTRODUCTION

Increasing environment and resource issues draw the more
and more attention. Developing an clean and high efficient
power generator is urgent in recent years. Fuel cell, as it has
lower emissions of CO2, is a promising alternative power
generator. In some domains, for instance the transportation
applications, PEMFC has been drawing more attention than
other types of fuel cell because of its high efficiency, high
power density and the ability of operating at low tempera-
tures [1]. However, there are still two barriers: the reliability
and durability, which block the wide application of PEMFC.

Fault diagnosis is an efficient solution to overcome the
barriers [2]. More particularly, online diagnosis is more ef-
fective than offline diagnosis, since it permits an earlier fault
diagnosis, more serious faults can be avoided. Additionally,
the diagnosis results can be supported to the control unit,
thus help adjusting the control commands.

Since the fuel cell system is a nonlinear system, in which
the phenomenons of electrochemistry, thermodynamics, and
fluid mechanics are coupled together, reliable diagnosis of
fuel cell system is a challenge. Some literatures have pro-
posed several fuel cell diagnostic methods. Analytical mod-
eling is an intuitional way to realize the aim of diagnosis [3],
however, complicated parameters estimation is needed to get
an accurate modeling. In order to overcome the drawbacks of
physical model, some ”black-box” or ”grey-box” models are
applied with the aids of some artificial inteligent methods. In
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[4], authors proposed neural networks model based procedure
to diagnose water management faults. A fuzzy diagnostic
model is proposed in [5], which is used to diagnose drying
of membrane and accumulation of N2/H2O in the anode
compartment. Some statistical tools were also developed
for diagnosis. In [6], a multivariate statistical method is
presented, in which faults can be detected by analyzing
principal components. In paper [7], authors proposed an
approach based on Bayesian networks, which can handle
four types of faults in PEMFC system. In addition, paper
[8] introduced a signal analysis approach, in which wavelet
package translating methodology is used to detect flooding
fault. In [9], authors developed a experimental methodology
based on the analysis of the Open Circuit Voltage (OCV) in
order to detect leakage faults and locate the fault cells inside
the stack.

Although these methods can support us some solutions
for diagnosis of fuel cell system, there are still matters need
to be improved. Most of the methods consider the fuel
cell stack as integration. However, the behaviors of cells
are different actually [10], the othernesses of cells should
be in consideration. For online diagnosis, the accuracy of
fault diagnosis, as well as the implementation cost of the
algorithm, which are usually omitted in the literatures, should
be evaluated carefully [11].

In this work, we propose an approach for online diagnosis
of flooding fault in large PEMFC stack. In the approach,
individual cell voltages are analysed by adopting feature
extraction and classification methods. Such that data can be
classified to normal class, transition state, and fault state. The
performance and the feasibility of the approach for online
use are evaluated based on the experimental data of a 20-
cell PEMFC stack.

The rest of the paper is organized as follows: In section
2, the PEMFC system and the conserned flooding fault are
introduced. The details of experiment platform are presented
in section 3. In section 4, the diagnosis approach is ex-
pounded, including detailed presentations of methodologies:
FDA and GMM. The results of diagnosis are given in the
next section, the feasibility of online implementation is also
discussed in this section. Finally, the conclusion and future
work are summarized.

II. PEMFC SYSTEM AND CONCERNED FAULT
A. PEMFC system

An running PEMFC is usually fed continuously with
hydrogen on the anode side and air on the cathode side.
With the convertion of chemical energy to electric energy,
the by-product water is a generated. To produce an useful



voltage or power, many cells have to be connected in series,
which is known as a fuel cell stack. In order to make a fuel
cell stack operate in an efficient and safe state, three ancillary
circuits, other than fuel cell stack, are usually added to the
system: hydrogen circuit, air circuit, and cooling circuit. As
Fig. 1 shows, in the hydrogen circuit and air circuit, the flow
rates, temperatures, humidities and pressures of gases can be
configured or controlled. The temperature of fuel cell stack
can be regulated by cooling circuit. The generated water can
be taken out by air from the cathode.
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Fig. 1. The schematic of PEMFC stystem [12]

B. Presentation of the concerned fault

Kinds of faults may occur in the fuel cell system. The
faults may happen inside the fuel cell stack or in the ancillary
circuits. The faults of ancillary circuits could lead to the
faults of fuel cell stack, so that the faults of fuel cell stack can
reflect the faults of ancillary components. Additionally, the
fuel cell stack is the heart of the whole system. Consequently,
the diagnosis of fuel cell stack is prior and cricial. The article
will focus on one of the most common faults that occur inside
the fuel cell stack: ”flooding fault”.

As Fig. 2 shows, a typical PEMFC consists of bipolar
plates (BPs), gas diffusion layers (GDLs), catalyst layers
(CLs), and membrane. On both sides of BPs, gas channels
are grooved for gas flow. In a proper functioning PEMFC,
the membrane should keep a certain water content to make
the protons transport through it effectively with low ohmic
resistance. Hence, reactants are humidified before fed into
fuel cells. At the same time, the liquid water is generated
in the cathode and taken away from fuel cells by air.
Inside the fuel cell, water travels among different layers
and diffuses between anode and cathode [13]. Some facors,
such as gas pressures, gas humidities, gas flow rates, stack
temperature, and load current, can impace the balance of
the water management. The unbalance of water management
may cause the presence and accumulation of liquid water in
the gas channels and/or gas porosities of GDLs and CLs,

resulting in the flooding fault. Excessive liquid water will
block the pathways of reactants, thus make the fuel cell
stack degraded. As the water is generated in the cathode
side, flooding happens generally in the cathode side.
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Fig. 2. Schematic picture of water movement inside a PEMFC

III. EXPERIMENT PLATFORM

A 1 kW PEMFC experiment platform is used to test a
20-cell PEMFC stack. Many physical parameters impacting
stack performances can be controlled and measured in order
to master the operating conditions as specifically as possible.
Stack temperature, gas flow rates, fluid hygrometry rates,
air dew point temperature and load current can be set. Inlet
and outlet flow rates (Di and Do), pressures (Pi and Po),
stack temperatures (Ts), current (I), stack voltage (vs) and
single cell voltages (v1, v2, . . . , v20) can be monitored. Table
I summarize some parameters of the investigated fuel cell
stack.

TABLE I
THE PARAMENTERS OF THE INVESTIGATED FUEL CELL STACK

Cell area 100 cm2

Cell number 20
Nominal output power 500 W

Nominal operating temperature 50 °C
Operating temperature region 20-65 °C
Maximum operating pressures 1.5 bar

Anode stoichiometry 2
Cathode stoichiometry 4

IV. THE PROPOSED APPROACH

A. Selection of variables for diagnosis

Although in our experimental platform, many physical
variables can be collected. The collected variables can be
written as a set T

T = {Di, Do, Pi, Po, Ts, I, vs,vc} (1)

where vc = {v1, v2, . . . , v20}. However, in practice, in the
condition of keeping high diagnosis accuracy, we try to
decrease the number of the sensors so as to improve the
reliability and lower the cost. Consequently, just a subset
of T is selected as the original variables for diagnosis.



Individual cell voltages are considered here as the variables
for diagnosis for the following reasons:

1) The necessity of monitoring individual cell voltage is
stressed. Since the cell with the lowest cell voltage
in the stack restricts the maximum power output of
the stack [14], fault of a single cell can induce the
malfunction of the stack.

2) In general, fuel cell output voltage is highly dependent
to the current, electrochemical characteristics, temper-
ature, and aging effect. The fuel cell voltages and their
variations contain abundant information that can be
used to estimate the parameters of the fuel cell model
[15]. In other word, the individual cell voltage can be
seen as sensors inside the fuel cell stack.

3) It is observed that appearance of the liquid water
change the flow distributions of the gases, and further
make the cell voltage distribution varied [10]. So the
distribution and relations among the individual cell
voltages contain information for diagnosis.

B. The principal of approach

Pattern classification is an cricial and effcient tool for fault
isolation [16]. Classification technique can also be applied
for fault detection by adding a class of data which represents
the normal state [17]. In this work, a parametric classification
methodology GMM is adopted. For large fuel cell stack, the
number of fuel cell is large. It means the dimension of data
for classification will be high. This will make the classifi-
cation complicated, and the redundancy of high-dimensional
data will lower the accuracy of the classification [18]. In
order to overcome these problems, before classification, a
dimension reduction method FDA is adopted. The procedure
is called feature extraction step. Hence, as Fig. 3 shows,
the diagnosis process is composed by three steps: data
acquisation, feature extraction and classification. The feature
extraction methodologies FDA and GMM classification are
reviewed in the following parts.
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Fig. 3. The flow chart of the proposed diagnosis approach

C. FDA

FDA is a technique developed for reducing the dimension
of the data in the hope of obtaining a more manageable
classification problem. The objective of FDA is to find a

mapping vector that makes the data in the same class be
projected near to each other while the data in the different
classes are separated as far as possible [19], [20].

Given a set of M-dimension objects {x1;x2; . . . ;xN},
which belong to C classes denoted as ζ1, ζ2, . . . , ζC , FDA
procedure projects each objects to a L-dimension space
by M-dimension unit vectors ω1,ω2, . . . ,ωL. Take ω1 as
example, vector {xn} is projected to {yn1}

yn1 = ωT1 xn (2)

In order to seek ω1, within-class variance sw is defined in
the mapped space

sw =

C∑
i=1

∑
yn∈ζi

(yn − ȳi)(yn − ȳi)T (3)

where ȳi is the mean value of data in class ωi: ȳi =
1
Ni

∑
yn∈ζi yn. Ni is the number of data in ζi which satisfies∑C

i=1Ni = N . sw represents the variance of the data in the
same class.

The between-class variance sb which represents the vari-
ance between data in different classes is defined as

sb =

C∑
i=1

Ni(ȳi − ȳ)(ȳi − ȳ)T (4)

where ȳ is the mean value of total data: ȳ = 1
N

∑N
n=1 yn.

We hope to construct a scalar which has the quality that
it is large when the between-class covariance is large and
within-class covariance is small, one such scalar is given as

J(w) = s−1w sb (5)

Substitute {yn} with {wTxn}, (5) can be convertered to

J(ω1) =
ωT1 Sbω1

ωT1 Swω1
(6)

where Sb named within class scatter matrix is defined as

Sw =

C∑
i=1

∑
xn∈ζi

(xn − x̄i)(xn − x̄i)T (7)

x̄i is mean vector in class ζi: x̄i = 1
Ni

∑
xn∈ζi xn. Sb named

between class scatter matrix is defined as

Sb =
C∑
i=1

Ni(x̄i − x̄)(x̄i − x̄)T (8)

where x̄ is the mean vector of total data: x̄ = 1
N

∑N
1 xn.

Both Sw and Sb are symmetric and positive semidefinite.
Usually, Sw is nonsingular while Sb is singular.

Differentiating (6) with respect to ω1, it is easy to
prove that the optimal solution of ω1 is equal to eigen-
vector of S−1w Sb that corresponds to the largest eigenvalue.
Consequently, it can be infered that the mapping vectors
ω1,ω2, . . . ,ωL are equal to the eigenvectors of S−1w Sb that
correspond to the first L largest eigenvalues.

Since Sb is the sum of C matrixes of rank one or less,
only C − 1 of these are independent, Sb is of rank C − 1



or less. Thus, no more than C − 1 of the eigenvalues are
nonzero. The desired mapping vectors correspond to these
nonzero eigenvalues. Hence, the maximum of feature space
dimension L we can get is C − 1 [19].

D. GMM

GMM is a parametric clssification methodology based on
Bayes decision theory [21]. Bayes’ formula is given

p(ζi|xn) =
p(xn|ζi)p(ζi)

p(xn)
(9)

where p(ζi|xn), p(xn|ζi), and p(ζi) are respectively named
as posterier, class-conditional probability, and prior probibil-
ity. To decide which class a data point xn belongs to, we
should compare the posterier p(ζi|xn). It is resolved that xn
belongs to the class with the largest posterier. In other words,
we just need to compare p(xn|ζi)p(ζi) with different i. The
prior probibility p(ζi) is usually thought to be the frequency
weight of data belongs to ζi, so the main object is to estimate
the class-conditional probability density p(xn|ζi).

GMM is a efficient probalility distribution model to ex-
press the class-conditional probability p(xn|ζi). In GMM,
class-conditional probability density is represented as a
weighted sum of Gaussian component densities.

A Gaussian mixture model is a weighted sum of R
component Gaussian densities as the following equation,

p(xn|λ) =

R∑
i=1

p(ci)p(xn|ci, λ) (10)

where p(ci), i = 1, . . . , R are the mixture weights, which
satisfies

∑R
i=1 p(ci) = 1, p(xn|ci, λ) are the component

Gaussian densities. Each component density is a M-variate
Gaussian function of the form,

p(xn|ci, λ) =
1

(2π)M/2|Σi|1/2

exp
{
− 1

2
(xn − µi)TΣi(xn − µi)

} (11)

with mean vector µi and covariance matrix Σi. Parameters
µ, Σi and p(ci) are collectively represented by the notation
λ,

λ = {p(ci),µi,Σi} i = 1, . . . , R. (12)

Before the model training process, the Gaussian compo-
nent number R is usually settled according to the complexity
of the data distribution. In the training process, GMM param-
eter collection λ needs to be estimated from training data.
Expectation-Maximization (EM) algorithm is a commonly
used method. By iterations, λ can be estimated. The details
about EM algorithm can be found in [22].

E. Online implementations of the methodologies

In consideration of the online implementation for FDA,
memory space is needed to save L ×M float numbers for
mapping vectors ω1,ω2, . . . ,ωL. To calculate the features,
L ×M times of multiplication operations and L × (M −
1) times of addition operations are needed to be proceeded
for a FDA procedure. Concerning the online implementation

for GMM, the parameters of models, including parameter
set λ and prior probibility need to be saved. Memory for
saving CR( (M+1)(M+2)

2 ) + C float numbers are required.
The CR(M2+M+1)+C times of multiplication operations
and CR times of exponent arithmetic operations need to be
carried out for a procedure. It will be shown in the next
section that the implementations of the methodologies can
be easily realized.

V. RESULTS AND DISCUSSION

A. Experiment introduction

In order to verify our proposed approach, the flooding
experiments were carried out. The temperature of stack was
decreased from 50 °C to 35 °C in order to favor water
condensation, while the other experiment conditions were
kept in nominal values. To certify the repeatability approach,
several independent flooding experiments were carried out.
At the end of each test, the load was firstly disconnected
from the stack while the air was kept for a length of time. In
addition, when we restarted a new experiment, the air circuit
was started before adding the load. During the periods, the
liquid water inside the fuel cell was cleared away, which
certified that there was no flooding occured at the beginning
of each experiment.

Various physical variables, denoted as T in (1), were
sampled in the flooding process. The sampling period is
150 ms. Specifically, the cell voltages are analyzed. The cell
voltages in one experiment can be presented as a matrix

V = {v1;v2; . . . ;vN} (13)

where the nth row vector vn is composed by individual cell
voltages

vn = {v1n, v2n, . . . , v20n } (14)

where numbers 1, 2, . . . , 20, are index numbers of fuel cells,
whose locations are from air inlet side to air outlet side.
n is the sequencial number of the sample, the total sample
number is N = 6400. This matrix will be used to train the
FDA and GMM models.

B. Results

Because FDA and GMM are both supervised methodolo-
gies. The data for training must be labeled before training
procedure. In the flooding course, it is considered that the
liquid water accumulates as time. Consequently, the samples
are roughly but reasonably labeled that the 1th to the 2500th

samples are in normal state, the 2501th to the 3500th samples
are in transition state, the 3501th to 6400th samples are in
fault state.

The wave forms of cell voltages in a flooding process
are as Fig. 4. It can be seen that cell voltages all de-
crease in the flooding process, however the magnitudes
and speeds of the voltage drops are various. Several cells
degrade more severely than others. The probable reason for
this phenomenon is that, the distributions temperature and
air pressure are nonuniform. By comparing the different
experiment results, it is found that the degraded extents of a
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concerned fuel cell are varied with experiments. In order to
slack the impact of the spacial randomness of the flooding
occuring. The elements of vectors {vn} are sorted firstly in
ascending orders.

After this treatment, the FDA is employed to handle the
matrix V . By using FDA, the origninal 20-dimension vectors
{vn} are projected to a 2-dimension feature space. The
two features are plotted as Fig. 5. It can be observed that
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Fig. 5. Features extracted by FDA procedure

data points within each class are gathered, while data points
between classes are scattered simultaneously. Just a small
overlap occurs between transition class and fault class.

After feature extraction, GMM classification is proceeded
in the 2-dimension feature space. Since data points within
each class are concentratedly distributed, the number of
Gaussian components R is set as 1. Parameter collection
λ of each class are estimated by EM algorithm.

After the parameter estimation process, class-conditional

probability density of each class is obtained. The prior
probibility of each class is set as the frequency weight of data
within the class. By multiply class-conditional probability
densities with prior probibilities, we can get the posterier of
each class. The posteriers of the three classes are plotted as
Fig. 6.

Fig. 6. The posteriors of three classes

By comparing the posteriers of different classes, the two-
dimension feature space can be divided to 3 zones, which
represents respectively normal state, transition state, and fault
state. The three zones and boundaries between them are
shown as Fig. 7.
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C. Discussion

To evaluate the performance of proposed approach for
online application, two aspects are considered: diagnosis
accuracy and feasibility of the real-time implementation.



1) In order to evaluate how accurately it will perform
in practice, a popular cross-validation methodology
which named K-fold cross-validation is used. In K-
fold cross-validation, the total data is randomly divided
into K subsets. Of the K subsets, K − 1 are chosen
as training data and rest one subset is used to test the
classifier. The error rate, which is defined as proportion
of samples that are wrongly classified, is calculated.
The training and test process is then repeated K times.
The averaged error rate is then obtained to evaluate the
classifier. Here, the number of folds K is set to be 10,
after several tests, the average error rates are always
less than 3%.

2) According to section 3, to implement our approach, we
need to save 736 float number, less than 1.5 k of 16
bit memory are needed. For one diagnosis procedure,
64 times multiplication operations, 38 times addition
operations and 3 exponent arithmetic operations. These
operations should be done in a sampling period 150
ms. The required memory and computation speed
can be satisfied by a common DSP (Digital Signal
Processor).

VI. CONCLUSION

In this paper, a diagnosis approach of large PEMFC
stack is proposed. The approach is based on analysis of
indivicual cell voltages in flooding process. By adopting
feature extraction methodology FDA combined with GMM
classification, data points can be classified into three states
of health: normal state, transition state, fault state. The error
rates of the diagnosis results are low and the software cost
of the algorithm can be satisfied easily by a common DSP.
It is therefore a suitable approach for online diagnosis.

This study takes into account only the flooding fault, how-
ever, the approach can be extended to other fault situations
by adding new classes to the training data, such extention is
also in process of studying in our laboratory.
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