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Analyticity of the semi-group generated by the Stokes
operator with Navier-type boundary conditions on LP-spaces

Hind Al Baba, Chérif Amrouche, and Miguel Escobedo

This paper is dedicated to Professor Hugo Beirao da Veiga on the occasion of his 70th birthday.

ABsTrRACT. In this paper we study the analyticity of the semi-group generated
by the Stokes operator with Navier-type boundary conditions on LP-spaces.
This allows us to solve the evolution Stokes problems (1.1) together with the
boundary condition (1.3).

1. Introduction

We consider in a bounded cylindrical domain € x (0,7") the linearised evolution
Navier-Stokes problem

Ju _Au+ Vr=f, divu=0 in Qx(0,7),
u(0) = ug in Q,

where the unkowns u and 7 stand respectively for the velocity field and the pressure
of a fluid occupying a domain 2. Given data are the external force f and the initial
velocity ug.

To study Problem (1.1) it is necessary to add appropriate boundary conditions.
This problem is often studied with Dirichlet boundary conditions, which is not
always realistic since it does not reflect necessarily the behavior of the fluid on or
near the boundary. In many problems of mathematical physics, Problem (1.1) is
studied with other types of boundary conditions called slip boundary conditions.

H. Navier [17] has suggested in 1824 a type of boundary conditions based on a
proportionality between the tangential components of the normal dynamic tensor
and the velocity

(1.2) u-n=0, 2vDu-n] +au, =0 on I' x (0,T),

(1.1)

where v is the viscosity and « > 0 is the coefficient of friction and Du = %(Vu +
VuT) denotes the deformation tensor associated to the velocity field u.
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The Navier boundary conditions defined above are often used to simulate the
flows near rough walls as well as perforated walls. We also mention that such slip
boundary conditions are used in the simulation of turbulent flows. Taking use of
the vorticity field w = curlw, and using classical identities, one can observe that
in the case of a flat boundary and when « = 0 the conditions (1.2) may be replaced
by

(1.3) u-n=0, curlu xn =0 on I'x (0, 7).

We call them Navier-type boundary conditions.

Problem (1.1) together with the boundary conditions (1.3) has been studied by
several authors and the theory is in recent progress. In a two dimensional, simply
connected bounded domain Yudovich [21] has established the existence and unique-
ness of solution to this problem. These two-dimensional results are based on the
fact that the vorticity is scalar and satisfies the maximum principle. However this
techniques can not be extended to the three-dimensional case. On the other hand
Mitrea and Monniaux [15] have employed the Fujita-Kato approach and proved the
existence of a local mild solution to Problem (1.1) and (1.3).

In this paper we deal with the Stokes operator with the Navier-type boundary
conditions (1.3). Our goal is to obtain a good semi-group theory for the Stokes
operator with Navier-type boundary conditions (1.3) on LP-spaces as it is well
known for Dirichlet boundary condition (for instance Giga and Sohr [1, 9, 10, 11,
12]). Our main result is the following:

THEOREM 1.1. The Stokes operator with Navier-type boundary conditions gen-
erates a bounded analytic semi-group on LY _(Q).

To prove Theorem 1.1 we use a classical approach. We study the resolvent of
the Stokes operator. A key observation is that the Stokes operator with Navier-type
boundary conditions is equal to the Laplacian operator with Navier-type boundary
conditions. For this reason our work is reduced to study the following problem:
(1.4) Au—Au = f, divu=0 in Q,

) u-n=0, curlu xn=0 on I,
where A € C* such that ReA > 0 and f € L} (Q2) . We prove the existence of
strong solution to Problem (1.4) satisfying the resolvent estimate

c(Q,p
(1.5 bz < G2 oo

Notice that for p = 2 one has estimate (1.5) in a sector A € X, for a fixed ¢ € |0, 7[.
We recall that
Y. ={AeC" |arg\| <7 —¢}.

In the literature, there are several results on the analyticity of the Stokes semi-
group with Dirichlet boundary condition in LP-spaces. In fact, in bounded domains,
Giga [9] has studied the resolvent of the Stokes operator with Dirichlet boundary
condition using the theory of pseudo-differential operators and get the desired re-
sult. In exterior domains, Giga and Sohr [11] approximate the resolvent of the
Stokes operator with Dirichlet boundary condition with the resolvent of the Stokes
operator in the entire space to prove this analyticity.

More recently, the analyticity of the Stokes semi-group with Dirichlet boundary
condition is studied in spaces of bounded functions by Abe and Giga [1]. There
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approaches here is completely different from the classical approaches. In fact, they
have proved a bound for

N(u,m)(x,t) = |u(z,t)| + 2 |Vu(z, )| + t |[Vu(z, t)| + t |0eu(z, t)] + |Vr(z, b)),
which is a key to prove the analyticity result. More precisely, they have proved

||N(uv7T)I|L°°(Q><]0,To[) <C ||u0||L°°(Q)-
To establish the last estimate they used a blow-up argument which is often used in
the study of nonlinear elliptic and parabolic equations.

Now, concerning the Navier-type boundary conditions, Mitrea and Monniaux
[14] have studied the resolvent of the Stokes operator with Navier-type bound-
ary conditions in Lipschitz domains and proved estimate (1.5) using the context
of differential forms on Lipschitz sub-domains of a smooth compact Riemannian
manifold. In addition, when the domain 2 has a sufficiently smooth boundary,
estimates of type (1.5) are proved using the fact that the boundary conditions (1.3)
are regular elliptic (e.g. [19]) and the so called "Agmon trick" (e.g. [3]). More-
over, when the domain  is of class C*°, [16] shows that the Laplacian with the
Navier-type boundary condions (1.3) on L”(2) leaves the space L} () invariant
and hence generates a holomorphic semi-group on L} _(€2).

In this paper we prove estimate (1.5) using (see Lemma 2.6) a formula involving
the boundary conditions (1.3) and the following formula: For every u € W (Q)
such that Au € LP(2) one has

_9 2
- / [ulP?Au - wdx :/|u|p_2|Vu\2dm+4p 5 /’V|u|p/2‘ dz
Q Q p Q

< _ Ju _ Ju _ ou _
+ (pr)ZZ / |ulP~* Re <% .u)Im (% .u)dx - <%, |ul|? 2u>F,
i /e k k

where (., .)p is the antiduality between W~/P?(T') and wl/pv (T).

This paper is organized as follows. In section 2 we give the functional framework
and some preliminary results at the basis of our proofs. Next in section 3 we
define the Stokes operator with Navier-type boundary conditions, we will see that
the Stokes operator with Navier-type boundary conditions (1.3) is equal to the
Laplacian operator with conditions (1.3). Section 4 is devoted to our main result
and its proof concerning the analyticity of the semi-group generated by the Stokes-
operator with Navier-type boundary conditions on LP-spaces. Finally in section 5
we give a new version of the Stokes operator. We give extra assumptions on the
Stokes operator that allows us to obtain a bounded and compact inverse as well as
an exponential decay of the semi-group generated by the Stokes operator.

2. Notations and preliminary results

2.1. Functional framework. In this subsection we review some basic nota-
tions, definitions and functional framework which are essential in our work.

In what follows, if we do not state otherwise, 2 will be considered as an open
bounded domain of R? of class at least C*!' and sometimes of class C?!'. Then
a unit normal vector to the boundary can be defined almost everywhere it will be
denoted by m. The generic point in Q is denoted by & = (x1, z2, x3).

We do not assume that the boundary I' is connected and we denote by I,
0 < i < I, the connected component of I, 'y being the boundary of the only
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unbounded connected component of R3\Q. We also fix a smooth open set ¥ with
a connected boundary (a ball, for instance), such that Q is contained in 9, and
we denote by €;, 0 < i < I, the connected component of ¥\Q with boundary T';
(FO U oY for i = 0)

We do not assume that €2 is simply-connected but we suppose that there exist
J connected open surfaces ¥;, 1 < j < J, called ’cuts’, contained in 2, such that
each surface X; is an open subset of a smooth manifold, the boundary of 3; is
contained in I'. The intersection ¥; NY; is empty for i # j and finally the open set
Q° = Q\ U/, & is simply connected and pseudo-C! (see [4] for instance).

We denote by []] the jump of a function over 3, i.e. the difference of the traces
for 1 < j < J. In addition, for any function ¢ in WP (Q°), grad q is the gradient
of ¢ in the sense of distribution in D’(£2°), it belongs to L?(Q2°) and therefore can
be extended to LP(2). In order to distinguish this extension from the gradient of
q in D'(Q°) we denote it by grad q.

Finally, vector fields, matrix fields and their corresponding spaces defined on 2
will be denoted by bold character. The functions treated here are complex valued
functions. We will use also the symbol o to represent a set of divergence free
functions. In other words If E is Banach space, then

E, = {vGE; dive = 0 inQ}.

Now, we introduce some functional spaces. Let L”()) denote the usual vector
valued LP-space over €. Let us define the spaces:

HP?(curl, Q) = {v € LP(Q); curlwv € LP(Q)}7
HP(div,Q) = {v e LP(Q); divv € LP(Q)},
X?(Q) = HP(curl,Q) N H?(div, ),

equipped with the graph norm. Thanks to [6] we know that D(fQ) is dense in
HP”(curl, ), H?(div, Q) and X?(Q).
We also define the subspaces:

Hf(curl,Q) = {v e H(curl,Q); vxn = 0onT},
Hf(div,Q) = {v e H(div,Q); v-mn =0onT},
XR(Q) = {veXP(Q); vxn=0onT},
X2(Q) = {veXP(Q); v-n=0onT}
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and
X5(Q) = X%(Q) N X2(Q).

We have denoted by v xn (respectively by v-n) the tangential (respectively normal)
boundary value of v defined in W~/PP(T") (respectively in W~1/7:7(T")) as soon as
v belongs to H? (curl, Q) (respectively to H?(div,2)). More precisely, any function
v in H? (curl, Q) (respectively in H”(div, )) has a tangential (respectively normal)
trace v X n (respectively v-n) in W/PP(I') (respectively in W~1/7:7(T")) defined
by:

(2.1) V(pEWl’p/(Q), (vxmn, p)r = /curlv~¢dx - /v~curl¢dx

Q Q
and
(2.2) cher’p/(Q)7 (v-n, )r = /v~grad¢dm+/divv¢dx,
Q Q

where (.,.)r is the anti-duality between W ~/7P(T') and wl/pv (T") in (2.1) and
between W~1/7:7(T") and W/»#"(T') in (2.2). Thanks to [6] we know that D(Q) is
dense in H}(curl, ) and in H}(div, Q).
Finally, we denote by [H}(curl,)]" and [H{(div, Q)] the dual spaces of
H{(curl, Q) and HF(div, Q) respectively.
Notice that we can characterize these dual spaces as follows: A distribution
f belongs to [Hf(curl,Q)]" if and only if there exist functions ¢ € L” (Q) and
&€ Lp/(Q), such that f = @ + curl&. Moreover one has
11l 2z curt, ) = max ([l Lo ), 1€l e (o)-
Similarly, a distribution f belongs to [H?(div,)]" if and only if there exist 9 €
LPI(Q) and x € LPI(Q) such that f = v + grad y and
HfH[Hg(div,Q)]’ = maX(”d"HLP/(Q)v ||XHLP’(Q))'

2.2. Preliminary results. In this subsection, we review some known results
which are essential in our work. First, We recall that the vector-valued Laplace
operator of a vector field v = (v, v2,v3) is equivalently defined by

A v = grad (divv) — curlcurl v.

Next, we have the following lemmas (see [6]):

LEMMA 2.1. The spaces XX () and X?(Q) defined above are continuously
embedded in W'P(Q).

Consider now the spaces
X2P(Q) = {v € LP(Q); divo € W'P(Q), curlu € W"?(Q) and
v-ne Wl_l/p’p(F)}
and
Y?*P(Q) = {v e LP(Q); dive € W'P(Q), curlv € WHP(Q) and
VXMNE Wlfl/p’p(F)}.

LEMMA 2.2. Assume that Q is of class C*', then the spaces X**(Q) and
Y2P(Q) are continuously embedded in WP ().
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Consider now the space
EP(Q) = {v e W'P(Q); Av e [HY (div, Q)]'},
which is a Banach space for the norm:

| v lgr@)=|v ”W“’(Q) + [ Av H[Hé’/(div’ﬂ)]/ .

Thanks to |5, Lemma 4.1] we know that D(Q) is dense in E?(Q). Moreover
we have the following Lemma (see [5, Corollary 4.2]):

LEMMA 2.3. The linear mapping v : v — curl v x n defined on D(Q) can be
extended to a linear and continuous mapping

v EP(Q) —— W »P(I).

Moreover, we have the Green formula: for any v € EP(Q) and ¢ € Xf/(Q) such
that divp = 0 in Q.

—(Av, ), = / curlv- curlp dez — (curlv X n, @)r.
Q

where (.,.)r denotes the anti-duality between Wﬁi’p(l’) and W%’p’(I‘) and (., )q
denotes the anti-duality between [H] (div, Q)] and HY (div, ).

Next we consider the problem:
(2.3) div(gradw — f) =0 in Q, (gradm — f) - mn=0 onT.

We recall the following lemma concerning the weak Neumann problem (see [18] for
instance).

LEMMA 24. Let f € LP(Q), the Problem (2.3) has a unique solution m €
WP (Q)/R satisfying the estimate

lgrad 7{[Lr (@) < CL) ([ fllLr @),
for some constant C1(2) > 0.

The following lemma plays an important role in the proof of the resolvent
estimate (1.5):

LEMMA 2.5. Let w € WP(Q) such that Au € LP(Q). Then

— 2
(24) - / |ulP?Au-udr = / \u|p72\Vu|2dx—|—4p 22 / ‘V|u|p/2’ dz
Q Q p Q

3
ou ou Ju
— 1 p—4 - . — .U — ({— p—2
+ (p 2)@; /Q|u| Re (&’ck u)Im (&ﬂk u) dx <8n’ lu u>F,
where (., )p is the antiduality between W ~/PP(T') and Wl/p’p’(F).

PROOF. Let u € W'P(Q) such that Au € LP(Q). We recall that u =
(w1, wue, wus ) is a vector complex valued function. We recall also that the
vectors w and Rew given by

u= (1w, uz, uz ), Reu =( Rewu;, Rews, Reus )
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are the conjugate and the real part of the vector u respectively. We can easily
verify that for any 1 < k < 3 one has
Olulz  ~rou, o; du
=3 [5G +uy 2| = 2Re( - u).
oz, z:: [63% Uj 6@%] ¢ Oxy, v

As a result
(2.5)

Oful™” ';‘ii_z — (p—2) [ufr~ Re(%-ﬂ) and ‘agfvz/?‘z _ ’%uv@—‘* [Re(%-ﬂ)r.

Now, using (2.5) we have

3
d|ulP=2 0 -2 2
SOMION Ly yp2 [l
=~ O Oy »?  Ja
3
(%2)@2/ \uIP*‘*Re(g—;.ﬂ)Im(%.n)dx.
k=17
Finally applying the Green-Formula one gets (2.4). d

Let us now consider any point P on I' and choose an open neighborhood W of
P on T small enough to allow the existence of two families of C? curves on W. The
lengths s; and s along each family of curves, respectively, are a possible system
of coordinates in W. We denote by 71 and 72 the unit tangent vectors to each
family of curves respectively. With these notations we have v, = Zizl Vg Tk,

where v, = v - 7. We recall that for all v in D(Q) the following formula holds:
2

ov on
(2.6) curlv xn =V, (v-n) — <%)T — ; (8—8] : vT>‘rj on T,
where V. is the tangential gradient. More precisely we have the following lemma
(see [5]):

LEMMA 2.6. Let v € WP(Q) such that Av € LP(Q). Then curlv x n belongs
to W=YPP(T) and satisfies formula (2.6).

We end this subsection by the definition of a sectorial operator (see [8, Chapter
2, page 96]). Let 0 < 0 < w/2 and let ¥y be the sector

Yo = {)\E(C*; |arg Al <7r—9}.

DEFINITION 2.7. Let X be a Banach space. We say that a linear densely defined
operator A : D(A) C X — X is sectorial if there exists a constant M > 0 such
that

M
(2.7) VAeSy, IR Allex) <

Al
where R(\, A) = (AT — A)~L

This means that the resolvent of a sectorial operator contain a sector Yy for
some 0 < 0 < 7/2 and for every A € ¥y one has estimate (2.7).

Moreover thanks to [8, Chapter 2, Theorem 4.6, page 101] we have the following
theorem:
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THEOREM 2.8. An operator A generates a bounded analytic semi-group if and
only if A is sectorial.

Nevertheless, it is not always easy to prove that an operator is sectorial in
the sense of Definition 2.7. For this reason in some cases we will use the result
of Yosida [20] who has proved that it suffices to prove (2.7) in the half plane
{\ € C*; ReX > w}, for some w > 0. This result is stated in [7, Chapter 1,
Theorem 3.2, page 30| and proved by K. Yosida .

PROPOSITION 2.9. Let A : D(A) € X +—— X be a linear densely defined
operator, let w > 0 and M > 0 such that

M

VAeC, ReA>w, R, Allex) < Bk

Then A is sectorial.

3. The Stokes operator with Navier-type boundary conditions
Consider the space
(3.1) VP(Q) = {v € X2(Q); divo =0 in Q}

which is a Banach space for the norm X?(Q). The Stokes operator with Navier-type
boundary conditions is defined by

VYueVEQ), Vve Vf/(Q), (Au, v) curlu-curlvdz.

(VE (@) xvy (@) ~ /Q
On other words, the Stokes operator with Navier-type boundary conditions is the
linear mapping A : D,(A) C LY () — LY (), where

(32) D,(A) ={ueW"P(Q); Au e L?(Q), divu =01in Q,

u-n =0, curlu xn = OonI‘}

and Au = —PAu, for all u € D,(A4). We recall that P : LP(Q2) — Lb _(Q) is
the Helmholtz projection defined by, for all f € L?(Q), Pf = f — gradw, where
7 is the unique solution of Problem (2.3).

PROPOSITION 3.1. For allu € D,(A), Au=—Au.
ProOF. Let u € D,(A4), it is clear that Au € H?(div,Q). Moreover since

curlu x n = 0 on I' then we can easily verify that curlcurlu -n = 0 on
['. This means that Au-n = 0 on I'. As a consequence, Au € L? () and
Au = —PAu = —Awu. Notice that here the pressure 7 is a solution of the
problem
: om
Ar =0 in €, — =Au-n=0 on I
on
Thus 7 = Constant and grad 7 = 0 in €. (]

The following two propositions give the density and a regularity property con-
cerning the domain of the Stokes operator.

PROPOSITION 3.2. The space D, (A) is dense in L} _(£2).

PRrOOF. It is clear that D,(2) C D,(A) C LY (). Now, since D, () is
dense in L? _(€2), then D, (A) is dense in Lf _(£2). O
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PROPOSITION 3.3. Suppose that Q is of class C*1, then
(3.3) D,(A) = {u e W?P(Q); divu=0inQ, u-n =0, curluxn =0 on F}.

PRrROOF. Let u € D,(A) and set z = curlu. Then z € LP(Q), divz =0 in Q,
curlz = —Au € LP(Q) and zxn = 0 on T. Thus z € X% (Q) — W'?(Q). Finally
observe that w € LP(Q), curlu € W'?(Q), dive = 0in Qand u-n = Oon .
Thanks to Lemma 2.2, we conclude that w € W?P(Q), which ends the proof. [

REMARK 3.4. (i) Notice that, thanks to Lemmas 2.1 and 2.2, when  is of class
C?! we have
Vu € D,(A), lullwzr@) = lullLe@) + [Aulle o)
(ii) We recall that, thanks to [5, Proposition 4.7], when Q is of class C!, for all
u € Dy(A) such that (u-n, 1), =0, 1< j < J we have
[ullwzr) = [[Au|Le(q).
4. Analyticity results

In this section we will state our main result and its proof. We will prove that
the Stokes operator with Navier-type boundary conditions generates a bounded
analytic semi-group on L} () for all 1 < p < oo. Since the Hilbertian case is
different from the general LP-theory we will treat each case separately.

4.1. The Hilbertian case. Before we state our theorem let us recall the
following lemma:
For all € € ]0, [, let X, be the sector

Se = {AeC |argA| <7 —¢}.
LeEMMA 4.1. Let € € |0, 7[ be fized. There exists a constant Cc > 0 such that
for every positive real numbers a and b one has:

(4.1) YAEN.,  |Aa+ b >C(Ma + b).

Now we want to study the resolvent of the Stokes operator. For that we consider

the problem
(4.2) { Au—Au=f, divu=0 in Q,

u-n=0, curlu xn=20 on I,
where f € LgyT(Q) and X\ € X..

REMARK 4.2. Observe that, Problem (4.2) is equivalent to the problem
(4.3) { Au — Au = f, in €,

u-n =0, curlu xn =0 on TI.
In fact, let w € H'(Q) be the unique solution of Problem (4.3) and set divu = ¥.
It is clear that Ay — Ax = 0 in . Moreover, since f-n=0and u-n=0on I
then Au-n =0 on I'. Notice also that the condition curlu x n = 0 on I' implies
that curlcurlu - n = 0 on I'. Finally since Au = grad(divu) — curl curlu one
gets % =0 on I Thus y =0 in Q and the result is proved.

The following theorem gives the solution of the resolvent of the operator A as
well as a resolvent estimate.
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THEOREM 4.3. Let € € |0, 7] be fized, f € LiT(Q) and A € X..
(i) The Problem (4.2) has a unique solution w € H"(Q).
(i) There ezist a constant C. > 0 independent of f and A such that the solution
u satisfies the estimates

Ci
(4.4) ullg2) < m”f”LZ(Q)
and
!
(4.5) [eurlu||gzq) < ﬁ“f”mmy

(CL =1/C., where C; is the constant in (4.1)).
(i) If Q is of class C*' then w € H?(Q) and satisfies the estimate

C(, A\ e
(4.6) lull ey < anmm,

where C(Q, X,¢e) = C(Q)(CL + 1)(|A| + 1).

REMARK 4.4. We note that for A > 0 the constant C. is equal to 1 and we
recover the m-accretiveness property of the Stokes operator on L7 ().

ProOF. (i) Existence and uniqueness: Consider the space V() given by
(3.1) (for p = 2). Tt is clear that VZ(Q) is a closed subspace of X2(Q) and it is an
Hilbert space for the inner product of X?*(Q). We also recall that on VZ(Q) the
norm of X?2(€) is equivalent to the norm of H'(Q).

Now, consider the variational problem: find w € VZ(Q) such that for any
vEVI(Q)

(4.7) a(u,v) = /Qf-ﬁdx,

where
a(u,v) = )\/ u-vdr +/ curlwu - curlvdz.
Q Q

We can easily verify that a is a continuous sesqui-linear form on V(). For the
coercivity, observe that since \ € 3., thanks to Lemma 4.1 there exists a constant
C. such that

la(v,v)] = |A[|[v][12q) + [lcurlv|Fz g
> Ce (M [[ol72 ) + lleurlolfz )
> Ce min(|A], D)[[v[5z -

Then for all A € ¥, a is a sesqui-linear continuous coercive form on V(). Due
to Lax-Milgram Lemma, Problem (4.7) has a unique solution u € V'(Q) since the
right-hand side belongs to the anti-dual (V2())’.

Now, using the same argument as in the proof of [5, Proposition 4.3] we prove
that the two problems (4.2) and (4.7) are equivalent. Thus we obtain the existence
and the uniqueness of solution to Problem (4.2).

(ii) Estimates: Multiplying the first equation of System (4.2) by @ and inte-
grating both sides one gets

)\/\u|2dx+/|curlu|2dx:/f-ﬁdx.
Q Q Q
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Now as described above, since A € 3, there exists a constant C. = 1/C. such that

MlullZ2 o) + leurlufZaq) < CLAulZ2q) + llcurlul|7: )|
= /f.ﬁdx)
Q
< CLfllezollvllrz@)-

As a result
Ci
ullp2@Q) < m”f”zﬂ(m,
which is estimate (4.4). In addition, it is clear that

leurlul|Z:g) < CLIfllL2@ el @)

C/Z
< ﬁ 1£11Z2 (0

which is estimate (4.5). We recall that C. is the constant in (4.1).
(iii) Regularity: The regularity of the solution is a direct application of Propo-
sition 3.3. Let us prove estimate (4.6). Thanks to (4.4) it is clear that

(4.8) [Aull20) < I1f = Aullr2@) < (CL+1)[|fll2@)-

Now, since ||u||g2q) = |ullr2@) + [[Aul/L2(q) one has estimate (4.6). O
REMARK 4.5. Consider the sesqui-linear form (see [4]):

(4.9) Vu, v € ViQ), a(u,v) = / curlwu - curlodz.
Q

If Q is simply connected, we know that for all v € V2(Q) one has
(4.10) el < C leurl vz o).

As a result, the sesqui-linear form a is coercive and we can apply Lax-Milgram
Lemma to find solution to the problem: find u € V() such that for all v € V2(Q)

a(u,v) :/Qf-ﬁdx,

where f € LiT(Q). This means that the operator A : Ds(A) C L?”(Q) —
L2 () is bijective.

Now, if 2 is multiply-connected, the inequality (4.10) is false. Indeed we intro-
duce the Kernel K2(Q):

(4.11) K2(Q) = {ve X2(Q); divo =0, curlv =0 in Q}.

Thanks to [4, Proposition 3.14] we know that this kernel is not trivial, it is of finite
dimension and it is spanned by the functions g?gd q;, 1 < j < J, where g7 is the
unique solution up to an additive constant of the problem:

—Aq]T =0 in Q°,

Ongj =0 on I,
(4.12) [q}]k = constant, 1 <k < J,
[0ngf], = 0; 1<k <,
<anq;-—, 1>§]k = Ojk, 1 S k S J
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Moreover, thanks to [4, Corollary 3.16], for all v € X?2(Q) we have the following
Poincaré-type inequality:
J
(413)  vllx2(@) < Co@)(leurlv] 2o + ldivollpa@ + 3 (- n, 15, ).
j=1
The following theorem gives us the analyticity of the semi-group generated by
the Stokes operator on L;T(Q).

THEOREM 4.6. The operator —A generates a bounded analytic semi-group on
L2,(9).

ProOF. Thanks to Theorem 2.8 it suffices to prove that — A is sectorial which is
a direct application of Theorem 4.3. We recall that, with the Navier-type boundary
conditions (1.3) the Stokes operator coincides with the —A operator. O

REMARK 4.7. We recall that the restriction of an analytic semi-group to the
non negative real axis is Cy semi-group. Thanks to Remark 4.4 the restriction of
our analytic semi-group to the real axis gives a C( semi-group of contraction.

4.2. LP-theory. We have seen that the Hilbert case can be obtained easily
using Lax-Milgram Lemma. However the general case p # 2 is not as easy as the
particular case p = 2 and demand extra work. In this section we extend Theorem
4.3 to every 1 < p < oo. We start by the existence theorem:

THEOREM 4.8. Let A € C € ¥ and let f € LY _(Q2). The Problem (4.2) has a
unique solution w € W(Q). Moreover, if Q is of class C*' then u € WP(Q).

PROOF. As in [5, Proposition 4.3], we can easily verify that Problem (4.2) is
equivalent to the variational problem: Find u € V2(Q) such that for all v € X’T’/ Q)

)\/u-ﬁdx—&—/curlucurlﬁdx = /f~idx,
Q Q Q

where V2(Q) is given by (3.1). The proof is done in three steps:
(i) Case 2 < p < 6. Let w € H*(Q) be the unique solution of Problem (4.2). We
write Problem (4.2) in the form:

{ —Au=F, divu =0 in €,

(4.14) u-n=0 curluxn=0 on I

where F = f — Au. Thans to the embedding H*(Q) — L”(2) one has F €
L2..(9).

It remains to verify (see [5, Proposition 4.3]) that F' satisfies the compatibility
condition

(4.15) Vo e K?(Q), /F~@dx:0,
Q

where ) /
K2 (Q) = {ve X2 (Q); divv=0, curlv =0in Q}.

To this end let v € Kf/(Q), thanks to Lemma 2.3 one has:
/Foﬁdz = — / Au-vdz = /curlumurlﬁdxf@urluxn, v)r = 0.
Q Q Q

Now applying [5, Proposition 4.3], our solution u belongs to W17 ().
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(ii) Case p > 6. Since f € L°(Q), Problem (4.2) has a unique solution u €
wWh(Q) < L>(Q). Now proceeding in the same way as above one gets that

ue WP (Q).
(iii) Case p < 2. As described above, for p > 2 the operator A\I + A is an

isomorphism from VZ(€) to (Vﬁl(Q))’ . Then the adjoint operator which is equal
to Al + A is an isomorphism from VZT’/ (©) to (VE(Q)) for p’ < 2. This means that,
the operator Al + A is an isomorphism for p < 2, which ends the proof. Notice
that the operator AT + A € L(VE2(Q)), (Vf/(Q))’) is defined by: for all p € V2(Q)),
for all £ € Vﬁl(Q)

(AT + A)p, &) WV @QyxvT Q) = A ng-gdx + /chrlgo-curlgdx.
[

Now, we want to prove a resolvent estimate similar to the estimate (4.4) for all
1 < p < co. But this case is not as obvious as the case p = 2 and the proof will be
done in several steps.

PROPOSITION 4.9. Let A € C* such that Re A > 0 and |\| > Ao, where Ny =
Ao(§2,p) is defined in (4.25). Moreover, let f € LY (S2), where 1 < p < co and let

u € WHP(Q) be the unique solution of Problem (4.2). Then u satisfies the estimate

Kk1(, p
(4.16) lulzr < 5 1l

where the constant k1(), p) is independent of A\ and f. Moreover, for % <p<H4
the constant kq is independent of Q0 and p.

PROOF. Suppose that p > 2, multiplying the first equation of Problem (4.2)
by |u|P~2w and integrating both sides one gets thanks to Lemma 2.5

ulP?2dx

(4.17) )\/|u|pdx + / P2 |V ul?
Q
(p—2) Z/|u|p 4Re — u)Im(a—u~ﬁ>dx
al‘k 81‘k
= /|u|p_2 a—u) ~Hda+/|u|p_2f-ﬂda?.
T on/r Q

Notice that the integral on I' is well defined. In fact, thanks to Lemma 2.6 and to
the boundary conditions satisfied by uw we have (g—:ﬁ) — Z =1 ( u.,.>7']

Moreover, since  is of class C*! then n € W1’°°(F) and since u, belongs to
WI=1PP(D) — LP(T). As aresult ( Z) belongs to LP(T"). In addition, it is clear

that |u|P~%u € whr'(Q (©) and then its trace belongs to Wlfl/p/’p,(f‘) — Lp’(I‘).
Which justify the integral on I'.
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Now observe that
2
(5), ™ = 2 (5w mr

(4.18) =

S

S|
<.

IS
o

Next we put together the two formulas (4
real and the imaginary parts of formula (4.
C11 one gets

7) and (4.18), we study separately the
7) and using the fact that Q is of class

—2
(419) Re)\||u||i,,(9) + /S2 |u|p72|VU‘2dl‘ =+ 4pp72/§; ‘V"U/|p/2‘2dx

< ) [ uP do + | ol
and
p—2
(420) 1Al ) < 257 /|u\p—z\vfu|2dx + C’l(Q)/|u|pd0+
Q

+ 1l el (o)
for some constant C(€2) > 0. Now putting together (4.19) and (4.20) one has

(421) |\l 0 + /Q|u|p_2|Vu\2dx—|— ulP22 d

p—2 - _
<22 [up iV aPde + 2009 [ 7 do + 2]l el
Moreover, thanks to [13, Chapter 1, Theorem 1.5.1.10, page 41] we know that:
(4.22) /|w|2d0 < 5/ Vw|*dz + Ce/ lw|*dz,
r Q Q

for all w € H'(Q) and for all £ € ]0, 1[. Applying formula (4.22) to w = |u[P/? and
substituting in (4.21) one gets

(4.23) Al lwlze(q) +/IUIP 2|V ul? P22 da

< /\ P=2 | Vul?de + 2C1 (2 /|V|u|p/22dx+0/\u|pdx

+2 HfHLm ullg -

We chose ¢ > 0 such that e C1(Q2) = pp_f. As a result the constant C. in (4.23)
depends on p and 2. Then by setting C. = C5(€, p) one has

Al + /Q\u|p—2|vu|2 P2 d s

p—2 - _
< C3(2,p) HuHLP(Q + T/Q|u|p IVul*dz + 2||.f||L”(Q)||u||IJJ:,p(IQ),

where
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We define
(4.25) Ao =2C3(%, p).

Now, for |A| > Ao one has

A -2
% ||u||ip(9) + / lulP"2 |Vul*dz + 2P S / IV [u|P/?)? d 2
Q p Q

p—2 - .
< T/Q|U|P AVul*dz + 2||f||Lp(Q)||u||ip(Q),
In fact we have two different cases.

(i) Case 2 < p < 4. One has

Al 4—p _ p—2
> lullLoq) + 5 Q\u|p 2| Vul2dz + 2 ) IV [ulP/?2dz <

-1
2 £l ool

Thus

4
(4.26) lullLro) < i I Fllze @),
which is the required estimate.

(ii) Case p > 4. We write Problem (4.2) in the form (4.14). Thanks to [5, Propo-
sition 4.3] we have

J

Hu - Z<u ‘n, 1>2_7‘gfr\;dqz‘—||wl.4(g) < C4(Q) ”.f - Au”L“(Q)'
j=1

Thus

J
(427) lullwroe < || w-n, s gradd] [y o + Ca(@) [z +
j=1

+ Ca(Q) (A [l g1 ()-
On the other hand, thanks to [6, Lemma 3.2] and (4.26) we have
C5(2) Cs ()
(u-n, )s;| < C5(Q) [Jullgiq) < TT [ FllLa) < BV 1l La(0)-
As a result, using (4.26) with p = 4 and substituting in (4.27) one gets
[ullwa@) < Cr(Q) | FllLaa)
where C7(Q) = Cg(Q) 2 + 5C4(Q) and [|grad ¢ [ly1.4(0) < Co(92).
Now since W*(Q) — L*°(Q), then

[ullLe@ < Cs@fullwri@) < Cs(Q) Cr( Q) fllLee)
Cs () Cr(Q) (mes Q)P4 f| Lo e,

A

IN

Consequently
(4.28) lullr) < Co() [1fllLr (),
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where
(4.29) Cy(Q) = Cs(Q)Cr(Q) (mes Q)4
Notice that

g = lullor@lulisig
(4.30) < Co( QIS @l o)

Thus proceeding exactly as above and putting together (4.19), (4.22) and (4.30)
one has

-2
Reullt, g + /Q P |V uldz + 2%A\V\u|p/z‘2dx

< (Cs(.0)Co() + V| Fll ooy [l by

As a result one has

(4.31) Re Mul|pr) < Cro(2,p)[1fllzr ),
(4.32) /Q =2 [V ulfdz < Cio(@ )| Fllpoullsln).
and
(4.33) Pdz < Cio(Q,p)IF ]l Lro lullis g,
where
In addition, using (4.20), (4.32) and (4.33) one has
(4.35) Im Al[|wl|Lr ) < C11(2,0) | fllLr)-
Thus putting together (4.31) and (4.35) one gets for p > 4
C12(2,p)
(4.36) ullLr@) < HT I FllLe ),

which ends the case p > 4.
Finally putting together (4.26) and (4.36) we conclude that for p > 2 we have

K1(82 p)

(4.37) ullLr@) < B 11l zr ()
with
(4.38) r£1(Q, p) = max(4, C12(2, p)).
By duality we obtain estimate (4.37) for all 1 < p < co. O

PROPOSITION 4.10. Let A € C* such thatRe A > 0 and 0 < || < Ao, with A\ as
in Proposition ({.9). Moreover, let 1 < p < oo, f € L} () and let u € WhP(Q)
be the unique solution of Problem 4.2. Then u satisfies the estimate

K Q
2650) ) e

R
For some constant k2(Q2, p) independent of A and f.

(4.39) lullLry <
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ProoOF. Thanks to (4.4) with ¢ = 5 we have

Cis3
ullp2@0) < WHfHB(Q)

and
2 0123 2
HCUP]UHLz(Q) < WHf”L?(Q)-
Moreover we know that
||u||i(1(sz) = 014(9)(”““%2(9) + [leurlul|7: )
14 |A|
< 014(9)0123w||f||i2(9)-

Now because |A| < Ag we deduce that

C15(Q
bl < S5 Il
where
(4.40) C15(Q) = Cis/Cra( (1 1 Ao).

In fact we have two different cases.

(i) Case 2 < p < 6. Because H'(Q) — LP(Q) we have

|ullzr@ < Cis(Q,0)|ullar (@
(4.41) < S0 g0y < DD f 10,
where
(4.42) C17(2,p) = (mes Q) P=2/2 C15(Q, p) C16(9).

(ii) Case p > 6. Proceeding in a similar way as in Proposition 4.9 (case p > 4), we
obtain

018(97 p)

(4.43) ullLr@) < A I fllze )

Finally putting together (4.41) and (4.43), we deduce the estimate (4.39) with
(4.44) k2(92, p) = max(C17(2, p) , C1s(2, p)).
(I
As a conclusion of Propositions 4.9 and 4.10 we have the following theorem:

THEOREM 4.11. Let A € C* such that ReA >0, let 1 < p < oo, f € Lt ()

and let uw € WP (Q) be the unique solution of Problem (4.2). Then u satisfies the
estimate

K Qap
(4.45) fullzror < 52 v

where r3(£2, p) = max (k1 (€2, p), £2(€2, p)).
In addition, if Q0 is of class C*' we have the following estimate

Q
(4.46) lcurlul|grq) < ra($hp)

< Il fllze o)
VAl
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and

14X
(4.47) fulwe sy < ws@0) Sl

ProOF. The proof of estimate (4.45) is a conclusion of Propositions 4.9 and
4.10. Let us prove estimate (4.46). The proof is done in two steps.
(i) Case (u-n, 1)s, =0, 1 < j < J. Thanks to [5, Proposition 4.7] we know that
llullwzrq) = [|Aul|Lr (o). Now, using the Gagliardo-Nirenberg inequality (see |2,
Chapter IV, Theorem 4.14, Theorem 4.17] for instance) we have
p) 18w o) Il i)
1/2 1/2

(Q,p)
= CQp) If = Aulgrollullys g
(2,p)

Q
= || fllzr(0)-
VIAl

(ii) General case. Let u € D,(A) be the unique solution of Problem (4.2) and set

lcurlullpr) <

J
u=u-— Z(un, 1)s,gradg;.

Jj=1

As a result, thanks to the previous case we have

_ ~n1/2  ~p1/2
lcurlw||pr ) < C(2,p) ||A“HL/p(Q)”u“L/”(Q)'
Thus
_ ~i1/2 i~ 1/2 2 a2
[curlul| e (o) = [lcurlul|Lr o) < HAUHL/P(Q Il ”L/P (i ”AuHL/p(Q I HL/F(Q

Moreover, thanks to [6, Lemma 3.2] we know that

ullzr @) < C(Q,p) [[ullLr)-

As a consequence we deduce estimate (4.46).

Finally, when  is of class C*', on D, (A) the norm of W*?(Q) is equivalent
to the graph norm of the Stokes operator with Navier-type boundary conditions
(1.3). As a result when has estimate (4.47). O

As in the Hilbertian case, Proposition 3.2 and Theorems 4.8 allow us to deduce
the analyticity of the semi-group generated by the Stokes operator with Navier-type
boundary conditions on LY _(2).

THEOREM 4.12. The operator —A generates a bounded analytic semigroup on
LY (Q) for all 1 <p < co.

ProOF. The proof is a direct application of Proposition 2.9 with w = 0. In
fact, thanks to Proposition 3.2 and Theorems 4.8 and 4.11 the operator — A satisfies
the assumptions of Proposition 2.9. This justify the analyticity of the semi-group
generated by the operator —A on L? _(Q) for all 1 < p < oo. O

REMARK 4.13. Notice that, unlike the Hilbertian case, we can not use the result
of [8, Chapter II, Theorem 4.6, page 101] to prove the analyticity of the semi-group
generated by the Stokes operator in the LP-space where we have supposed that
Re )\ > 0.
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REMARK 4.14. Consider the two problems:

Au—Au=f, divu=0 in Q,
(4.48) { uxn=0 on I
and
Au—Au + Vo= f, divu =0 in Q,
(4.49) { u-n=0, Du-n]. =0 on T,

where A € C* is such that Re A > 0 and f € L2(Q) (respectively f € LY _(Q) ).

In a forthcoming two papers we will study the two Problems (4.48) and (4.49).
In fact, proceeding in a similar way as in Theorem 4.8 and Propositions 4.9 and 4.10
we prove that these two Problems have a unique solution u € W'? () (respectively
(u, ) € WHP(Q) x WHP(Q)/R) that satisfy the estimate

C(,p)
[ullLr @) < ) I fllze)-

Moreover when € is of class C%', we have u € W?P(Q). This means that the
Laplacian operator with normal boundary conditions and the Stokes operator with
Navier boundary conditions generate a bounded analytic semi-group on L?(£2) and
L? _(9Q) respectively .

" This analyticity allows us to solve the evolutionary Stokes Problem with normal
boundary condition and pressure boundary condition:

% _Au+Vr=f, divu=0 in Qx(0,7),

(4.50) uxn=0, T=0 on I'x (0, T
u(0) =uo in Q,

as well as the evolutionary Stokes Problem (1.1) with Navier-boundary condition

(1.2) for a given f € L9(0,T; L?(2)) and ug € L5 (Q) (respectively ug € LY _(Q2)).

5. Stokes operator with flux boundary conditions

In this section we will also consider the Stokes operator associated to Problem
(4.2) but with adding an extra boundary condition which is the flux through the
cuts ¥;, 1 < j < J. This last condition enables the Stokes operator to be invertible
with bounded and compact inverse.

Consider the space

(5.1) X, = {f € L2 (; /Qf.wxzo, Ve K7 (@)

(do not confuse between this space and the space X?(2) defined in the subsection
2.1).
Next, we define the operator A’ : D,(A4’") C X, — X, by:

D, (A) = {u € Dy(4); (u-m, Iy, =0, 1<j<J}

and A'u = Au, for all u € D,y(A4’). On other words, the operator A’ is the
restriction of the Stokes operator to the space X,,. It is clear that when €2 is simply
connected the Stokes operator A coincides with the operator A’.

REMARK 5.1. Let u € L} (Q), it is important to know that (see |6, Lemma

3.2, Corollary 3.4]) the condition [, u -wdxz =0 for all v € Kﬁ,(Q) is equivalent
to the condition (u-n, 1)y, =0, 1 <j < J.



20 HIND AL BABA, CHERIF AMROUCHE, AND MIGUEL ESCOBEDO

PROPOSITION 5.2. The operator A’ is a well defined operator of dense domain.

ProoF. Thanks to Remark 5.1 it is clear that D, (A’) C X . Moreover, using
Lemma 2.3 we can easily verify that for all v € KIT’/(Q), JoAu-vdz = 0. As a
result A’u € X, and A’ is a well defined operator.

Now, for the density, let w € L% _(2) such that (w-mn, 1)s, =0 for all 1 <
j < J. We know that there exists a sequence (wy )i in D, () such that w, — w
in L”(2). As a consequence for all 1 < j < J, (wy-n, l)s, — (w-n, 1)s, =0,
as k — +oo. -

Now for all k € N, setting wy = wy — Zj:1<wk ‘n, )y, gradq]. We can easily
verify that (wy)y is in D,(A’) and converges to w in L¥(Q). O

Now we will study the resolvent of the operator A’. For this reason we consider
the problem

Au — Au = f, divu =0 in Q,
(5.2) u-n =0, curlu xn =0 on I,
(u-n,l)E].:O, 1§.7§Ja

where A € C* such that ReA > 0 and f € X,. We skip the proof of the following
theorem because it is similar to the proof of [5, Proposition 4.3], Theorem 4.8 and
4.11.

THEOREM 5.3. Let A € C* such that ReA > 0 and f € X,,. The Problem (5.2)
has a unique solution w € WP(Q) that satisfies the estimates (4.45)-(4.46). In
addition, when Q is of class C*' the solution u belongs to W*P(Q) and satisfies
the estimate

(5.3) [ulw2r@) < C(Qp) [ fllLr @),
where C(Q,p) is independent of A and f.

As a result we have the following theorem

THEOREM 5.4. The operator —A’ generates a bounded analytic semi-group on
X, foralll <p < oo.

REMARK 5.5. Let (S(t))i>0 be the semi-group generated by —A’ on X,. We
notice that S(t) = T'(t),x, where (T(t)):>0 is the analytic semi-group generated by
the operator —A on L} ().
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