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Abstract

The Safe Set Problem is a type of partitioning problem with particular constraints on the weight
of adjacent partition components. Several theoretical results exist in the literature along with a mixed
integer linear formulation. We propose a new, more compact, Mixed Integer Linear Program for the
(Weighted) Safe Set Problem and Connected Safe Set Problem with a polynomial number of variables
and constraints, based on a flow from an additional fictitious node. The model is enriched by symmetry-
breaking considerations and a variable reduction subproblem. We test the model on a benchmark of
small instances which underline the difficulty of solving the Safe Set Problem through mathematical
programming approaches. We also compare it with the only existing formulation in the literature and
find that our approach is usually more efficient on a set of benchmark instances.

Keywords: Graph partitioning, network control, Safe Set, Connected Safe Set, Mixed Integer Linear Pro-
gramming, symmetry-breaking, variable reduction.

1 Introduction

Consider an undirected and connected graph G = (V,E) with node weights wi ≥ 0 for i ∈ V . We call
Ni ⊂ V the set of neighbours of node i ∈ V and define a non-empty subset S ⊂ V which induces a subgraph
G[S]. The function w : 2V → R+ is defined as w(S) =

∑
i∈S wi, i.e. the total weight of a subset of nodes

S ⊆ V . S is said to be a safe set if S 6= ∅ and for any maximally connected component C in G[S] and C ′ in
G[V \S] we have w(C) ≥ w(C ′) whenever an edge exists between C and C ′. The Weighted Safe Set problem
(WSSP) consists in finding the safe set with minimum total weight, while the simpler Safe Set Problem
(SSP) considers only unit node weights. The Connected Safe Set Problem (CSSP) is a Safe Set Problem
where the safe set is connected (i.e. G[S] has only one component). An optimal solution of any Safe Set
variant is denoted as S∗. We observe that if G is not connected, the problem decomposes completely on
each of the connected components of G. Thus, we assume without loss of generality that G is connected.
An example of a feasible safe set on a small graph is illustrated in Figure 1.

The SSP was first defined in [7] as a way to determine important influential communities in a social network.
Another application is invoked in [13] where one looks for a subspace inside a building that can shelter the
people from nearby spaces in a case of a catastrophe, i.e. a building design problem. From a more general
point of view, the SSP is designed to determine the smallest subset of a network which we need to control
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Figure 1: Example of a feasible safe set for a small instance of the SSP. The nodes in the safe set are
displayed in black.

(or equip) in order to control the behaviour of (or assist) the whole network. One can see from its definition
above that it can be classified as a type of graph partitioning problem, though only node weights are
considered. This differentiates greatly the SSP from partitioning problems based on edge cuts. Other node-
based partitioning problems exist, such as the Vertex Separator Problem [6] and the k-separator problem [9]
where a subset of nodes of minimum cardinality (or weight) is removed from the graph in order to obtain
(possibly balanced) disconnected components of the original graph. Another class of interdiction problem,
called the Critical Node Problem [5, 15], is also linked to node-based graph partitioning as some of its
versions aim at fragmenting the graph into disconnected subgraphs by deleting a subset S of nodes which
is not necessarily a minimal node cut-set. Contrary to such node-cut based graph partitioning problems,
no subset of nodes is removed from the graph in a Safe Set solution. Other social network problems study
the influence of certain parts of the network on the whole network. A prominent example is the positive
influence dominating set problem [12, 21], where we seek a minimal set of nodes S such that all other nodes
in the network have at least a fraction ρ > 0 of their neighbours in S. Such models try to identify a minimal
set of participants in the network to solicit so that we can guarantee a positive influence over the rest of
the network. Such models, however, are defined based on local properties, such as a subset of neighbours
for each node belonging to a certain set. The SSP is defined using more global properties based on whole
connected components of a graph partition, which makes it less straightforward to cast as a Mixed Integer
Linear Program (MILP) to solve it. The problem is quite recent and has not been studied extensively in
the literature. Moreover mainly theoretical contributions on the subject can be found. For example, the
weighted problem over trees has been shown to be NP-hard in [7, 8] while the unweighted problem is shown
to be solvable in polynomial time on graphs with bounded treewidth and interval graphs in [1]. Bounds on
the size of safe sets and connected safe sets are also studied in [13]. While the present manuscript was being
revised, the work of [16] was published, which introduces a MILP formulation and a greedy heuristic to solve
the WSSP on general graphs. The MILP has an exponential number of constraints, which are introduced at
each node of the branching tree using a separation algorithm, and can be easily adapted to the connected
version of the problem. The MILP and the heuristic are tested on a benchmark of instances with number
of nodes ranging from 10 to 30 and different edge densities.

We propose in the following a relatively compact MILP with a polynomial number of variables and con-
straints to tackle the problem on general graphs. The model is quite different in its approach from the one
in [16]. In Section 2 we detail our MILP formulation for the WSSP and its connected version. In Section 3
we propose a way to break some problem symmetries and solve a simpler MILP in a preprocessing step
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to reduce the number of variables of our Safe Set model. In Section 4 we present the results of numerical
experiments made on a benchmark of small random graphs and in Section 5 we briefly conclude. Additional
results on small world graphs are provided in Appendix A. In Appendix Appendix B, we compare the
results of our approach with that of [16].

2 A compact MILP formulation

In the following we define the necessary variables and constraints to provide a MILP for the (Connected)
WSSP. We define a model that identifies the connected components of a given solution by using a flow
circulation coming from a fictitious node 0, which will be partially absorbed by each node in the graph. Recall
that a feasible safe set is a subset S ⊂ V , and we define n := |V |, m := |E|≥ n− 1, and W :=

∑
i∈V wi. We

also define E′ to be the set of directed edges corresponding to E, i.e. E′ = {(i, j) : i ∈ V, j ∈ V and {i, j} ∈
E}. Since for a general graph, it is impossible to know in advance the number of maximally connected
components in the optimal partition, we have to define variables with indices ranging up to the maximal
theoretical number of connected components n−11. As a result, the variables related to potential components
which are unused in the optimal solution will be 0. In order to formulate our model, we will define the
following variables, corresponding to a feasible safe set S:

• xi: binary variable equal to 1 if node i ∈ S (i.e. is in the safe set), 0 otherwise.

• yij : binary variable equal to 1 for edge {i, j} ∈ E if i ∈ S and j ∈ S, 0 otherwise.

• y′ij : binary variable equal to 1 for edge {i, j} ∈ E if i ∈ V \ S and j ∈ V \ S, 0 otherwise.

• aic: binary variable equal to 1 if node i ∈ S is part of component c ∈ {1, . . . , n− 1}.

• a′ic: binary variable equal to 1 if node i ∈ V \ S is part of component c ∈ {1, . . . , n− 1}.

• tic: binary variable equal to 1 if node i ∈ S is the unique node in c ∈ {1, . . . , n− 1} which receives a
non-zero flow from node 0.

• t′ic: binary variable equal to 1 if node i ∈ V \S is the unique node in c ∈ {1, . . . , n− 1} which receives
a non-zero flow from node 0.

• fij : continuous flow variables from i ∈ V ∪ {0} to j ∈ V defined for couples (i, j) such that i = 0 or
(i, j) ∈ E′.

• ωi: total weight of the component in G[S] to which i belongs.

• ω′i: total weight of the component in G[V \ S] to which i belongs.

• νc: total weight of the component c ∈ {1, . . . , n− 1}.

• ν ′c: total weight of the component c ∈ {1, . . . , n− 1}.

Variables with a prime refer to quantities linked to the set V \ S. The approach advocated is inspired by a
MILP formulation proposed for a Critical Node Problem in [17] which aims at deleting a subset of nodes in
the graph in order to maximise the number of maximally connected components of the resulting subgraph.
The rationale behind this strategy is to make sure that the structure of the connected components inside the

1Such a value for the number of connected components of G[V \ S∗] can be obtained when G is a star graph.
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partitioned graph is correctly taken into account by the MILP. In the modified graph, node 0 is the source
of n units of flow while all the other nodes in V are sinks which absorb one unit of net flow each. Moreover,
each node is assigned to a connected component inside G[S] or G[V \ S] and only one node per connected
component can receive a non-zero amount of flow from node 0. Finally, the flow received (and partially
absorbed) by such a node is dispatched to the other nodes in the component until it is completely absorbed.
Since a flow can pass only between two nodes connected by an edge {i, j} for which yij = 1 or y′ij = 1, the
flow conservation conditions guarantee that we cannot assign two nodes to the same connected component if
they are not indeed part of a unique connected component inside G[S] or G[V \S]. We illustrate this process
in Figure 2 on a small graph where the optimal safe set is made up of the two grey nodes 1 and 2 (with
weight w1 = w2 = 2) while the nodes in V \ S (with unit weights) are white. A total flow of 8 is created at
node 0 and flows along the arcs displayed as dashed lines towards one node in the unique component of the
safe set and the two nodes 3 and 6 belonging each to a component of G[V \ S] (the other arcs from node 0
to the remaining nodes in V are omitted for reasons of clarity). The arcs where a non-zero flow circulates
are displayed as directed arcs in order to represent the direction of the flow.

We stress that instead of using a multi-commodity flow model as in [17], we only use a single type of flow.
Indeed, the model of [17] is a bi-level MILP which needs an integrality property for the inner optimisation
problem in order to dualise it and obtain a single level reformulation (see Proposition 1 in [17]). Restricting
to a single commodity in the framework of [17] would nullify this property, while it is perfectly admissible in
our case. This certainly introduces a less tight formulation on general grounds. However, it greatly reduces
the number of flow variables and accelerates notably the resolution of the linear relaxation of the MILP
presented below. Moreover, our tests with a multi-commodity formulation tend to hint at the fact that such
a formulation does not in practice improve the lower bound of the model detailed below.

Figure 2: Example of a feasible flow configuration for a small instance of the WSSP. The nodes in the safe
set are displayed in grey.
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Armed with the above variables, we propose the following formulation of the WSSP, called MSS :

(MSS) minimise
∑
i∈V

wixi (1)

subject to yij ≥ xi + xj − 1 {i, j} ∈ E, (2)

y′ij ≥ 1− xi − xj {i, j} ∈ E, (3)

yij ≤ xi {i, j} ∈ E, (4)

yij ≤ xj {i, j} ∈ E, (5)

y′ij ≤ 1− xi {i, j} ∈ E, (6)

y′ij ≤ 1− xj {i, j} ∈ E, (7)∑
j∈Ni

fij −
∑

j∈Ni∪{0}

fji = −1 i ∈ V, (8)

∑
i∈V

f0i = n (9)

f0i ≤ (n− 1)

n−1∑
c=1

(tic + t′ic) i ∈ V, (10)

fij ≤ (n− 1)(yij + y′ij) (i, j) ∈ E′, (11)

n−1∑
c=1

aic = xi i ∈ V, (12)

n−1∑
c=1

a′ic = 1− xi i ∈ V, (13)

aic ≥ ajc + yij − 1 {i, j} ∈ E, c = 1, . . . , n− 1, (14)

ajc ≥ aic + yij − 1 {i, j} ∈ E, c = 1, . . . , n− 1, (15)

a′ic ≥ a′jc + y′ij − 1 {i, j} ∈ E, c = 1, . . . , n− 1, (16)

a′jc ≥ a′ic + y′ij − 1 {i, j} ∈ E, c = 1, . . . , n− 1, (17)

tic ≤ aic i ∈ V, c = 1, . . . , n− 1, (18)

t′ic ≤ a′ic i ∈ V, c = 1, . . . , n− 1, (19)∑
i∈V

tic ≤ 1 c = 1, . . . , n− 1, (20)∑
i∈V

t′ic ≤ 1 c = 1, . . . , n− 1, (21)

νc =
∑
i∈V

wiaic c = 1, . . . , n− 1, (22)

ν ′c =
∑
i∈V

wia
′
ic c = 1, . . . , n− 1, (23)
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ωi ≥ νc −W (1− aic) i ∈ V, c = 1, . . . , n− 1, (24)

ωi ≤ νc +W (1− aic) i ∈ V, c = 1, . . . , n− 1, (25)

ωi ≤Wxi i ∈ V, (26)

ω′i ≥ ν ′c −W (1− a′ic) i ∈ V, c = 1, . . . , n− 1, (27)

ω′i ≤ ν ′c +W (1− a′ic) i ∈ V, c = 1, . . . , n− 1, (28)

ω′i ≤W (1− xi) i ∈ V, (29)

ωi ≥ ω′j −Wy′ij (i, j) ∈ E′, (30)∑
i∈V

xi ≥ 1 (31)

yij , y
′
ij ∈ {0, 1} : {i, j} ∈ E, (32)

aic, a
′
ic ∈ {0, 1} : i ∈ V, c = 1, . . . , n− 1, (33)

ωi, ω
′
i ≥ 0 : i ∈ V, (34)

νc, ν
′
c ≥ 0 : c = 1, . . . , n− 1, (35)

fij ∈ [0, n− 1] : i ∈ V ∪ {0}, j ∈ V, (36)

xi ∈ {0, 1} : i ∈ V, (37)

tic, t
′
ic ∈ {0, 1} : i ∈ V, c = 1, . . . , n− 1. (38)

Should we want to extend the problem to the connected version, we must define the variables tic, aic and νc
only for c = 1, or else add the following constraint:

∑
i∈V

n−1∑
c=2

aic = 0. (39)

Let us now explain briefly each constraint family used to model the WSSP. Constraints (2) to (7) guarantee
the consistency of y variables with respect to the decision variables x. They are a linearisation of constraints
yij = xixj and y′ij = (1 − xi)(1 − xj) for {i, j} ∈ E. Constraint (8) guarantees that a unit of flow coming
from node 0 is absorbed by each node in the graph. Constraint (9) guarantees that exactly the right amount
of flow is provided by fictitious node 0. Constraints (10) ensure that flow can only go from node 0 to another
node in the graph if the associated t or t′ variable is non-zero. Constraints (11) then make sure that the
flow can only circulate on edges inside a given component of G[S] or G[V \ S]. Constraints (12) and (13)
assign a node i ∈ V to only one component, be it in G[S] or G[V \ S]. Constraints (14) to (17) then ensure
that two nodes inside the same component are indeed assigned to the same component number c. Indeed,
when yij = 1, the two inequalities (14) and (15) will transform into the equality aic = ajc for all values of c
(the same is true for (16) and (17) when y′ij = 1). We then define the consistency relation of the t variables
with respect to variables a in constraints (18) and (19) and also that only one node inside component c of
G[S] or G[V \ S] can have a non-zero t value. This node will represent the bridge through which some flow
will enter component c and then be dispatched to all nodes of c, each of which needs to absorb one unit of
net flow. The combination of all previous constraints impose that for each partition c of G[S] (respectively
G[V \S]), the necessary quantity of flow will be dispatched to c through a single bridge node, and will then
be absorbed by all the nodes in the component. Then, the link between t and a variables ensures that the
nodes in this component will be assigned to the corresponding component number.

Constraints (22) and (23) are used to define the ν variables according to which node is assigned to each
component label c and constraints (24) to (29) ensure that the ω variables are defined correctly with respect
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to the ν variables. Recalling that ωi is the total weight of the component that node i ∈ S belongs to,
constraints (30) are the Safe Set constraints which guarantee that ωi ≥ ω′j if {i, j} ∈ E with i ∈ S and
j ∈ V \ S. Finally, since constraint (30) allows for the model to choose to assign every node to V \ S (and
therefore S = ∅), we force the model to have at least one node in S with Equation (31).

Proposition 1. Model MSS provides the optimal solution for the (Connected) WSSP.

Proof. Consider first an optimal solution S∗ to the WSSP. We can construct a feasible solution to model
MSS as follows. First define x∗i = 1 for all nodes i ∈ S∗ and x∗i = 0 for i ∈ V \S∗. It follows that y∗ij = 1 for
i ∈ S∗ and j ∈ S∗ with {i, j} ∈ E, while y∗ij = 0 if either i /∈ S∗ or j /∈ S∗ (and conversely y′∗ij = 1 if i ∈ V \S∗
and j ∈ V \ S∗ with {i, j} ∈ E and 0 otherwise), so that constraints (2) to (7) are satisfied. Consider the
sets CS and C′S defined respectively as the connected components of graphs G[S∗] and G[V \ S∗]. For each
component C ∈ CS , pick one node i ∈ C and a yet unused index c ∈ {1, . . . , n−1} and set a∗ic = 1, as well as
t∗ic = 1. For nodes j of the same component set a∗jc = 1 for the same index c and t∗jc = 0, then set all other
variables a∗, a′∗, t∗ and t′∗ related to the nodes of C at value 0. The same thing can be done for the nodes
of each component C ∈ C′S by changing the roles of a and t variables with a′ and t′ variables. Given the
values of the y∗ij and y′∗ij variables for arcs {i, j} inside each connected component, the values assigned clearly
respect the constraints (12) to (21). For each index c ∈ {1, . . . , n− 1} attributed to a connected component
C ∈ CS , we set variable ν∗c to the total weight of the nodes of that component and for each node i ∈ S we
set ω∗i to the total weight of the component that node i belongs to (and we perform the same actions for the
components of C′S and the variables ν ′∗c and ω′∗i ). Finally, we can set the flow variables as follows. For each

node i ∈ V and c ∈ {1, . . . , n− 1} such that t
(′)∗
ic = 1, we set f∗0i to be equal to the number of nodes in the

connected component of node i. After which, we increase f∗jk by one unit over each edge {j, k} on a path
from node i to each node of its connected component. It is easy to verify that constraints (8) to (11) are
satisfied by such assignments. We therefore have constructed a solution to model MSS with an objective
function value which is equal to w(S∗) and therefore is not larger than the one of optimal solution S∗ to the
WSSP.

Consider now the optimal solution to model MSS , with binary optimal values for x∗i for i ∈ V . We define
the safe set S∗ = {i ∈ V : x∗i = 1}. By construction, w(S∗) is the same as the optimal objective function
value ofMSS so we have constructed a solution to the WSSP with an objective function value which is not
larger than the one of the optimal solution to model MSS , which completes the proof.

Proposition 2. The y, y′, a and a′ variables can be relaxed as continuous and still achieve integrality when
the x and t are integers.

Proof. Suppose the variables y(′) and a(′) were defined as continuous variables bounded by 0 and 1. Consider
a feasible solution toMSS with integer x and t(′) variables. We have a partition of V into S = {i ∈ V : xi =
1} and its complement V \S = {i ∈ V : xi = 0}. Consequently, the integrality of y and y′ is straightforward
to check. Indeed, yij = 0 when either xi = 0 or xj = 0 because of constraints (4) and (5). In contrast, by
(2), yij = 1 when xi = xj = 1 (while the same reasoning applies to the y′).

We now prove the integrality of the a variables; the integrality of the a′ variables follows by a similar
argument. For two nodes i ∈ S and j ∈ S with {i, j} ∈ E, constraints (14) and (15) will ensure that
aic = ajc for all c = 1, . . . , n− 1 and by propagation the same equalities will hold between all pairs of nodes
inside the same connected component. By constraint (9) and flow conservation constraints (8), a total flow
of n units originates from node 0 and each node has to absorb one unit, so that some non-zero flow f0i > 0
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is required for a subset of nodes i ∈ V . Therefore, by constraints (10) and (20), for each component index
c with

∑
i∈V aic > 0 there will be one (and only one) node i with tic = 1 and f0i > 0. For that node,

we see from (18) that aic = 1 and aid = 0 for all d 6= c, so that i is assigned to component label c. By
the reasoning applied on the a variables earlier, we can extend this result to all the nodes inside the same
connected component as i, which guarantees that the a variables are binary whenever the x and t variables
are. This completes the proof of integrality for y(′) and a(′) variables.

When implementing the model for numerical experiments, the y and y′ variables are kept continuous but we
noticed that the model is solved faster if the a and a′ variables are kept binary. This unexpected behaviour
might be due to the important limitations imposed by setting an a variable to 0 or 1, through a propagation
effect of constraints (14) to (17). In such a case, branching early on a and a′ might allow for a larger increase
of the optimal objective value of the linear relaxation when MSS is solved by a linear solver and speed up
the overall convergence of the branching procedure. Moreover, we observe that CPLEX is able to eliminate
some a(′) variables during its presolving step, which might also explain why the reduced model is then easier
to solve. In the above MILP we have in total O(n2) binary variables and O(m) continuous variables (or
O(n2) continuous variables if the a and a′ variables are treated as continuous) and we have a maximum of
O(mn) constraints, which overall makes the model relatively compact for sparse graphs.

3 MILP improvements

In this section we provide some improvements which will help solving theMSS faster when using a numerical
MILP solver.

3.1 Symmetry breaking

The model defined in Section 2 suffers from several symmetries which might hamper its performance when
we try to solve it with a MILP solver. For example, any node inside a given component c can be used
equivalently to dispatch the flow from node 0 to the rest of the component. We can break such symmetry
with the following constraints:∑

j>i

tjc ≤ tic + 1− aic, i ∈ V, c = 1, . . . , n, (40a)

∑
j>i

t′jc ≤ t′ic + 1− a′ic, i ∈ V, c = 1, . . . , n. (40b)

Such constraints ensure that the node with the smallest index will be the one chosen to receive a non-zero
flow from node 0.

We may also observe that for a given solution, a component in the graph can be given a priori any label
c = 1, ..., n− 1. We can try to break (partially) that symmetry through the following constraints:

νc ≤ νc−1, 2 ≤ c ≤ n− 1, (41a)

ν ′c ≤ ν ′c−1, 2 ≤ c ≤ n− 1. (41b)
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3.2 Reducing the number of variables

Given the large initial range for the c index of a and a′, MSS has a large number of binary variables, most
of which are superfluous in many instances. Moreover, for the linear relaxation of MSS , the initial large
number of c indices for a′ allows for many small fractional values of these variables, suggesting that the
nodes are partially “spread” inside many components and can satisfy easily the Safe Set constraint (30).
Limiting the range of available c indices for the nodes in a generic safe set or its complement could help
increase the lower bound of the linear relaxation. In the following, we introduce a model whose optimal
solution allows us to find an upper bound on the c index for all the variables of MSS .

In order to do so, we consider the “worst case”, for any given safe set S, in terms of the number of connected
components of G[V \ S]. We prove below that an upper bound on the number of connected components in
both G[S] and G[V \S] can be obtained by finding the subset Σ∗ ⊂ V of smallest cardinality |Σ∗|= k∗ with
at least one edge towards each node of V \ Σ∗, which is the definition of the dominating set of minimum
cardinality (which is an NP-hard problem [14]). A classic MILP formulation for the Minimum Dominating
Set Problem (see e.g., [18]) uses the following variables:

• xi = 1 if node i ∈ Σ and 0 otherwise.

We also define the set Γi = Ni ∪ {i} which contains node i ∈ V and its neighbours. k∗ is the optimal
objective value of the following optimisation problem, called ∆SS :

(∆SS) minimise k (42a)

subject to
∑
i∈V

xi = k (42b)∑
j∈Γi

xj ≥ 1 i ∈ V, (42c)

k ∈ N, xi ∈ {0, 1} : i ∈ V. (42d)

Proposition 3. The optimal value k∗ for the model (42) is such that n− k∗ defines an upper bound on the
number of maximally connected components in G[S] and G[V \ S] respectively for any solution set S of the
SSP.

Proof. Consider the graph G[V \S] and its connected components. If one such component has more than one
node, it is possible to move some of these nodes to the safe set and obtain more (in the worst case, not less)
connected components in G[V \S]. By induction, a solution with the largest possible number of components
in G[V \ S] is obtained when each such component has cardinality one. We obtain an upper bound on the
number of connected components by ignoring the edges inside G[V \S], so that each node in V \S defines an
independent connected component, and by relaxing the safe set constraints (30), supposing it is satisfied by
any solution we select. However, since each node in G[V \S] has to define a possible independent component,
it has to be connected by an edge to a node in the safe set S. Consequently, the problem is akin to finding
a dominating set Σ∗ of minimum cardinality. Moreover, since k∗ represents the number of nodes attributed
to the safe set and each node in G[V \ Σ∗] is supposed to form a unique component, n − k∗ is the number
of components in G[V \ Σ∗]. We can apply the same reasoning symmetrically to the components of G[S],
which completes the proof.

Although the Minimum Dominating Set Problem was proved to be NP-hard, it is solved very quickly for the
benchmark instances presented in Section 4 and Appendix A, which makes it an acceptable pre-processing
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step for the SSP. Using the optimal solution k∗ of ∆SS allows us to define variables a
(′)
ic , t

(′)
ic for each i ∈ V

and ν
(′)
c for the restricted set of indices c = 1, . . . , n− k∗.

Alternative ways to obtain an upper bound on the number of components of the safe set or its complement
can be devised. For example, the Critical Node Problem based on removing a subset of nodes of maximum
cardinality in order to maximise the number of connected components in the induced subgraph, see e.g.
[17, 20], can provide the maximum number of connected components in any induced subgraph if one removes
the cardinality constraint on the set of deleted nodes. By extension, and since we are interested in the number
of components and not their cardinality, we can extend the solution of such a modified Critical Node Problem
by deleting nodes further until all remaining components have cardinality one, in which case we would obtain
a vertex cover of the graph. Ergo, the solution to the Minimum Vertex Cover Problem would also provide
a valid bound on the number of connected components of the safe set and its complement. Such problems,
however, tend to be slower to solve than the Minimum Dominating Set Problem and therefore subtract
more computational time to model MSS , since the total time budget of our experiments is used for the
preprocessing step and the resolution of modelMSS together. Preliminary results on select instances, using
a relaxed version of the Critical Node Problem, did not indicate a significant improvement with respect to
using the Minimum Dominating Set Problem.

4 Numerical experiments

We now propose to test the model MSS with the improvements of Sections 3.1 and 3.2 on a set of small
instances in order to test its viability.

4.1 Instance generation and experimental conditions

In order to test our MILP, we generate a first set of benchmark instances, with n ∈ {20, 25, 30, 35, 40, 50}
with different possible values for the edge density δe = 2m/(n(n− 1)) ∈ {0.1, 0.2, 0.3, 0.4}. For each value of
n and δe, we generate five instances randomly as follows. First we randomly add edges to create a tree, to
ensure that the graph is connected, then we add edges randomly inside the graph until we reach the desired
edge density. The graphs share similar properties with the random graphs of the Erdös-Renyi type, except
that the constraint of building a connected graph can influence the graph characteristics for small sizes,
e.g. the graphs with 10 nodes and density 0.1 have to be trees. The average characteristics of the graph
subsets for each value of n and δe are displayed in Table 1. They are respectively the clustering coefficient
C, the average length of all shortest paths l̄, the diameter D, the average degree d̄, the dispersion of the
nodes degree σd and finally the ratio of the last two quantities which gives an idea whether the nodes have
similar degree or whether there is a large degree dispersion in the graph. The measure of dispersion used
the standard deviation. These same instances can be considered either as unweighted or with node weights
randomly generated as integers between 1 and 10. Additional results on instances of the small world type
are provided and discussed in Appendix A, while a comparison of MSS with the branch-and-cut approach
of [16] on a different set of benchmark instances is provided in Appendix B.

We add the symmetry-breaking constraints (40) to model MSS . The symmetry-breaking constraints (41)
make the linear relaxation much slower and do not allow for any speedup when solving MSS , therefore we
do not include them in our numerical experiments. The indices for the a and a′ variables are reduced using
the variable reduction technique introduced in Section 3.2 by solving ∆SS as a preprocessing step, which is
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n δe C l̄ D d̄ σd σd/d̄ n δe C l̄ D d̄ σd σd/d̄

20 0.1 0.00 7.00 19.00 1.90 1.09 0.58 20 0.2 0.15 2.24 4.40 3.80 2.48 0.65
25 0.1 0.08 4.53 11.00 2.40 1.49 0.62 25 0.2 0.14 2.10 4.00 4.80 2.98 0.62
30 0.1 0.05 3.25 6.80 2.87 1.88 0.66 30 0.2 0.19 2.06 3.80 5.80 3.71 0.64
35 0.1 0.06 3.07 6.60 3.37 2.24 0.66 35 0.2 0.18 1.99 3.60 6.80 4.25 0.62
40 0.1 0.10 2.79 5.40 3.90 2.54 0.65 40 0.2 0.20 1.98 3.60 7.80 4.89 0.63
50 0.1 0.08 2.59 4.80 4.88 3.22 0.66 50 0.2 0.19 1.91 3.00 9.80 6.10 0.62

20 0.3 0.27 1.81 3.00 5.70 3.58 0.63 20 0.4 0.39 1.62 3.00 7.60 4.69 0.62
25 0.3 0.29 1.77 3.00 7.20 4.53 0.63 25 0.4 0.39 1.60 2.60 9.60 5.73 0.60
30 0.3 0.29 1.74 3.00 8.67 5.28 0.61 30 0.4 0.39 1.60 2.60 11.60 6.95 0.60
35 0.3 0.30 1.73 3.00 10.17 6.23 0.61 35 0.4 0.39 1.60 2.40 13.60 8.00 0.59
40 0.3 0.30 1.72 3.00 11.70 7.15 0.61 40 0.4 0.40 1.60 2.40 15.60 9.28 0.60
50 0.3 0.30 1.71 3.00 14.68 8.94 0.61 50 0.4 0.40 1.60 2.20 19.60 11.65 0.59

Table 1: Average characteristics (explained in the text) for the sets of five instances, for each edge density
δe and graph size n.

always very fast. For the connected version of the problem, we impose that variables a and t are defined
only for index c = 1. We stress that in such a case, the variable reduction technique can still be applied to
the complement of the safe set.

The code is implemented using the C++ library of CPLEX 12.9. Results are obtained on a computer with
an Intel Core i7-6600U CPU at 2.60GHz (4 threads) and 32GB of memory. We set CPLEX’s absolute gap to
0 and impose a time limit of 3600 seconds (minus the time needed to solve the variable reduction problem,
which in practice is almost negligible). We also disable CPLEX’s cuts, because they tend to slow down the
solver and do not substantially improve the lower bound on the objective value.

4.2 Numerical results

We start this section with a numerical study of the effect of the MILP improvements of Section 3. The results
are displayed in Table 2 for the instances of the first benchmark where each line represents an instance size
and we limit ourselves to the smallest and highest density values δe = 0.1 and δe = 0.4 to assess the efficiency
of the improvements both for our least and most dense instances. For each instance size we present the
average time (in seconds) to solve the problem over the five corresponding instances, the average relative
gap (in percent) normalised by the upper bound (i.e. comprised between 0 and 100%) and the number of
instances (out of five) that were solved to optimality within the time limit. We include the instances which
reached the time limit in the average solution time. The results were computed using the unweighted version
of the SSP, respectively by solving MSS alone, by solving MSS with the symmetry constraints (40) and
finally by solving MSS with the variable reduction technique of model ∆SS . From the table, for δe = 0.1,
it appears that each improvement method brings by itself a reduction in the average time needed to solve
an instance of the SSP, however the symmetry-breaking technique manages to close more instances than
the variable reduction preprocessing. The results when using both the symmetry breaking constraints and
the variable reduction technique are instead displayed in the upper left part of Table 3: the added benefit
of using both techniques simultaneously is a further increase in the number of solved instances. For denser
instances with δe = 0.4 however, the benefit of the improvements is less clear. More precisely, the addition
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of the symmetry-breaking constraints seems to be beneficial but the variable reduction mechanism does
not provide a clear help. As a consequence, the addition of both MILP improvements does not improve as
clearly over the results of MSS without any improvement, though the number of closed instances is larger.
This is not necessarily surprising since model MSS already shows better performances on denser instances
without the improvements.

MSS MSS+(40) MSS + ∆SS

n δe time (s) gap (%) # solved time (s) gap (%) # solved time (s) gap (%) # solved

20 0.1 453.6 0.00 5 273.6 0.00 5 198.2 0.00 5
25 0.1 3347.0 40.69 1 2291.8 24.18 3 2598.8 25.78 2
30 0.1 3117.2 30.11 2 1932.2 11.60 4 3037.2 33.98 2
35 0.1 3600.0 74.57 0 3600.0 48.55 0 3600.0 52.14 0
40 0.1 3600.0 80.29 0 3600.0 72.76 0 3600.0 76.40 0
50 0.1 3600.0 92.94 0 3600.0 91.81 0 3600.0 90.84 0

20 0.4 15.4 0.00 5 18.0 0.00 5 14.0 0.00 5
25 0.4 103.6 0.00 5 95.6 0.00 5 65.6 0.00 5
30 0.4 327.2 0.00 5 334.2 0.00 5 237.6 0.00 5
35 0.4 2782.0 10.16 2 1632.4 0.00 5 2546.8 6.72 2
40 0.4 3322.4 8.33 3 2672.0 0.00 5 3380.8 16.12 3
50 0.4 3600.0 95.97 0 3600.0 95.15 0 3600.0 93.77 0

Table 2: Average results for the unweighted SSP over sets of five instances for edge density δe = 0.1 or 0.4
and graph size n. We display results without improvements (MSS), with the help of symmetry-breaking
constraints (MSS+(40)) and of the variable reduction technique (MSS + ∆SS). For each graph size, we
display the average running time of the model, the average relative gap and the number of instances out of
five that are solved within the one hour time limit. The time is displayed in seconds.

We display the results for the unweighted and weighted version of the SSP, with the help of both MILP
improvements, in Table 3. The quantities reported in the table are the same as in Table 2. The model is
generally able to find the optimal solution for instances of up to 30 nodes. Additionally, instances with a
higher density of edges seem to be easier to solve as the average time is generally smaller for each instance
size and a larger number of instances are solved within the time limit. This is in sharp contrast to some
other types of node partitioning problems, see e.g. [4]. Therefore, it seems to be a particular feature of
our model to be fit for graphs with a somewhat large density, which are generally found in social networks
applications (see e.g. some examples of real social networks intances and their characteristics in [3]). We
observe that it is hard to conclude from our results whether it is harder to solve the weighted version of
the problem, although it generally provides a larger average relative gap for larger instances, which is not a
surprise in the light of complexity results over trees [7, 8]. Though our model can hope to solve instances
of up to 40 nodes depending on the graph density, it is clear that solving instances with 50 nodes is out of
reach within a limited computational time of one hour.

The results for the Connected Safe Set are displayed in Table 4 and generally confirm our previous findings.
The dependance of the solve time on the edge density is harder to establish though, even if we still solve
more instances with δe = 0.4 than in other cases. It is generally faster to solve the connected version of
the problem, which is probably due to the reduction of a and t variables in the model. We can solve more
instances than the unconnected case within the one hour time limit. Nevertheless no instance of 50 nodes
can be solved either for the C(W)SSP.
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Unweighted Weighted
n δe time (s) gap (%) # solved time (s) gap (%) # solved

20 0.1 94.2 0.00 5 72.2 0.00 5
25 0.1 532.2 0.00 5 746.4 0.00 5
30 0.1 1743.8 4.44 4 2554.6 16.65 3
35 0.1 3538.0 33.84 1 3600.0 39.53 0
40 0.1 3600.0 67.73 0 3600.0 74.89 0
50 0.1 3600.0 87.97 0 3600.0 94.55 0

20 0.2 15.4 0.00 5 28.0 0.00 5
25 0.2 234.4 0.00 5 140.2 0.00 5
30 0.2 856.8 0.00 5 1472.0 7.52 4
35 0.2 3437.0 18.01 2 3522.6 34.49 1
40 0.2 3600.0 71.13 0 3600.0 72.21 0
50 0.2 3600.0 93.11 0 3600.0 93.72 0

20 0.3 14.4 0.00 5 11.8 0.00 5
25 0.3 77.6 0.00 5 52.0 0.00 5
30 0.3 362.6 0.00 5 562.2 0.00 5
35 0.3 2798.2 10.64 3 1956.8 4.31 4
40 0.3 3600.0 38.39 0 3384.0 43.19 1
50 0.3 3600.0 91.05 0 3600.0 96.36 0

20 0.4 14.2 0.00 5 12.8 0.00 5
25 0.4 98.8 0.00 5 66.4 0.00 5
30 0.4 267.8 0.00 5 375.0 0.00 5
35 0.4 1709.4 2.40 4 905.4 0.00 5
40 0.4 2678.4 11.58 4 2788.0 16.05 3
50 0.4 3600.0 95.27 0 3600.0 99.41 0

Table 3: Average results of modelMSS with symmetry breaking constraints (40) and the variable reduction
preprocessing for the SSP, over sets of five instances for each edge density δe and graph size n. For both
unweighted and weighted instances, we display the average running time of the model, the average relative
gap and the number of instances out of five that are solved within the one hour time limit. The time is
displayed in seconds.

5 Conclusion

We have provided a compact MILP for the (Connected) Weighted Safe Set problem, a somewhat new
partitioning problem in the literature with interesting applications in network majority control. The model
is relatively compact for sparse graphs. We also provided symmetry-breaking constraints and a variable
reduction technique which greatly help the convergence of a numerical solver on small instances. Our results
show that instances with up to 35 nodes can be solved within one hour of computational time (depending
on the density), which makes it faster than the branch-and-cut algorithm from [16].

A first possible research direction to tackle the SSP through Mathematical Programming would be to study
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Unweighted Weighted
n δe time (s) gap (%) # solved time (s) gap (%) # solved

20 0.1 4.4 0.00 5 4.6 0.00 5
25 0.1 41.4 0.00 5 55.0 0.00 5
30 0.1 258.4 0.00 5 284.4 0.00 5
35 0.1 2423.0 29.30 2 1614.2 11.05 4
40 0.1 3492.8 38.60 1 3529.6 41.95 1
50 0.1 3600.0 66.30 0 3600.0 74.76 0

20 0.2 7.8 0.00 5 6.8 0.00 5
25 0.2 47.2 0.00 5 35.4 0.00 5
30 0.2 232.2 0.00 5 193.8 0.00 5
35 0.2 3206.2 17.22 2 1687.4 5.62 4
40 0.2 3600.0 42.36 0 3600.0 41.44 0
50 0.2 3600.0 67.66 0 3600.0 76.88 0

20 0.3 7.2 0.00 5 6.4 0.00 5
25 0.3 48.6 0.00 5 51.2 0.00 5
30 0.3 256.4 0.00 5 217.6 0.00 5
35 0.3 2265.2 0.00 5 1300.6 0.00 5
40 0.3 3600.0 45.32 0 3600.0 45.44 0
50 0.3 3600.0 92.72 0 3600.0 83.52 0

20 0.4 9.6 0.00 5 9.8 0.00 5
25 0.4 71.8 0.00 5 74.8 0.00 5
30 0.4 236.0 0.00 5 302.4 0.00 5
35 0.4 2485.0 2.57 4 1002.4 0.00 5
40 0.4 3297.0 18.94 2 2915.0 0.00 5
50 0.4 3600.0 92.60 0 3600.0 95.21 0

Table 4: Results of model MSS with symmetry breaking constraints (40) and the variable reduction pre-
processing for the Connected SSP, on both unweighted and weighted instances. The quantities reported are
the same as in Table 3.

alternative improvements to our model, such as tightening further the number of variables or reducing fur-
ther the symmetries. Given the number of continuous variables introduced to define correctly the connected
components of a given solution, it would be interesting to pursue the exploration of our model through
Benders decomposition and check whether it can help increasing the size of instances which can be solved.
Since the continuous variables are easy to determine once the integer variables are fixed, it could be possible
to solve the dual of the slave problem analytically to speed up the convergence of the Benders approach.
Since several inequalities in MSS involve big-M coefficients, e.g. equations (24) to (30), alternative decom-
position methods tailored for such cases, as in [10], are also interesting future research directions. Another
type of decomposition known to be successful for some partitioning problem is column generation. An
approach along the lines of [11] could provide interesting results on instances larger than those tackled in
this work. Given the difficulty of solving even small instances of the Safe Set problem, designing tailored
efficient heuristic approaches would be a very welcome avenue of research. For example, carefully designed
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metaheuristics have had great success for solving difficult node partitioning problems in the literature where
exact approaches have failed to obtain good quality solutions [2, 3, 4, 23].
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Appendix A Results over small world networks

In this appendix we present detailed results over small networks generated through the mechanism described
in [22]. These networks typically have a small diameter and represent social networks fairly well. They are
known to be notoriously difficult to solve for some partitioning problems, such as [4, 23]. We generated
instances with a number of nodes in the set n ∈ {20, 25, 30, 35, 40} as in Section 4. The parameters needed
to generate small world graphs are the average number of neighbours k and a rewiring probability of edges
which we choose as p = 0.05, similar to [19]. We vary parameter k ∈ {4, 6, 8, 10} to obtain instances
with different characteristics and generate five instances for each value of n and k. The different average
coefficients over those sets of five instances are displayed in Table 5 in a manner similar to Table 1, except
for the additional column δ̄e which represents the average density of the instances. We can clearly see that
the clustering coefficient is usually much larger for small world graphs while the ratio of the dispersion
(standard deviation) in the nodes degree over the average degree (last column) is much smaller, denoting
the fact that two different nodes tend to have similar degree in a small world graph.
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n k δ̄e C l̄ D d̄ σd σd/d̄ n k δ̄e C l̄ D d̄ σd σd/d̄

20 4 0.21 0.46 2.72 5.00 4.00 0.37 0.09 20 6 0.32 0.53 1.98 3.80 6.00 0.48 0.08
25 4 0.17 0.45 3.15 6.00 4.00 0.35 0.09 25 6 0.25 0.55 2.33 4.20 6.00 0.52 0.09
30 4 0.14 0.45 3.54 7.60 4.00 0.39 0.10 30 6 0.21 0.54 2.63 5.00 6.00 0.44 0.07
35 4 0.12 0.44 3.77 7.80 4.00 0.42 0.11 35 6 0.18 0.54 2.85 5.80 6.00 0.52 0.09
40 4 0.10 0.44 4.25 8.60 4.00 0.38 0.09 40 6 0.15 0.51 2.82 5.40 6.00 0.59 0.10

20 8 0.42 0.60 1.68 3.00 8.00 0.56 0.07 20 10 0.53 0.62 1.47 2.00 10.00 0.66 0.07
25 8 0.33 0.59 1.91 3.20 8.00 0.54 0.07 25 10 0.42 0.60 1.67 3.00 10.00 0.64 0.06
30 8 0.28 0.57 2.11 4.00 8.00 0.53 0.07 30 10 0.34 0.59 1.84 3.00 10.00 0.70 0.07
35 8 0.24 0.56 2.27 4.40 8.00 0.61 0.08 35 10 0.29 0.60 2.01 3.60 10.00 0.62 0.06
40 8 0.21 0.57 2.41 4.00 8.00 0.60 0.08 40 10 0.26 0.59 2.13 4.00 10.00 0.66 0.07

Table 5: Average characteristics for the sets of five instances, for the small world graphs. The columns
represent the same quantities as in Table 1 except for the additional column δ̄e which represents the average
edge density over the five instances.

As for the results in Section 4, we first display the effect of the MILP improvements for small world graphs
in Table 6, for unweighted instances with parameter k = 4 and k = 10. The results are similar to those of
Section 4, in the sense that instances which are less dense tend to profit from the MILP improvements while
denser instances are not solved faster on average, while there even are instance sizes where the improvements
slightly worsen the performance of the model. This underlines the dependency of the performance of said
improvements on the graph topology.

MSS MSS+(40) MSS + ∆SS

n k time (s) gap (%) # solved time (s) gap (%) # solved time (s) gap (%) # solved

20 4 239.2 0.00 5 140.2 0.00 5 103.6 0.00 5
25 4 2479.6 18.04 3 2153.2 19.24 3 1936.2 0.00 5
30 4 3600.0 40.96 0 3600.0 32.73 0 3600.0 44.01 0
35 4 3600.0 79.16 0 3600.0 62.24 0 3600.0 79.46 0
40 4 3600.0 83.82 0 3600.0 79.15 0 3600.0 71.42 0

20 10 27.4 0.00 5 24.2 0.00 5 22.2 0.00 5
25 10 138.2 0.00 5 110.4 0.00 5 88.2 0.00 5
30 10 461.2 0.00 5 838.0 0.00 5 373.4 0.00 5
35 10 2763.8 20.99 2 3264.2 12.03 2 2402.4 11.34 3
40 10 3600.0 57.59 0 3600.0 68.88 0 3600.0 55.99 0

Table 6: Average results for the unweighted SSP over sets of five instances of small world graphs for
parameter k = 4 and k = 10 and number of nodes n. We display results without improvements (MSS),
with the help of symmetry-breaking constraints (MSS+(40)) and with the help of the variable reduction
technique (MSS +∆SS). For each graph size, we display the average running time of the model, the average
relative gap and the number of instances out of five that are solved within the one hour time limit. The
time is displayed in seconds.

We display in Tables 7 and 8 the results of model MSS with symmetry breaking constraints (40) and the
variable reduction preprocessing on small world graphs, similar to Section 4. The SSP is still very hard to
solve for such instances, even for very small graphs. As for random graphs, we can see that instances with a
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larger k parameter (and hence with a larger edge density) are usually easier to solve. Contrary to Section 4,
however, no instance with 40 nodes is ever solved to optimality since the density for such instances do not
even reach density 0.3 or 0.4, even with k = 10.

Unweighted Weighted
n k time (s) gap (%) # solved time (s) gap (%) # solved

20 4 105.4 0.00 5 82.4 0.00 5
25 4 1430.8 3.42 4 727.2 0.00 5
30 4 2860.8 32.78 2 2975.0 20.23 2
35 4 3600.0 53.20 0 3600.0 65.42 0
40 4 3600.0 80.38 0 3600.0 81.06 0

20 6 22.2 0.00 5 19.0 0.00 5
25 6 379.6 0.00 5 429.0 0.00 5
30 6 2420.2 15.61 3 2398.0 2.94 4
35 6 3600.0 52.28 0 3600.0 53.56 0
40 6 3600.0 61.21 0 3600.0 80.44 0

20 8 20.2 0.00 5 17.4 0.00 5
25 8 94.8 0.00 5 123.2 0.00 5
30 8 1016.2 0.00 5 2087.8 0.00 5
35 8 3600.0 39.95 0 3422.6 41.44 1
40 8 3600.0 73.21 0 3600.0 68.62 0

20 10 25.8 0.00 5 19.8 0.00 5
25 10 113.2 0.00 5 116.8 0.00 5
30 10 525.8 0.00 5 442.0 0.00 5
35 10 3540.8 21.50 1 3461.2 23.33 2
40 10 3600.0 74.27 0 3600.0 68.01 0

Table 7: Average results of modelMSS with symmetry breaking constraints (40) and the variable reduction
preprocessing for the SSP, over sets of five instances for small world graphs, for each average number of
neighbours k and graph size n. For both unweighted and weighted instances, we display the average running
time of the model, the average relative gap and the number of instances out of five that are solved within
the one hour time limit. The time is displayed in seconds.

Appendix B Comparison with the model of [16]

We compare in the following results of our model MSS with those of the MILP approach in [16] on a set
of benchmark instances they introduced. As discussed in Section 1, the algorithm advocated in [16] is a
branch-and-cut algorithm based on a model with an exponential number of constraints, implemented as
lazy constraints. The results of both models are reported in Table 9 for unweighted instances of SSP and
in Table 10 for weighted instances. The instances range from 10 to 30 nodes with densities 0.3, 0.5 and 0.7.
We report the upper bound (UB) and running time of both models. For the model of [16], when the running
time is 7200 seconds, the algorithm reached its time limit and the instance is not solved at optimality,
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Unweighted Weighted
n k time (s) gap (%) # solved time (s) gap (%) # solved

20 4 44.4 0.00 5 29.4 0.00 5
25 4 457.6 0.00 5 410.2 0.00 5
30 4 952.2 0.00 5 1060.0 0.00 5
35 4 3526.6 21.70 2 3552.0 38.68 1
40 4 3600.0 47.06 0 3600.0 39.16 0

20 6 11.8 0.00 5 9.2 0.00 5
25 6 72.8 0.00 5 68.2 0.00 5
30 6 1785.8 6.00 4 1397.0 10.49 4
35 6 3600.0 40.59 0 3180.6 15.97 3
40 6 3600.0 49.11 0 3600.0 53.85 0

20 8 10.2 0.00 5 10.0 0.00 5
25 8 60.6 0.00 5 61.4 0.00 5
30 8 283.2 0.00 5 301.2 0.00 5
35 8 2121.6 13.57 3 1953.8 9.29 3
40 8 3600.0 46.95 0 3600.0 39.27 0

20 10 16.8 0.00 5 12.0 0.00 5
25 10 76.4 0.00 5 74.8 0.00 5
30 10 237.6 0.00 5 203.4 0.00 5
35 10 787.0 0.00 5 2102.2 6.65 3
40 10 3600.0 39.81 0 2922.8 12.01 3

Table 8: Results of model MSS with symmetry breaking constraints (40) and the variable reduction pre-
processing for the Connected SSP on small world graphs, both unweighted and weighted. The quantities
reported are the same as in Table 7.

however the LB was not reported.

The results for the model of [16] are those reported in the tables of [16]. Even though those results were
obtained on a different computer and using a somewhat different framework (e.g., we make use of the
heuristics of CPLEX, while [16] does not), we believe the important quantitative differences in the running
times of both models is enough to assert the relative computational efficiency of our approach. Indeed, in
most instances with 20 nodes or more, model MSS closes the instances at least ten times faster. On the
smallest instances, and contrary to the numerical analysis in Section 4 and Appendix A, MSS does not
always solve denser instances faster for a given graph size. The same pattern, however, can be seen again
on the largest unweighted instances. The results confirm that model MSS (with MILP improvements) is
able to solve instances of up to 30 nodes without problem.
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n δe = 0.3 δe = 0.5 δe = 0.7
MSS MILP of [16] MSS MILP of [16] MSS MILP of [16]

UB time UB time UB time UB time UB time UB time

10 4 1 4 1 5 0 5 1 5 1 5 1
11 4 0 4 1 4 1 4 4 5 0 5 1
12 4 1 4 2 6 1 6 3 6 1 6 4
13 5 1 5 2 6 1 6 4 6 1 6 4
14 5 2 5 8 6 2 6 5 7 2 7 7
15 6 2 6 10 7 3 7 15 7 4 7 15
16 6 2 6 17 7 4 7 25 8 6 8 33
17 6 5 6 24 8 6 8 48 8 4 8 49
18 6 7 6 32 8 9 8 39 9 6 9 80
19 7 10 7 55 9 10 9 84 9 12 9 101
20 8 11 8 232 9 15 9 223 10 22 10 194
21 8 16 8 298 10 27 10 409 10 37 10 190
22 8 18 8 379 10 15 10 715 11 27 11 750
23 9 34 9 614 11 41 11 467 11 94 11 546
24 10 38 10 381 11 58 11 658 12 110 12 2434
25 11 59 11 1091 12 44 12 908 12 123 12 1768
26 11 78 11 1561 13 97 13 3307 13 148 13 2389
27 11 150 11 1854 13 134 13 2462 13 168 13 3899
28 12 284 12 4557 13 248 13 3891 14 194 14 2709
29 12 182 12 4277 14 130 14 4089 15 178 15 4680
30 13 472 13 4963 15 359 15 7200 15 332 15 7200

Table 9: UB and running time for the benchmark instances of [16] for unweighted instances with densities
0.3, 0.5 and 0.7, for model MSS with improvements and the branch-and-cut algorithm of [16].
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n δe = 0.3 δe = 0.5 δe = 0.7
MSS MILP of [16] MSS MILP of [16] MSS MILP of [16]

UB time UB time UB time UB time UB time UB time

10 249 0 249 1 254 0 254 2 312 1 312 1
11 214 1 214 1 214 0 214 1 260 1 260 3
12 197 1 197 3 251 0 251 4 300 1 300 4
13 116 1 116 2 149 1 149 4 173 1 173 5
14 235 2 235 7 299 2 299 8 320 3 320 14
15 251 2 251 8 301 3 301 21 348 4 348 27
16 216 4 216 31 279 4 279 27 323 6 323 45
17 257 4 257 25 336 4 336 45 377 4 377 59
18 208 4 208 35 325 7 325 43 378 10 378 96
19 281 13 281 72 378 10 378 69 420 14 420 158
20 433 11 433 131 489 13 489 126 533 19 533 318
21 374 11 374 222 545 20 545 326 606 33 606 304
22 421 22 421 864 524 17 524 515 571 51 571 1423
23 297 19 297 244 410 26 410 428 410 44 410 661
24 427 69 427 455 536 59 536 810 624 76 624 2297
25 425 61 425 940 539 49 539 2209 583 50 583 3066
26 510 203 510 2893 638 80 638 3042 681 113 681 3167
27 587 71 587 2648 725 83 725 4399 756 262 756 2626
28 444 221 444 3081 572 282 572 5962 636 251 636 6762
29 595 138 595 5559 735 211 735 5575 775 254 775 7200
30 562 219 562 3907 710 267 719 7200 759 305 759 7200

Table 10: UB and running time for the benchmark instances of [16] for weighted instances with densities
0.3, 0.5 and 0.7, for model MSS with improvements and the branch-and-cut algorithm of [16].
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