
Elliptic Problems in Smooth and Non Smooth
Domains
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C. AMROUCHE Chérif AMROUCHE, University of PAU



Outline

I. Introduction, Motivation and Recall

II. Dirichlet and Neumann problems for the Laplacian in
Lipschitz Domains

III. Dirichlet and Neumann problems for the Laplacian in C1,1

Domains

IV. Dirichlet and Neumann Problem for the Bilaplacian

V. New Results on Traces

VI. Inhomogeneous Dirichlet Problem

VII. Revisitation of the Very Weak Solutions of Lions-Magenes

VIII. Solvability in Weighted Sobolev Spaces
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I. Introduction, Motivation and Recall

The purpose of this work is to study the existence and the
regularity of solutions of some elliptic equations:

−∆u = f in Ω,

(or more generally

−div(A∇u) + b · ∇u+ c u = f in Ω)

with the following boundary conditions

u = g or
∂u

∂ν
= h on Γ,

where Ω is a bounded open set of RN , with N ≥ 2.
We will consider also the biharmonic problem with different
boundary conditions.
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I.1 Traces and Regularity for Ω regular

Theorem 1 (Traces)

• If Ω is of class C0,1 (resp. C1,1), we recall that

γ0 : v 7−→ v|Γ,

Hs(Ω) −→ Hs−1/2(Γ),

is continuous and has a right continuous inverse for

1

2
< s ≤ 1 (resp. 1 < s ≤ 2).

• If Ω is of class C1,1, we recall that

(γ0, γ1) : v 7−→ (v|Γ,
∂u
∂ν

)

Hs(Ω) −→ Hs−1/2(Γ)×Hs−3/2(Γ),

is continuous and has a right continuous inverse for

3

2
< s ≤ 2.
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Question 1

With the same hypothesis, are the continuity and the
surjectivity of the trace operator valid for s in a bigger interval?

For example, when Ω is only Lipchitzian, for which values of
s > 1 the following mapping

γ0 : v 7−→ v|Γ,

Hs(Ω) −→ Hs−1/2(Γ),

is continuous and has a right continuous inverse?
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Consider now the following boundary value problem for the
Laplacian:

(PD)

{
−∆u = f in Ω,

u = g on Γ.
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Theorem 2 (Regularity in Wm,p(Ω))

i) Let Ω be of class C1, and 1 < p <∞. Assume that

f ∈W−1, p(Ω), g ∈W 1−1/p, p(Γ),

Then, Problem (PD) has a unique solution

u ∈W 1, p(Ω).

ii) If moreover Ω is of class Ck−1,1, with k ≥ 2 and

f ∈W k−2, p(Ω), g ∈W k−1/p, p(Γ),

then,
u ∈W k, p(Ω).

Remark. We have also corresponding results in fractional
Sobolev or Besov spaces W s, p(Ω), with s real number.
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Question 2

Is it possible to obtain the same regularity with Ω less regular ?
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I.2 Regularity W 1, p(Ω), with Ω Lipschitz

In the 80s, Nečas posed the question of solving the problem (PD) with the
homogeneous boundary condition g = 0 on Lipschitz domains, when the RHS
f ∈W−1, p(Ω).

The answer to this question, which is a part of Question 2, is given in a paper of
Jerison and Kenig (JFA 95):
• Negative results:
If N ≥ 3, then for any p > 3 (resp. p > 4 if N = 2), there is a Lipschitz domain Ω
and f ∈ C∞(Ω) such that the solution u of Problem (PD) with the homogeneous
boundary condition g = 0 does not belong to W 1, p(Ω).
So, as consequence, we don’t have uniqueness in W 1, p(Ω) for p < 3/2 if N ≥ 3
and for p < 4/3 if N = 2.

Example for N = 2. Let us consider the following Lipschitz domain for
1
2
< α < 1:

Ω = {(r, θ); 0 < r < 1, 0 < θ <
π

α
}

We can easily verify that the following function

u(r, θ) = (r−α − rα)sin(αθ)

is harmonic in Ω with u = 0 on Γ and u ∈W 1,p(Ω) for any p < 2
α+1

. Remark that

when α is near from 1
2

then Ω is close to the unit disc and 2
α+1

is close to 4
3

.
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• Positive results:
There exist q > 3 when N = 3 (resp. q > 4 when N = 2) such that if

q′ < p < q,

then the problem (PD) has a unique solution u ∈W 1, p(Ω) satisfying the estimate

‖u‖W1, p(Ω) ≤ C‖f‖W−1, p(Ω).

Moreover, if Ω is C1, we can take q =∞.
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I.3 Solutions in Fractional Sobolev Spaces

• To obtain existence results in fractional Sobolev spaces we
will use the interpolation theory (real or complex), which leads
us to Lizorkin or Besov spaces.

For simplicity, we consider here only the Hilbertian case p = 2
and we will use the classical Sobolev spaces Hs(Ω) which
contain the restrictions to Ω of functions in Hs(RN ).

Recall now the following spaces for s ∈ R+:

Hs
0(Ω) = D(Ω)

|| . ||Hs(Ω)
,

H̃s(Ω) =
{
v|Ω; v ∈ Hs(RN ), with supp v ⊂ Ω

}
.

• When s− 1
2 /∈ N

Hs
0(Ω) = H̃s(Ω)

and moreover

Hs
0(Ω) = H̃s(Ω) = Hs(Ω) if 0 ≤ s < 1

2
.
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• When s− 1
2 = µ ∈ N,

H̃µ+ 1
2 (Ω) =

{
u ∈ Hµ+ 1

2
0 (Ω);

Dλu

δ1/2
∈ L2(Ω), ∀|λ| = µ

}
,

where δ(x) is the distance of the point x in Ω to the boundary
Γ.

This is a strict subspace of H
µ+ 1

2
0 (Ω) with a strictly finer

topology and D(Ω) is dense in H̃µ+ 1
2 (Ω) for this finer topology.

Lions-Magenes use the notation

H
µ+ 1

2
00 (Ω) instead of H̃µ+ 1

2 (Ω).
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• Definition : for s ∈ R+, we set (like in Lions-Magenes)

H−s(Ω) = [Hs
0(Ω)]′ .

When s− 1
2 = µ ∈ N, note that

H−s(Ω) ↪→ [Hs
00(Ω)]′.
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• The interpolation between two spaces Hs
0(Ω) is somewhat

different from the one between two spaces Hs(Ω).

Indeed, if

s1 > s2 ≥ 0 such that s1, s2 /∈
{

1

2

}
+ N

then we have

[Hs1
0 (Ω), Hs2

0 (Ω)]θ = H
(1−θ)s1+θs2
0 (Ω) if (1− θ)s1 + θs2 /∈

{
1

2

}
+ N

and

[Hs1
0 (Ω), Hs2

0 (Ω)]θ = H
(1−θ)s1+θs2
00 (Ω) if (1− θ)s1 + θs2 ∈

{
1

2

}
+ N
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• We know that

∆ : H1
0 (Ω) −→ H−1(Ω)

and if moreover Ω is C1,1

∆ : H2(Ω) ∩H1
0 (Ω) −→ L2(Ω)

are isomorphisms.

By interpolation, we deduce that the following operators

∆ : Hs+1 ∩H1
0 (Ω) −→ Hs−1(Ω) if 0 < s < 1 and s 6= 1

2

and

∆ : H
3/2
0 (Ω) −→

[
H

1/2
00 (Ω)

]′
,

are isomorphisms, where we note that[
H2(Ω) ∩H1

0 (Ω), H1
0 (Ω)

]
1/2

= H3/2(Ω) ∩H1
0 (Ω) = H

3/2
0 (Ω)

and[
L2(Ω), H−1(Ω)

]
1/2

=
([
H1

0 (Ω), L2(Ω)
]
1/2

)′
=
[
H

1/2
00 (Ω)

]′
.
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• Because
D(Ω) is dense in Hs+1 ∩H1

0 (Ω)

endowed with the topology Hs+1(Ω) when 0 ≤ s ≤ 1
2 , we have

Hs+1(Ω) ∩H1
0 (Ω) = Hs+1

0 (Ω) and Hs−1(Ω) = [H1−s
0 (Ω)]′

and then, by duality, the following operators

∆ : H1−s
0 (Ω) −→ H−1−s(Ω) if 0 < s <

1

2

∆ : H
1/2
00 (Ω) −→ H−3/2(Ω),

are isomorphisms.
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Consequently, assuming Ω of class C1,1,

∆ : Hs
0(Ω) −→ Hs−2(Ω) if

1

2
< s <

3

2

is an isomorphism.

• In fact Jerison and Kenig (95) proved that this result holds
when Ω is only Lipschitz, but is false for

s =
1

2
or s =

3

2

even if Ω is C1.
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• However, if we consider the homogeneous Dirichlet problem:

(PDH )

{
∆u = 0 in Ω,

u = g on Γ.

where Ω is supposed Lipschitz, the situation is little be
different. Jerison and Kenig proved that for any

g ∈ Hs− 1
2 (Γ) with

1

2
≤ s ≤ 3

2
,

the Problem (PDH ) has a unique solution

u ∈ Hs+ 1
2 (Ω).

We will return to this in Subsection II.1 and II.2.
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I.4 Very Weak Solutions. Point of View of
Lions-Magenes

• When the data f and g are not regular, but Ω is C∞, by using
the transposition method, Lions and Magenes proved the
existence of very weak solutions to Problem (PD) belonging to
H−s(Ω), with s ≥ 0.

Recall that the mapping

−∆ : H2+s(Ω) ∩H1
0 (Ω) −→ Hs(Ω)

is an isomorphism for any s ≥ 0.
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However, the dual of the space Hs(Ω) is a subspace of D′(Ω) if
and only if s ≤ 1

2 . As they are interested in finding solutions
u ∈ H−s(Ω), then they choose the following subspace

X2+s(Ω) =
{
v ∈ H2+s(Ω) ∩H1

0 (Ω); ∆v ∈ Hs
0(Ω)

}
in order to get the following isomorphism:

−∆ : X2+s(Ω) −→ Hs
0(Ω)
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It implies that for any ` ∈ [X2+s(Ω)]′, the linear form

F 7−→ < `, v >
Hs

0(Ω) −→ R,

where
v ∈ X2+s(Ω) satisfies −∆ v = F in Ω,

is continuous and then there exists a unique solution

u ∈ H−s(Ω)

such that for any v ∈ X2+s(Ω),

〈u,−∆v 〉H−s(Ω)×Hs
0(Ω) = 〈 `, v 〉[X2+s(Ω)]′×X2+s(Ω) .
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• Remark.

In order to interpret the above problem and bring it back to a
problem of the form (PD), ` should be decomposed as

` = `1 + `2,

so that `2 leads to the boundary condition u = g in the sense to
be specified and where `1 leads to the equation

−∆u = f in Ω.

However, there is an optimal choice for the form `2 instead of `1.
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For the choice of the form `2, they consider the following
mapping

v 7−→ ∂v
∂n

X2+s(Ω) −→ H1/2+s(Γ),

which is continuous and has a right inverse operator which is
also continuous.

From this result, the optimal choice for `2 is given by:

〈`2, v〉 =

〈
g,
∂v

∂n

〉
H−s−1/2(Γ)×Hs+1/2(Γ)

,

for any v ∈ X2+s(Ω),
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Concerning the choice of the form `1, they consider a Hilbert
space K2+s(Ω) satisfying

X2+s(Ω) ↪→ K2+s(Ω),

and such that
D(Ω) is dense in K2+s(Ω).

The dual space K−2−s(Ω) of K2+s(Ω) could be identified with a
subspace of D′(Ω) and if f belongs to K−2−s(Ω), then the form

v ∈ X2+s(Ω), 〈`1, v〉 = 〈f, v〉K−2−s(Ω)×K2+s(Ω) ,

also defines a continuous linear form on X2+s(Ω). Therefore,
the linear form

〈`, v〉 = 〈`1, v〉+ 〈`2, v〉
= 〈f, v〉K−2−s(Ω)×K2+s(Ω) +

〈
g, ∂v∂n

〉
H−s−1/2(Γ)×Hs+1/2(Γ)

is continuous on X2+s(Ω).
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In order to consider all kinds of boundary conditions,
Lions-Magenes choose to take the space

K2+s(Ω) = Ξ2+s(Ω)

where for m ∈ N,

Ξm(Ω) =
{
v ∈ L2(Ω); δ|α|Dαv ∈ L2(Ω), |α| ≤ m

}
and for s = m+ θ with 0 < θ < 1,

Ξs(Ω) =
[
Ξm+1(Ω),Ξm(Ω)

]
1−θ ,

where δ is a regular positive function in Ω and vanishes on the
boundary Γ, of the same order as the distance d to the
boundary Γ.
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• We have the following properties:
i)

∀s ≥ 0, D(Ω) is dense in Ξs(Ω).

ii) The dual space Ξ−s(Ω) of Ξs(Ω) is then a subspace of
distributions in Ω.
iii) The space D(Ω) is dense in

D−s∆ (Ω) =
{
v ∈ H−s(Ω); ∆v ∈ Ξ−2−s(Ω)

}
.

and the linear mapping

u 7−→ u|Γ

defined on D(Ω) can be continuously extended to a continuous
linear mapping from

D−s∆ (Ω) to H−s−1/2(Γ)

and we have the following Green formula:
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∀u ∈ D−s∆ (Ω), ∀ϕ ∈ X2+s(Ω),

〈∆u, ϕ〉Ξ−2−s(Ω)×Ξ2+s(Ω) = 〈u,∆ϕ〉H−s(Ω)×Hs
0(Ω) +

+
〈
u, ∂ϕ∂n

〉
H−s−1/2(Γ)×Hs+1/2(Γ)

,

where we recall that

X2+s(Ω) =
{
v ∈ H2+s(Ω) ∩H1

0 (Ω); ∆v ∈ Hs
0(Ω)

}
which is included in Ξ2+s(Ω).
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Definition. For

f ∈ Ξ−2−s(Ω) and g ∈ H−s−1/2(Γ)

we say that

u ∈ H−s(Ω) is a very weak solution to Problem (PD)

if for any ϕ ∈ X2+s(Ω),

〈u,∆ϕ〉H−s(Ω)×Hs
0(Ω) = 〈f, ϕ〉Ξ−2−s(Ω)×Ξ2+s(Ω) +

+
〈
g, ∂ϕ∂n

〉
H−s−1/2(Γ)×Hs+1/2(Γ)

.
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The next theorem, proved by Lions-Magenes, gives a result
concerning the existence and uniqueness of very weak solutions
to Problem (PD).

Theorem 3 (Very Weak Solutions to (PD) in H−s(Ω))

Assume Ω is bounded and of class C∞. Let s ≥ 0 and
f ∈ Ξ−2−s(Ω) and g ∈ H−s−1/2(Γ). Then there exists a unique
solution

u ∈ H−s(Ω) of (PD).

satisfying the estimate as follows

||u||H−s(Ω) ≤ C
(
||f ||Ξ−2−s(Ω) + ||g||H−s−1/2(Γ)

)
.

Remark In particular if

f ∈ H−2(Ω) with supp f compact in Ω and g ∈ H−1/2(Γ)

then there exists a unique solution

u ∈ L2(Ω) of (PD).
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Remark.
If we consider now the following Neumann problem for the
Laplacian:

(PN )

{
−∆u = f in Ω,
∂u
∂ν = h on Γ.

for any
f ∈ Ξ−2−s(Ω) and h ∈ H−s−3/2(Γ),

with

< f, 1 >Ξ−2−s(Ω)×Ξ2+s(Ω)=< h, 1 >H−s−3/2(Γ)×Hs+3/2(Γ)

there exists a unique solution

u ∈ H−s(Ω) of (PN ),

up an additive constant.
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II. The Dirichlet and Neumann problems
for the Laplacian in Lipschitz Domains

Assume Ω is a bounded Lipschitz open.

II.1 Links between (PD) and (PN)
Rellich equality

First, we will recall some known results of Jerison-Kenig (JFA
95).

Theorem 4 (Jerison-Kenig)

Let 0 ≤ α ≤ 1. Suppose that u is a harmonic function in Ω. Let
k ∈ N. Then the following properties are equivalent:
i) u ∈ Hk+α(Ω),
ii) u ∈ L2(Ω), ∇ku ∈ L2(Ω), δ1−α∇k+1u ∈ L2(Ω) where δ is the
distance to the boundary Γ.
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Remark. 1) To prove that i) ⇒ ii), it suffices to use the
mean-value formula for the harmonic functions.
2) For the Implication ii) ⇒ i), it is not necessary to suppose u
harmonic. In fact, we can prove the following result:

Theorem 5 (A-Moussaoui-Nguyen)

Let 0 ≤ α ≤ 1, k ∈ N and u ∈ D′(Ω) such that

δ1−α∇k+1u ∈ L2(Ω).

Then
u ∈ Hk+α(Ω).
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Proof. i) The case α = 1 is proved by A-Girault (1994): if u is
any distribution satisfying

∇k+1u ∈ L2(Ω),

then
u ∈ Hk+1(Ω).

ii) Note that u ∈ Hk+1
loc (Ω). It suffices to consider the case k = 0

and the more difficult case α =
1

2
, which means that

δ1/2∇u ∈ L2(Ω).

For any ϕ ∈ D(Ω),

|
∫

Ω

∂u

∂xj
ϕ| = |

∫
Ω

√
δ
∂u

∂xj

ϕ√
δ
| ≤ ‖

√
δ
∂u

∂xj
‖L2(Ω)‖ϕ‖H1/2

00 (Ω)
.

Using the density of D(Ω) in H
1/2
00 (Ω), we have

∇u ∈ [H
1/2
00 (Ω)]′.
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But, we know that (see A-Girault 1994)

v ∈ D′(Ω), ∇v ∈ H−1(Ω) =⇒ v ∈ L2(Ω)

and
v ∈ D′(Ω), ∇v ∈ L2(Ω) =⇒ v ∈ H1(Ω).

So by interpolation, we have

v ∈ D′(Ω), ∇v ∈ [H
1/2
00 (Ω)]′ =⇒ v ∈ H1/2(Ω)

We conclude that u ∈ H1/2(Ω).

(Observe that the converse is true:

u ∈ H1/2(Ω) =⇒ ∇u ∈ [H
1/2
00 (Ω)]′ but not in [H1/2(Ω)]′)
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Theorem 6 (Necas Property)

Let
u ∈ H1(Ω) with ∆u ∈ L2(Ω).

Then we have the Nečas property:

u|Γ ∈ H1(Γ) ⇐⇒ ∂u

∂ν
∈ L2(Γ) ⇐⇒ ∇u ∈ L2(Γ).

Moreover, we have the following estimates :

inf
k∈R
‖u+ k‖H1(Γ) ≤ C(‖∆u‖L2(Ω) + ‖∂u

∂ν
‖L2(Γ))

and

‖∂u
∂ν
‖L2(Γ) ≤ C(‖∆u‖L2(Ω) + inf

k∈R
‖u+ k‖H1(Γ))
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Sketch of the proof: To prove Necas property, we recall first
that there exist α > 0 and h ∈ C∞(Ω)N satisfying (see the book
of Grisvard):

h · ν ≥ α > 0 a.e on Γ.

We use then a simplified variant of Rellich identity, which holds
for general elliptic operator like - div (A∇):

∫
Γ
h · ν|∇u|2 = 2

∫
Γ
h · ν |∇τu|2 − 2

∫
Γ
hτ · ∇u

∂u

∂ν
−
∫

Ω
(div h) |∇u|2

+ 2
∑N
k=1

∫
Ω

∂h

∂xk
· ∇u

∂u

∂xk
+ 2

∫
Ω
h · ∇u∆u

where on the boundary,

∇u = ∇τu+ ∂u
∂ν ν

|∇u|2 = |∇τu|2 + | ∂u∂ν |
2
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When u is harmonic, we deduce by Necas Property that the
Steklov-Poincaré operator

S : u 7→ ∂u

∂ν

is continuous from

H1(Γ) into L2(Γ).

and
S : H1(Γ)/R −→ L2(Γ)⊥R

is one to one and onto.
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Because S∗ = S, we deduce then by duality that

S : L2(Γ)→ H−1(Γ)

is continuous and

S : L2(Γ)/R→ H−1(Γ)⊥R

is one to one and onto.

Then by interpolation for all 0 ≤ s ≤ 1,

S : Hs(Γ)→ Hs−1(Γ)

is continuous and

S : Hs(Γ)/R→ Hs−1(Γ)⊥R

is one to one and onto.
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II.2 Homogeneous Dirichlet Problem

Let us consider now the homogeneous Dirichlet problem:

(PDH )

{
−∆u = 0 in Ω,

u = g on Γ

and recall the following result:

Theorem 7 (Solutions in Hs(Ω), Jerison-Kenig)

Let 0 ≤ s ≤ 1 and g ∈ Hs(Γ). Then there exists a unique

solution u ∈ Hs+ 1
2 (Ω) of (PDH ) satisfying the estimate as follows

||u||
Hs+ 1

2 (Ω)
≤ C ||g||Hs(Γ).

Moreover, with δ = d(x,Γ), we have

√
δ ∇u ∈ L2(Ω) if s = 0 and

√
δ ∇2u ∈ L2(Ω) if s = 1.
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II.3 Homogeneous Neumann Problem

Consider now the homogeneous Neumann problem:

(PNH )

{
−∆u = 0 in Ω,
∂u
∂ν = h on Γ,

and recall the following result:

Theorem 8 (Solutions in Hs(Ω), Jerison-Kenig)

Let 0 ≤ s ≤ 1 and h ∈ Hs−1(Γ) satisfying the compatibility
condition < h, 1 >= 0. Then there exists a unique solution, up
an additive constant, u ∈ Hs+ 1

2 (Ω) of (PNH ) satisfying the
estimate as follows

||u||
Hs+ 1

2 (Ω)
≤ C ||h||Hs−1(Γ). (1)

• To prove the previous theorem, it suffices to use Theorem 7
for Dirichlet problem and the invertibility of the
Steklov-Poincaré operator from Hs(Γ) and Hs−1(Γ)⊥R.

C. AMROUCHE Chérif AMROUCHE, University of PAU



Remark.

• Let f ∈
[
H

3
2
−s(Ω)

]′
and h ∈ Hs−1(Γ), with 0 < s < 1 and

satisfying the compatibility condition:

〈 f, 1 〉Ω + 〈h, 1 〉Γ = 0.

Then the following Neumann* problem

Find u ∈ Hs+ 1
2 (Ω) such that for any ϕ ∈ H

3
2
−s(Ω),

〈∇u,∇ϕ〉
Hs− 1

2 (Ω)×H−s+
1
2 (Ω)

= 〈 f, ϕ 〉Ω + 〈h, ϕ 〉Γ ,

has a unique solution, up to an additive constant.
Such a solution satisfies:

−∆u = f|Ω in Ω

but not
∂u

∂ν
= h on Γ.
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III. The Dirichlet and Neumann problems
for the Laplacian in C1,1 Domains

Assume Ω is a bounded C1,1 open. Using again the Rellich
identity, but with more technical difficulties, we can prove the
following extension of Necas property:
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Theorem 9 (Extension of Necas Property, A-Moussaoui-Nguyen)

Let
u ∈ H2(Ω) with ∆u ∈ H1(Ω).

Then we have:

u|Γ ∈ H2(Γ) ⇐⇒ ∂u

∂ν
∈ H1(Γ) ⇐⇒ ∇2u ∈ L2(Γ).

Moreover, we have the following estimates:

inf
k∈R
‖u+ k‖H2(Γ) ≤ C(‖∆u‖H1(Ω) + ‖∂u

∂ν
‖H1(Γ))

and

‖∂u
∂ν
‖H1(Γ) ≤ C(‖∆u‖H1(Ω) + inf

k∈R
‖u+ k‖H2(Γ))
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When u is harmonic, we deduce by Necas Property that the
Steklov-Poincaré operator

S : u 7→ ∂u

∂ν

is continuous from

H2(Γ) into H1(Γ).

and
S : H2(Γ)/R −→ H1(Γ)⊥R

is one to one and onto.
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As above we deduce then by duality that

S : H−1(Γ)→ H−2(Γ)

is continuous and

S : H−1(Γ)/R→ H−2(Γ)⊥R

is one to one and onto.

Then by interpolation for all 0 ≤ s ≤ 1,

S : Hs+1(Γ)→ Hs(Γ)

is continuous and

S : Hs+1(Γ)/R→ Hs(Γ)⊥R

is one to one and onto.
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Using then the result of Jerison and Kenig, we can prove the
following theorem:

Theorem 10 (Solutions in Hs(Ω), A-Moussaoui-Nguyen)

Let 0 < s ≤ 1 and g ∈ Hs+1(Γ). Then there exists a unique

solution u ∈ Hs+ 3
2 (Ω) of (PDH ) satisfying the estimate as follows

||u||
Hs+ 3

2 (Ω)
≤ C ||g||Hs+1(Γ). (2)

Moreover, we have

√
δ ∇3u ∈ L2(Ω) if s = 1.
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For the homogeneous Neumann problem, we have similarly

Theorem 11 (Solutions in Hs(Ω), A-Moussaoui-Nguyen)

Let 0 < s ≤ 1 and h ∈ Hs(Γ) satisfying the compatibility
condition

∫
Γ h = 0. Then there exists a unique solution, up an

additive constant, u ∈ Hs+ 3
2 (Ω) of (PNH ) satisfying the estimate

as follows
||u||

Hs+ 3
2 (Ω)
≤ C ||h||Hs(Γ). (3)
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IV. Dirichlet and Neumann Problem for
the Bilaplacian

We suppose here that Ω is Lipschitz or more regular. Consider
now the following homogeneous Dirichlet and ”Neumann”
Biharmonic (used for plates elasticity theory) problems:

(BHD )

{
∆2u = 0 in Ω,

u = g0 and ∂u
∂ν = g1 on Γ.

and

(BHN )


∆2v = 0 in Ω,

µ∆v + (1− µ) ∂
2v
∂ν2 = Λ0 on Γ,

∂∆v

∂ν
+

1− µ
2

∂

∂τ ij
(

∂2v

∂ν ∂τ ij
) = Λ1 on Γ,

where µ is a constant known as the Poisson ratio,

∀1 ≤ j < k ≤ N, τ ij = (0, . . . , 0,−νk, 0, . . . , 0, νj , 0, . . . , 0)

and ∂
∂τ ij

= τ ij · ∇ are the tangential derivatives.
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Theorem 12 (Solutions in Hs(Ω), Dahlberg-Kenig-Verchota 86 )

Assume that Ω is a Lipschitz bounded open set. For any

g0 ∈ H1(Γ) and g1 ∈ L2(Γ),

the problem (BHD ) has a unique solution u ∈ H3/2(Ω) satisfying√
ρ∇2u ∈ L2(Ω). Moreover

‖u‖H3/2(Ω) +
∥∥√ρ∇2u

∥∥
L2(Ω)

≤ C (‖g0‖H1(Γ) + ‖g1‖L2(Γ)). (4)
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Theorem 13 (Variant of the Rellich Identity,
A-Moussaoui-Nguyen)

Suppose that Ω is C1,1. Let

u ∈ H3(Ω) with ∆2u ∈ L2(Ω).

Then we have the following Rellich equality:

∫
Γ
h · ν|∇2u|2 = I + 2

∫
Γ
∇(h · ∇u) · ∂∇u

∂ν
+

+ 2

∫
Ω

(h · ∇u) ∆2u− 2 <
∂∆u

∂ν
, h · ∇u >Γ

where < , >Γ is the duality bracket H−1(Γ)×H1(Γ) and

I =

∫
Ω

(div h) |∇2u|2− 2

∫
Ω

[
∂2h

∂xj∂xk
·∇u+ 2

∂h

∂xk
·∇ ∂u

∂xj
]
∂2u

∂xj∂xk
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Introduce now the following differential operator

Lij =
∂2

∂xi∂xj
+ θδij∆,

with θ satisfying the relation

µ =
2θ +Nθ2

1 + 2θ +Nθ2
.

We can prove that if θ ≥ −1/N , or equivalently 1
1−N ≤ µ < 1,

then

Lij(u)Lij(u) ≥ |∇2u|2 − 1

N
|∆u|2,

with the implicit summation on the repeated indexes.

C. AMROUCHE Chérif AMROUCHE, University of PAU



Theorem 14 (Second Variant of the Rellich Identity, Verchota)

Suppose that Ω is C1,1. Let

u ∈ H3(Ω) with ∆2u ∈ L2(Ω).

Then we have the following Rellich equality:

1− µ
2

∫
Γ
h · ν|Lij(u)|2 = J − 〈Kµ(u), h · ∇u〉Γ+

+

∫
Γ

∂

∂ν
(h · ∇u)Mµ(u)

where < , >Γ is the duality bracket H−1(Γ)×H1(Γ) and

J =

∫
Ω
Eij(h , u, µ)Lij(u) + µ

∫
Ω
h · ∇u∆2u

Mµ(u) = µ∆u+(1−µ)
∂2u

∂ν2
, Kµ(u) =

∂∆u

∂ν
+

1− µ
2

∂

∂τ ij
(

∂2u

∂ν ∂τ ij
)
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Lemma 15 (Coercive estimate on the boundary, Verchota)

Assume that Ω is C1,1, 1
1−N ≤ µ < 1 and

u ∈ H2(Ω) with ∆2u = 0 and 〈∆u, 1〉Γ = 0.

Then we have the following inequality∫
Γ
h · ν|∇2u|2 ≤ C1

∫
Γ
h · ν|Lij(u)|2 + C2‖Kµ(u)‖2H−1(Γ)

where C2 may be taken to be zero when 0 ≤ µ < 1, i.e θ ≥ 0.
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Lemma 16 (Weak Necas Property, A-Moussaoui-Nguyen)

Let Ω be a Lipschitz bounded open subset of RN . Let u ∈ L2(Ω)
such that ∆u ∈ L2(Ω). Then we have the following estimates:

‖ ∂u∂n ‖H−1(Γ) ≤ C(infk∈R ‖u+ k‖L2(Γ) + ‖∆u‖L2(Ω))

infk∈R ‖u+ k‖L2(Γ) ≤ C(‖ ∂u∂n ‖H−1(Γ) + ‖∆u‖L2(Ω))
(5)
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Theorem 17 (Necas Property for Bilaplacian, A-Moussaoui-Nguyen)

Let Ω be a bounded open subset of RN of class of C1,1. Let u ∈ H2(Ω) such that

∆2u = f ∈ L2(Ω).

i) If u ∈ H2(Γ) and
∂u

∂n
∈ H1(Γ), then

∇2u ∈ L2(Γ) (6)

with the following estimate

∣∣∣∣∇2u
∣∣∣∣
L2(Γ)

≤ C
(
|| f ||L2(Ω) + inf

q∈P1

(‖u+ q‖H2(Γ) +

∣∣∣∣∣∣∣∣ ∂(u+ q)

∂n

∣∣∣∣∣∣∣∣
H1(Γ)

)
(7)

ii) If ∂∇u
∂n
∈ L2(Γ) and ∂∆u

∂n
∈ H−1(Γ), then we have (6) with the following

estimate

‖∇u‖H1(Γ) +
∣∣∣∣∇2u

∣∣∣∣
L2(Γ)

≤ C
(
|| f ||L2(Ω) + ‖

∂∇u
∂n
‖L2(Γ) +

∣∣∣∣∣∣∣∣ ∂∆u

∂n

∣∣∣∣∣∣∣∣
H−1(Γ)

)
(8)

C. AMROUCHE Chérif AMROUCHE, University of PAU



Theorem 18 (Solutions in Hs(Ω), A-Moussaoui-Nguyen)

Assume that Ω is C1,1. For any

g0 ∈ H2(Γ) and g1 ∈ H1(Γ),

the problem (PBH) has a unique solution u ∈ H5/2(Ω) satisfying
the following estimate

||u||H5/2(Ω) ≤ C (||g0||H2(Γ) + ||g1||H1(Γ)). (9)

Consequently for any 0 < s < 1 and

g0 ∈ H1+s(Γ) and g1 ∈ Hs(Γ),

the problem (PBH) has a unique solution u ∈ H3/2+s(Ω)
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Sketch of Proof. We use
- the previous Rellich identity,
- the existence result of Dahlberg-Jerison and Kenig for ∆2,
- the results obtained for the Laplacian
- the following result:

if Ω is (only) C0,1, for any distribution f such that

√
δf ∈ L2(Ω),

the solution

u ∈ H1
0 (Ω) satisfying ∆u = f in Ω

verifies √
δ∇2u ∈ L2(Ω).
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We introduce now the following Steklov-Poincaré operator for the Bilaplacian: for
biharmonic function u,

SB : H3/2(Γ)×H1/2(Γ) −→ H−3/2(Γ)×H−1/2(Γ)

(u, ∂u
∂ν

) 7−→ (Kµ(u),Mµ(u))

which is continuous as well as its inverse. Using Lemma 15 and Theorem 17,

SB : H2(Γ)×H1(Γ) −→ H−1(Γ)× L2(Γ)

(u, ∂u
∂ν

) 7−→ (Kµ(u),Mµ(u))

is also continuous as well as its inverse.
Because S∗B = SB , we deduce then by duality that

SB : H1(Γ)× L2(Γ) −→ H−2(Γ)×H−1(Γ)

(u, ∂u
∂ν

) 7−→ (Kµ(u),Mµ(u))

is also continuous.

Then by interpolation for all 0 ≤ s ≤ 1,

SB : H1+s(Γ)×Hs(Γ) −→ Hs−2(Γ)×Hs−1(Γ)

(u, ∂u
∂ν

) 7−→ (Kµ(u),Mµ(u))

is also continuous.
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V. New Results for the Traces

Extending the previous results for ∆2, we prove the following
result:

Theorem 19 (Traces), A-Moussaoui-Nguyen

• If Ω is of class C0,1 (resp. C1,1), we have

γ0 : v 7−→ v|Γ,

Hs(Ω) −→ Hs−1/2(Γ),

is continuous for

1

2
< s <

3

2
(resp.

3

2
≤ s < 5

2
)

and has a right continuous inverse for

1

2
≤ s ≤ 3

2
(resp.

3

2
< s ≤ 5

2
)
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• If Ω is of class C1,1, we have

(γ0, γ1) : v 7−→ (v|Γ,
∂v
∂ν )

Hs(Ω) −→ Hs−1/2(Γ)×Hs−3/2(Γ),

is continuous for
3

2
< s <

5

2
.

and has a right continuous inverse for

3

2
< s ≤ 5

2
.

Remark.
i) This theorem is well known for the case Ω Lipschitz.
ii) For s = 3

2 , we need only that Ω be Lipschitz to ensure the
surjectivity of (γ0, γ1).
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VI. Inhomogeneous Dirichlet Problem

Theorem 20 (Solutions in Hs(Ω), Jerison-Kenig)

Assume Ω is Lipschitz. Let 0 < s < 1 and f ∈ Hs− 3
2 (Ω). Then

there exists a unique solution u ∈ Hs+ 1
2

0 (Ω) of (PD0 ) satisfying
the estimate as follows

||u||
Hs+ 1

2 (Ω)
≤ C ||f ||

Hs− 3
2 (Ω)

. (10)

To prove this theorem, it suffices firstly to extend f in
f̃ ∈ Hs− 3

2 (RN ), secondly to solve a Poisson equation in the
whole space, thirdly to use the continuity properties of the trace
operator and finally to solve a corresponding homogeneous
Dirichlet problem by using the previous theorem.
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With the same ideas, we have:

Theorem 21 (Solutions in Hs(Ω), A-Moussaoui-Nguyen)

Assume Ω is C1,1. Let 0 ≤ s < 1 and f ∈ Hs− 1
2 (Ω). Then there

exists a unique solution u ∈ Hs+ 3
2 (Ω) of (PD0 ) satisfying the

estimate as follows

||u||
Hs+ 3

2 (Ω)
≤ C ||f ||

Hs− 1
2 (Ω)

. (11)

• Remark
i) The previous result is well known for 0 ≤ s ≤ 1

2 .
ii) We can prove more general regularity results when Ω is
Ck−1,1, with k ≥ 3.
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VII. Revisitation of the Very Weak
Solutions of Lions-Magenes

For m ∈ N, with m ≥ 2, we introduce the following space

Tm(Ω) =
{
v ∈ H3/2

0 (Ω); δ|λ|−
3
2Dλv ∈ L2(Ω), 2 ≤ |λ| ≤ m

}
For a real s such that s = m+ θ with m ∈ N,m ≥ 2 and
0 < θ < 1:

Ts(Ω) =
[
Tm+1(Ω),Tm(Ω)

]
1−θ .

From this definition, we have the following embeddings

Hs(Ω) ∩H3/2
0 (Ω) ↪→ Ts(Ω) ↪→ Tt(Ω) ↪→ H

3/2
0 (Ω),

if s > t ≥ 2.
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Theorem 22 (Density Result, A-Moussaoui-Nguyen)

D(Ω) is dense in Ts(Ω) for any real s ≥ 2.

• Remark

i) Therefore, the space Ts(Ω) is a normal space of distributions
on Ω and its dual T−s(Ω) may be identified to a subspace of
distributions on Ω.

ii) It suffices to prove the density of D(Ω) in Tm(Ω), for any
integer m ≥ 2, but this density is not easy instead of the
density of D(Ω) in{

v ∈ H3/2
00 (Ω); δ|λ|−

3
2Dλv ∈ L2(Ω), 2 ≤ |λ| ≤ m

}
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• Let s ≥ 0, k integer such that s < k − 3
2 . Let Ω be of class

Ck−1,1. As in the case of Lions-Magenes, we have the following
properties:
i) The space D(Ω) is dense in

F−s∆ (Ω) =
{
v ∈ H−s(Ω); ∆v ∈ T−2−s(Ω)

}
.

and the linear mapping v 7−→ v|Γ defined on D(Ω) can be
continuously extended to a continuous linear mapping from
F−s∆ (Ω) to H−s−1/2(Γ)

ii) and we have the following Green formula: For all u ∈ F−s∆ (Ω)
and ϕ ∈ X2+s(Ω),

〈∆u, ϕ〉Ω = 〈u,∆ϕ〉H−s(Ω)×Hs
0(Ω) +

〈
u,
∂ϕ

∂n

〉
H−s−1/2(Γ)×Hs+1/2(Γ)

,

where 〈·, ·〉Ω denotes the duality bracket between T−2−s(Ω) and
T2+s(Ω) and where we recall that

X2+s(Ω) =
{
v ∈ H2+s(Ω) ∩H1

0 (Ω); ∆v ∈ Hs
0(Ω)

}
↪→ T2+s(Ω)
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Using again the transposition method we get the following
result.

Theorem 23 (Very Weak Solutions in H−s(Ω),
A-Moussaoui-Nguyen)

Let s ≥ 0, k ≥ 2 integer such that s < k − 3
2 . Let Ω be of class

Ck−1,1. Assume f ∈ T−2−s(Ω) and g ∈ H−s−1/2(Γ). Then there
exists a unique solution u ∈ H−s(Ω) of Problem (PD) satisfying
the estimate as follows

||u||H−s(Ω) ≤ C
(
||f ||T−2−s(Ω) + ||g||H−s−1/2(Γ)

)
.

Observe that with this theorem, we improve the existence and
regularity result of Lions-Magenes since

T2+s(Ω) ↪→ Ξ2+s(Ω) with density

and then
Ξ−2−s(Ω) ↪→ T−2−s(Ω)
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VIII. Solvability in Weighted Sobolev
Spaces

For simplicity, we consider only one particular case. The
following result is well known when Ω is of class C1,1.

Theorem 24 (A-Moussaoui-Nguyen)

Let Ω be an bounded Lipschitz open subset of RN . The
following mapping

∆ : H2
δ (Ω) −→ L2

δ(Ω)

is an isomorphism, where δ(x) is the distance of x at the origine

H2
δ (Ω) =

{
u ∈ H1

0 (Ω); δ Dλu ∈ L2(Ω), ∀|λ| = 2
}

and

L2
δ(Ω) =

{
u measurable;

∫
Ω
δ2 |u|2 <∞

}
.
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• Remark. Recall that thanks to Hardy Inequality, we have

L2
δ(Ω) ↪→ H−1(Ω).

As D(Ω) is dense in H2
δ (Ω) and in L2

δ(Ω), we deduce by duality
that

∆ : L2
1
δ

(Ω)
−→ [H2

δ (Ω)]′

is also an isomorphism.
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• Now, we know that if moreover Ω is of class C1,1

∆ : H2(Ω) ∩H1
0 (Ω) −→ L2(Ω)

is an isomorphism. Because

∆ : H2
δ (Ω) −→ L2

δ(Ω)

is also an isomorphism and[
H2(Ω) ∩H1

0 (Ω), H2
δ (Ω)

]
1−θ =

{
v ∈ H1+θ(Ω) ∩H1

0 (Ω); δ1−θD2v ∈ L2(Ω)
}

we deduce by interpolation the following corollary:
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Corollary 25 (A-Moussaoui-Nguyen)

Let Ω be a bounded open subset of RN of class C1,1. Then for
any 0 < θ < 1, the following mapping

∆ :
{
v ∈ H2−θ(Ω) ∩H1

0 (Ω); δθD2v ∈ L2(Ω)
}
−→ L2

δθ(Ω)

is an isomorphism. In particular, if θ = 1
2 , then

∆ : T2(Ω) −→ L2√
δ
(Ω)

is an isomorphism. Consequently,

∆ : L2
1√
δ

(Ω) −→ T−2(Ω)

is also an isomorphism.
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• i) We have already seen that for any f ∈ T−2(Ω), there exists
a unique u ∈ L2(Ω) satisfying

∆u = f in Ω, u = 0 on Γ

Corollary 25 proves in fact that u is better because u ∈ L2
1√
δ

(Ω).

Recall also that the result of Lions-Magenes state that

f ∈ Ξ−2(Ω) ↪→ T−2(Ω) =⇒ u ∈ L2(Ω)←↩ L2
1√
δ

(Ω).

More strangly, we deduce the following property:

if u ∈ L2
1√
δ

(Ω), then u|Γ ∈ H−
1
2 (Γ)

without any other assumption. Moreover, because D(Ω) is
dense in L2

1√
δ

(Ω), then

u = 0 on Γ in the sense H−
1
2 (Γ).

A fortiori the functions of H
1
2
00(Ω), instead of H

1
2 (Ω), have a

trace (in L2(Γ)?) which is equal to zero.
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• ii) Because

H
1/2
00 (Ω) ↪→ L2

1√
δ

(Ω) and H−3/2(Ω) ↪→ T−2(Ω)

the following isomorphism

∆ : H
1/2
00 (Ω) −→ H−3/2(Ω),

can be considered as a regularity result of the following
isomorphism.

∆ : L2
1√
δ

(Ω) −→ T−2(Ω)
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Perspectives

• Case of Lp-Theory

• Extension to the div(A∇) operator (in progress with L.
Santos)

• Extension to the biharmonic problem (in progress)

• Extension to systems: Stokes (in progress), elasticity, ...

• Extension to different boundary conditions: Fourier-Robin,
Navier boundary condition, ... (in progress)

• Evolution case : heat equation, waves equation, Stokes
equations, ...
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Academia, Éditeurs, Prague 1967

G.C. Verchota. The biharmonic Neumann problem in
Lipchitz domains. Acta Math., 194, (2005), 217-279.
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