
Growth, charge and thermal transport of flowered

graphene
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Abstract

We report on the structural and transport properties of the smallest disloca-

tion loop in graphene, known as a flower defect. First, by means of advanced

experimental imaging techniques, we deduce how flower defects are formed dur-

ing recrystallization of chemical vapor deposited graphene. We propose that

the flower defects arise from a bulge type mechanism in which the flower do-

mains are the grains left over by the dynamic recrystallisation. Next, in order

to evaluate the use of such defects as possible building blocks for all-graphene

electronics, we combine multiscale modeling tools to investigate the structure

and the electron and phonon transport properties of large monolayer graphene

samples with a random distribution of flower defects. For large enough flower

densities, we find that electron transport is strongly suppressed while, surpris-

ingly, hole transport remains almost unaffected. These results suggest possible

applications of flowered graphene for electron energy filtering. For the same

defect densities, phonon transport is reduced by orders of magnitude as elastic

scattering by defects becomes dominant. Heat transport by flexural phonons,
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key in graphene, is largely suppressed even for very low concentrations.

1. Introduction

Since its discovery [1], graphene has sparkled an incredible amount of inter-

est for a large spectrum of potential applications [2] including electronics [3],

flexible optoelectronics [4], spintronics [5], metrology [6, 7] and more exotic

valleytronics [8, 9]. Some of these applications, e.g. the definition of a resis-

tance standard [10] or the realization of radio frequency transistors [11, 12] and

light-emitting diodes [13], are already reality and are pushing the industrial re-

search on graphene. Other applications are still remote. In particular, the use

of graphene for digital electronics is compromised by the absence of band gap,

which limits the on/off ratio in field-effect transistors in spite of the high mobil-

ity of graphene. Proposals to open a band or mobility gap include confinement

in nanoribbons [14], doping [15, 16] and use of biased [17, 18] bilayer graphene.

To date, however, none of these solutions has proven to be effective due to the

narrowness of the gap or the excessive degradation of the charge mobility. An-

other critical issue for applications is the large scale production of high-quality

monolayer graphene. In this respect, the growth by chemical vapor deposi-

tion (CVD) [19] represents a booster for graphene industrialization, and a great

opportunity to explore new physics, especially related to topological defects.

Indeed, polycrystalline domains, grain boundaries, dislocations and line defects

are typical imperfections of CVD graphene [20, 21, 22, 23, 24, 25, 26, 27, 28],

which can strongly affect its transport properties [29, 30, 31, 32, 33] depending

on the boundary morphology [34]. However, this limitation can be turned into

an opportunity if, properly engineered, such defects [35, 36, 37, 38, 39, 28, 40]

are exploited to induce phenomena, as valley filtering [41], of great fundamen-

tal and potentially technological interest. The increased chemical reactivity of

these extended line defects can also find application in gas [42] or ion [43] sen-

sors. Thermal management is another critical aspect of nanodevice design, so

it comes as no surprise that the unique thermal transport properties of gra-

2



phene have also attracted great attention [44]. Pristine graphene exhibits ex-

traordinarily high thermal conductivity (with room temperature values in the

3000-5000 Wm−1K−1 range) [45, 46, 47]. In pristine systems, the main phonon

scattering mechanism is anharmonicity, manifested in three-phonon processes,

and graphene owes its high thermal conductivity to the high density of states of

its flexural phonon branch at low energies, together with a symmetry-induced se-

lection rule for three-phonon scattering processes [48]. Several theoretical stud-

ies have also addressed the broader problem of thermal transport in defected

graphene [49, 50, 51, 52, 53, 54, 55] and graphene nanostructures [56, 57, 58].

However, in general those studies use either classical molecular dynamics or

simple parametric models, both of which fail to give a detailed insight into the

phonon physics underpinning the complex transport behavior in these systems.

In this work, we combine experimental imaging techniques – high-resolution

transmission electron microscopy (HRTEM) – and advanced modeling tools —

density functional theory (DFT), Green’s function techniques and Boltzmann

transport equation — to investigate the structure and the electron and phonon

transport properties of graphene with flower defects. A flower defect [20, 21]

can be seen as a 30◦ rotation of a group of seven carbon rings around the

central ring (see fig. 2(e)). It represents the smallest possible grain boundary

loop in graphene and has been envisioned to be exploited as building block

for all-graphene nanoelectronics [59] and spintronics [60]. It is thus crucial

to estimate the impact of this kind of topological defects on the electron and

phonon transport properties of CVD graphene, and to understand the related

physics, which could potentially lead to original applications.

While flower defects do not break the sp2 hybridization of the carbon atoms

involved, they do introduce pentagonal and heptagonal rings, which break the

sublattice symmetry of graphene. Therefore, as demonstrated in the rest of

the paper, they are expected to strongly affect the transport properties and

introduce an electron-hole asymmetry. While the literature mainly focuses on

isolated defects, here we consider random defect distributions over large samples,

thus providing a more realistic characterization of their expected behavior.
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The paper is organized as follows. Section 2 illustrates some HRTEM mea-

surements of CVD graphene [61], and provides experimental evidence of the

presence of flower defects in our samples as well as a possible mechanism behind

their growth in our sample. In the same section, we show ab initio calculations

to study their energetic stability. Triangular aggregates of flowers are also in-

vestigated. In Sec. 3, we investigate the electron (Sec. 3.1) and the phonon

(Sec. 3.2) transport properties of flowered graphene, and provide an insight into

the related physics. In particular, we show that a high density of flowers can

open a transport gap for electrons, while surprisingly leaving the hole transmis-

sion almost unaffected. Additionally, a prospective application of our results,

which mainly relies on the opening of a transport gap for electrons and on the

future possibility of engineering the flower defects by a controlled recrystalliza-

tion of graphene, is discussed. Also, the thermal conductance turns out to be

strongly affected and shows a peculiar plateau for moderate defect concentra-

tions, before being strongly suppressed for higher concentrations. Finally, Sec. 4

summarizes our results. The details of our models and simulations are given in

the methodology Sec. 5.

2. Structural properties and growth mechanism of flower defects

Flower defects have been observed few years ago by means of both scan-

ning tunneling microscopy (STM) [59, 62] and HRTEM [36]. For graphene

over metal, their occurrence was scarce and attributed to a localized dissolu-

tion mechanism when the graphene was further heated on its growth metal

support [59]. For graphene on SiC, the growth mechanism of flower remains

still unknown [62, 63]. Recently, we have reported the recrystallization of gra-

phene monolayers grown by CVD on platinum [61]. Interestingly, these samples

present many flower-related defects as highlighted by the red circles on a large

area depicted in fig. 1(a) by means of HRTEM. These flower-related defects are

in fact rotated graphene domains as evidenced by a numerical dark-field image

(lower panel in fig. 1(a)) realized by selecting one of the two existing orienta-

tions (top panel in fig. 1(a)). Flower defects are observed together with larger
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Figure 1: (a) HRTEM image of CVD graphene with misoriented domains showing
flower-related defects circled in red on both side of the grain boundary (yellow line). In-
sets: Fast Fourier Transform (FFT) of the figure in panel (a) and dark-field image of numeri-
cally selected domain oriented in A direction shown in FFT. (b) Identification of a graphene
bulge corresponding to stage III in the sketched bulge nucleation mechanism. Pentagons and
heptagons are highlighted in green and magenta respectively.

domains (closer view are depicted in fig. 2(a-d)). The two main characteristics

of these domains are, firstly, a 30◦ rotation of the inside with respect to the

outside graphene matrix, and, secondly, a continuous grain boundary made of
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alternating pentagon-heptagon 5-7 pairs. The higher stability for such contin-

uous close loops has been predicted by Cockayne et al. [21] and is consistent

with our observations. These domains were formed during the recrystallization

process of nano-crystalline graphene driven by atomic hydrogen, which we have

ascribed to enhanced migration of the grain boundary in ref. [61]. However, due

to a weaker interaction of graphene with platinum [64], the formation of the

flower defects on platinum cannot be attributed to a dissolution mechanism as

proposed by Yan et al. [59] for rhodium-supported graphene.

In the present growth conditions, we suggest that the flowers origin from

a bulge nucleation mechanism, analogous to that often observed in dynamic

crystallization under strain in geosciences [65, 66]. This mechanisms is well

documented and it consists of the four main stages [67] reported in the left end-

side of fig. 1(b). One of the main features of this mechanism is the presence of

serrated grain boundaries and left over grains once the process has completed

stage IV [66]. Due to their dynamic character, stages II and III are rarely

observed. The proposed driving force for the bulging mechanism is the presence

of strain during the growth and nucleation in the dynamic recrystallization.

By analogy, we propose that the flower defects arise from a similar bulge

mechanism in which the flower domain would be the grains left over by the

dynamic recrystallisation. In the case of our growth process, strain could be

provided by the polycrystallinity of the Pt support. Indeed, such a polycrys-

talline support is expected to induce a distribution of lattice mismatches with

the grown graphene film, which only displays two orientations [61]. The first

analogy with the bulge mechanism is the presence of a characteristic serrated

grain boundary between two graphene grains misoriented by 30◦. This grain

boundary is partially hidden by some amorphous carbon, but can be revealed

(yellow line in fig. 1(a)) using the numerical dark-field technique illustrated in

the lower inset of the figure. Such serrated grain boundaries are typical of dy-

namic recrystallization under strain [66] and are observed in a large area of our

graphene sample (see also large scale dark field image in figure 3c-d of ref. [61]).

This serrated character is uncommon in CVD-grown graphene, where grains
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usually have a polygonal geometry.

As a further analogy, we report an almost complete graphene bulge in

fig. 1(b), corresponding to stage III in our sketched mechanism. Unfortu-

nately, the right end side grain is hidden by amorphous carbon. Yet, we can

clearly identify the characteristic bottleneck that is about to close thus leaving

a flower-related defect in the bottom grain (stage IV). It is also worth noticing

that the presence of kinks in the grain boundary [68] is an additional clue for

the mobility of the latter. In summary, the many flower-related defects present

in our recrystallized sample can be seen as the left over grains by the dynamics

recrystallization with a bulge nucleation.

Although the flower-related defects are supposedly driven by the aforemen-

tioned kinetic process, we have evaluated their stability by calculating their

formation energy for increasing size by means of DFT. This is done by us-

ing the flower defect as a stencil for the shape of the rotated domain inside

the graphene matrix. The bare calculated double flower defect is depicted in

fig. 2(g). The interesting double flower with two vacancies that is observed in

our sample is found to be more stable than the full double flower (fig. 2(b)

and (f), respectively) by 1.2 eV. It is worth noticing that such double flower

defects (with or without vacancies) might be related to the conjoined-twin de-

fect observed by STM [63] in graphene grown on SiC at high temperatures.

For three-flowers defects, we find that the most favorable domains present a

triangular shape (fig. 2(h)), as it reduces the number of 5-7 pairs with respect

to a linear arrangement. Such triangular domains are indeed observed in our

samples (fig. 2(d)). We thus decide to keep this triangular shape while increas-

ing the size of the domain to allow a direct comparison as a function of size.

The calculated formation energies are 7.0, 14.6, 22.3 and 29.8 eV for the four

considered triangular domains, Tn, n being the number of flower units along

an edge of the triangle (see fig. 2(i)). The Stone-Wales [69], being the smallest

rotated domain [21], can be considered in the series as T0 and its formation

energy is 4.8 eV. The formation energy for n > 1 scales almost linearly with n

and with the number of 5-7 pairs, and costs roughly 1.2 eV per pair. So, from a
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Figure 2: (a-d) Experimental flower-related defects of increasing size. (e-h) DFT calculated
flower-related defects of increasing size: unitary flower T1 (e), double flowers with vacancies (f)
and raw (g), and the triple flower T2 (h). Pentagons and heptagons are highlighted in green
and magenta, respectively, in both series. (i) Series of triangular based domain Tn (see text).
The different colors correspond to the different orientations of graphene inside (blue) or outside
(red) the domain. The formation energy per pairs of 5-7 is 2.38, 1.17, 1.21, 1.24 and 1.24 eV
for the depicted Tn series.

thermodynamic point of view, small and compact domains are expected to be

more stable as larger domains imply more 5-7 dislocation cores. The unitary

flower T1 is the most stable of the series by few meV (fig. 2(i)) in agreement

with its observation at equilibrium growth conditions [59, 62, 63].

In the following sections, only the smallest triangular domains will be con-

sidered. The use of the Stone-Wales, T0, the unitary flowers, T1, and the triple

flowers, T2, will be evaluated as possible building blocks for tuning the electron

and phonon transport in all-graphene devices. Although it is beyond the scope

of the present work, we indeed envision that our proposition of a bulge mecha-

nism during recrystallisation could guide future process development aiming to
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tailor the flower defects. The obvious control parameters to achieve such a goal

are: initial grain size, strain level and temperature.

3. Transport properties of flowered graphene

3.1. Electron transport properties

To investigate the electron transport properties of flowered graphene, we

consider a first-neighbor tight-binding model for the system and perform sim-

ulations based on the non-equilibrium Green’s function approach, as described

more in detail in Sec. 5.3.

As a model system, we consider an armchair ribbon with width W = 50 nm

and a random distribution of flowers with number densities in the range ρ =

1011 − 1013 cm−2 over a section of length L = 250 nm. Such a ribbon is large

enough to allow the observation of the relevant physics of flowered graphene.

In order to draw more general conclusions, we consider an ensemble of random

disordered configurations, whose number is selected depending on the quantity

we are interested in.

Figure 3(a) reports the differential conductance G for pristine and flowered

ribbons as a function of the chemical potential µ and at temperature T = 300 K.

The conductance is averaged over an ensemble of 50 random realizations of

disorder. We observe a marked electron-hole asymmetry around µ = 0, which

is the consequence of the sublattice symmetry breaking due to the presence of

odd-numbered rings in the flower defects. More specifically, the results show

three different behaviors depending on the chemical potential. For holes close

to the charge neutrality point (−0.4 eV < µ < 0), the conductance is scarcely

affected by flowers, and it is close to that of the pristine ribbon, at least for

ρ . 1012 cm−2. For electrons close to the charge neutrality point and when

increasing the flower concentration to ρ = 1012 cm−2, a transport gap develops

for chemical potentials up to ∼ 0.2 eV. For higher concentrations, the gap

further enlarges. The opening of an electron transport gap together with the

preservation of the hole conductance is a striking result that provides a possible

way to turn graphene into a semiconductor. For energies far away from the
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Figure 3: (a) Conductance of monolayer graphene armchair ribbons with width W = 50 nm
and varying concentration ρ of flower defects over a section with length L = 250 nm at a tem-
perature of 300 K. (b) Average conductance as a function of the flower concentration for se-
lected electron energies E = −0.35 eV, 0.2 eV and 0.5 eV, corresponding to the quasi-ballistic,
localized and diffusive regimes. The averaged is performed over 50 random realizations of dis-
order. (c) Frequency distribution of the transport coefficients (over 1000 random realizations
of disorder) at E = −0.35 eV (quasi-ballistic regime) for ρ = 1012 cm−2 and 3× 1012 cm−2.
(d) Same as (c) at E = 0.2 eV (localized regime). (e) Same as (c) at E = 0.5 eV (diffusive
regime).

charge neutrality point, the conductance decreases more moderately and in a

fairly electron-hole symmetric way.

In what follows, we examine these regimes more deeply. We select three

representative chemical potentials, namely µ = −0.35 eV, µ = 0.2 eV and

µ = 0.5 eV. Figure 3(b) shows the corresponding conductance as a function of
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the flower density. For µ = −0.35 eV the conductance does not vary signifi-

cantly, meaning that the electron scattering induced by flowers is very moder-

ate and that transport is quasi-ballistic. This conclusion is supported by the

frequency distribution of the transmission coefficient T at the electron energy

E = −0.35 eV for ρ = 1012 cm−2 and 3 × 1012 cm−2, see fig. 3(c). Here, the

width of the distribution ∆T is much smaller than the average conductance

〈T 〉, where 〈...〉 indicates the average over the ensemble of 1000 disordered con-

figurations.

For µ = 0.2 eV, the conductance as a function of the flower concentration

decreases faster than 1/ρ, even at small densities. This suggests that scattering

is beyond the dilute limit and impurities couple to give rise to localized states.

Again, this is confirmed by the frequency distribution for the transmission co-

efficients, see fig. 3(d). In this case, the distribution is strongly peaked at low T

with ∆T /〈T 〉 > 1. At the same time, the distribution of log T is Gaussian, with

∆(log T )/〈log T 〉 < 1. This behavior indicates a localized transport regime [70].

A further analysis of the data (not shown here) confirms that the typical scaling

law of the localized transport regime holds

〈log T (L)〉 = T (L = 0) exp(−L/ξ) , (1)

where the localization length is ξ ≈ 60 nm for ρ = 1012 cm−2, and ξ ≈ 25 nm

for ρ = 3× 1012 cm−2.

Finally, for µ = 0.5 eV, the average conductance decreases as 1/ρ up to

almost ρ ≈ 3 × 1012 cm−2, thus suggesting a diffusive transport regime. This

is confirmed by the Gaussian distribution of the transport coefficients (with

∆T /〈T 〉 < 1) as reported in fig. 3(e), and by the scaling law

〈T (L)〉 = T (L = 0)
ℓ

L+ ℓ
, (2)

where the mean free path is ℓ ≈ 35 nm for ρ = 1012 cm−2. At higher con-

centrations, the average conductance decays faster than 1/ρ, thus indicating a

transition to the localized regime and explaining the widening of the transport

gap at higher energies, as observed in fig. 3(a). Indeed, for ρ = 3 × 1012 cm−2
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Figure 4: (a) Density of states per atom as a function of the energy for pristine and flowered
(ρ = 3 × 1012 cm−2) 50-nm-wide ribbons. (b) Local variation of the density of states (top)
and local spectral current intensity (bottom) at E = −0.35 eV, indicated by a yellow dot in
(a). (c) The same as (b) at E = 0.2 eV, indicated by a green dot in (a). (d) Same as (b) at
E = 0.5 eV, indicated by a magenta dot in (a).

the transport regime is in between localized and diffusive, with ξ ≈ 147 nm and

ℓ ≈ 4 nm.

A further physical insight into these results can be gained by looking at the

density of states (DoS). Figure 4(a) shows the DoS as a function of the energy

for a 50-nm-wide ribbon in the absence and in the presence of flowers with a

density ρ = 3 × 1012 cm−2. A single realization of disorder is considered. For

holes, the density of states is only marginally affected by flowers. This explains

why the hole conductance is very robust against the presence of flowers. On the

contrary, for electrons, the density of states is strongly modified with respect

to the pristine case. The appearance of many additional spikes indicates the

formation of (more or less localized) states, which explains why the electron

conductance is more strongly affected by flowers. To further substantiate this

picture, we analyze the local density of states and the local distribution of the

spectral currents at the three representative energies E = −0.35 eV, E = 0.2 eV

and E = 0.5 eV. The top panels of figs. 4(b-d) illustrate the variation of the local

density of states of the disordered system with respect to the pristine system.

The blue regions correspond to a depletion of states (the deep blue indicates
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a variation -100%, i.e. a local DoS close to 0). The red regions indicate an

increase of the local DoS up to 100%. Finally, the DoS is very high in the

green regions. The bottom panels of figs. 4(b-d) illustrate the local spectral

electron current that flows along the ribbon, varying from blue (low currents)

to red (high currents). In the quasiballistic regime, see fig. 4(b), the DoS varies

more significantly on the flowers, but very weakly in the regions between them.

As a consequence, transport is scarcely affected, as we can see from the fairly

homogeneous distribution of the spectral currents. In the localized regime, see

fig. 4(c), the DoS is strongly enhanced around the flowers and suppressed in

the rest of the system, thus reducing available states for transport. Therefore,

the electron propagation is made difficult and indeed strongly suppressed. This

is clearly seen from the local distribution of spectral currents, where electrons

appear to circulate in the high-DoS regions without being able to cross the

low-DoS areas. Finally, in the diffusive regime, see fig. 4(d), irregular varia-

tions of the DoS in the region between the defects are present, thus introducing

scattering for electrons. Accordingly, the spectral current is fragmented. Note

that a periodic arrangement of the defects to form a single and ordered grain

boundary would, on the contrary, give rise to extended states with enhanced

conductance [71]. For the sake of completeness, we add that in the case of larger

flowers (T2, T3 and T4) the behavior of the three transport regimes is very sim-

ilar. From the results (not show here), we find that the energy ranges where the

transport regime is quasi-ballistic or localized slightly narrow with the flower

size, while the diffusive regimes show a transmission coefficient that scales as

the flower perimeter, i.e. proportionally to the number of pentagon/heptagon

carbon rings.

As shown above, for high flower density, the asymmetric transport gap acts

as a filter that backscatters electrons and lets holes flow. This phenomenon could

be exploited to open conductive paths for electrons in graphene by selectively

placing flowers in certain regions. Electrons (E > 0) will be free to flow in

the clean regions, while they will hardly penetrate the flowered regions. We

test this idea by simulating electron transport in our W = 50 nm wide armchair
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ribbon with a flower concentration ρ = 5 × 1012 cm−2 (over a length L =

250 nm) and a flower-free pristine region along the ribbon axis and with different

widths WP varying in the range [0,30] nm, see fig. 5(a). Note that the edges

of the flower-free regions are rough, since they are defined by the irregular

interface with the flowered region. The resulting conductance is reported in

the main panel of fig. 5b for individual disordered configurations. We observe

that it decreases roughly linearly with WP, as expected, but it is far from being

quantized. Indeed, the conductance of a WP = 20 nm ribbon defined by flower

defects is about one third that of the equivalent pristine ribbon of width W =

WP = 20 nm, see the dashed line in fig. 5(b). This is due to the fact that the

current can penetrate the disordered flowered regions that define the edges of

the clean channel, which results in something analogous to edge roughness [72,

73, 74, 75].

To better elucidate this behavior, fig. 5(c) shows the spatial distribution of

spectral currents at E = 0.2 eV and for WP = 20 nm. We can clearly observe

that electron flow is almost confined in the flower-free channel. However, elec-

trons are scattered by the rough edges of the channel and can partly penetrate

the flowered region.

The impact of roughness is expected to be more important for narrow rib-

bons, where the disordered edge area is large and comparable to the clean inner

area. This is demonstrated by the inset of fig. 5(b), which reports the conduc-

tance of the system at E = 0.2 eV as a function of the pristine channel width

WP and averaged over 1000 disordered configurations. We observe that the

transmission is strongly suppressed up to about WP = 15 nm, and then is starts

increasing more significantly when increasing WP.

We can conclude that the engineering of flower defects could enable their

exploitation to create conductive paths in 2D graphene for future all-graphene

circuits. However, due to the intrinsically rough definition of the edges, the

conductance of the conductive paths, especially if narrow, would be lower than

the corresponding pristine system, with large defect-dependent variability and

possible residual current penetration in the disordered region.
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flowered region

flowered region

pristine region

L

Figure 5: (a) Sketch of the simulated system constituted of a ribbon with width W with a flow-
ered region of length L and a pristine flower-free channel with widthWP. (b) Zero-temperature
conductance for a ribbon of width W = 50 nm, with flower impurities distributed over a length
L = 250 nm with concentration ρ = 5 × 1012 cm−2 and with a flower-free central stripe of
width WP in the range [0,30] nm. Inset: Average zero-temperature conductance at E = 0.2 eV
and as a function of the flower-free channel width WP. An ensemble of 1000 random configu-
rations was considered. (c) Spectral current distribution for WP = 5 nm at E = 0.2 eV.

3.2. Thermal transport properties

Next, we study the effect on flower defects and related crystallographic im-

perfections on the thermal conductivity of graphene from a solution of the

Boltzmann-Peierls transport equation for phonons. Under the relaxation-time

approximation, the thermal conductivity tensor can be expressed as [76]:

κ(µν) =
1

kBT 2V

∑

λ

nλ (nλ + 1) (~ωλ)
2
v
(µ)
λ v

(ν)
λ τλ, (3)

where µ and ν are Cartesian indices, λ is a combined mode index denoting a

phonon wave vector q and a phonon branch index α, V is the volume of the unit

cell, and ωλ, vλ and τλ are the angular frequency, group velocity and relaxation

time of mode λ, respectively. The sum
∑

λ stands for the combination of a

literal sum over branches and an average over the Brillouin zone. Due to the
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symmetries of pristine graphene, the tensor κ is isotropic and can be treated

as a scalar κ. Addition of defects does not change this fact as long as their

orientations are symmetrically distributed.

We employ first-principles calculations to characterize the phonon spectrum

and the intrinsic scattering rates of graphene [76]. We then use Green’s function

methods as implemented in the almaBTE package [77, 78, 79] to obtain the

elastic contribution of the defects to the total τ−1
λ for each mode. We treat the

perturbation introduced into the interatomic force constants by the defects by

using a semiempirical potential specifically designed for thermal conductivity

calculations [80]. This combination of first-principles calculations for inelastic

scattering and semiempirical potentials for elastic scattering has been shown to

afford ab-initio-like accuracy in previous studies [81]. All relevant details are

provided in Sec. 5.4.

We compare the effects of three different kinds of crystallographic imperfec-

tions: Stone-Wales (T0) [69], unitary flower (T1) and triple flower (T2) defects.

Conceptually speaking, all three can be considered as particular cases of topo-

logical defects comprising a perimeter of pentagons and heptagons that enclose

a finite core of hexagonal graphene cells with lattice axes at 90◦ with respect

to those of the main lattice. In the T0 case, there is no core and the perimeter

contains two heptagons and two pentagons. On the other hand, each T1 and T2

defect contains 19 and 52 graphene rings, respectively, considering both their

cores and their perimeters.

Figure 6 shows how the room-temperature thermal conductivity of graphene

is reduced by different concentrations of such defects. The top and bottom pan-

els represent the same data, but with concentration quantified in two different

ways. The horizontal axis in the top panel represents the numerical density

of defects regardless of their size, while in the bottom panel it represents the

numerical density of graphene rings making up the defects.

A salient feature of all curves in fig. 6 is the plateau at intermediate concen-

trations, which interrupts the otherwise monotonic decrease of κ with increasing

defect concentration. This turns out to be a manifestation of the peculiar physics

16



of phonons in graphene and the singular importance of the flexural branch for

transport. As illustrated in fig. 7, the intrinsic scattering rates for the flexural

branch are substantially smaller than those of the other branches, and show

a steeper dependence on the frequency for low energies. This is a result of

the quadratic dispersion of that branch [82] and the aforementioned symmetry-

induced selection rule for three-phonon scattering processes [48]. Moreover, the

elastic scattering rates for the flexural branch are higher than those for the

others and decay much more slowly when the frequency approaches zero, a phe-

nomenon also observed in other 2D calculations [78]. Hence, as more defects

are introduced, the elastic contribution to scattering rates first becomes compa-

rable to the intrinsic scattering rates for this flexural branch, thus significantly

reducing its contribution to thermal transport. The presence of an interval of

concentrations where elastic scattering is strong enough to drastically suppress

the thermal transport by the low-frequency region of the flexural branch, but

not enough to be relevant for all other branches, is the reason for the plateaus

of fig. 6.

Another conclusion to be drawn from the thermal conductivity vs. concen-

tration curves concerns the scattering efficiency of each kind of defect. Elastic

phonon scattering comes about as a result of a breakdown of strict periodicity

in the crystal, and hence it could be expected that larger crystallographic im-

perfections lead to stronger phonon scattering. However, it can be seen from the

top panel of fig. 6 that the situation is more nuanced. In the high-concentration

regime, where elastic scattering significantly affects all phonon branches, the

order is exactly as would be expected from this simplistic argument, but for

concentrations below the conductivity plateau each T0 defect scatters phonons

more intensely than a T1 defect in spite of its smaller size. This goes to show

that the scattering intensity depends on the fine details of the coupling between

the propagating vibrational modes in the crystal and the more localized ones

around the defect, which can still be significantly more extended than the de-

fect itself. The point becomes even clearer in fig. 6(b), where the horizontal axis

represents the fraction of the area of the graphene layer covered by defects and
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Figure 6: Room-temperature thermal conductivity of a monolayer graphene sample with
varying concentration of T0, T1 or T2 defects as a function of (a) the number density of
defects or (b) the number density of rings contained in the defects.

which reveals that, on a hexagon-by-hexagon basis, the Stone-Wales defect T0

is more efficient at scattering phonons than any of the other two. The effect

is comparable to classical results on phonon scattering by spherical nanoparti-

cles [83], which show a transition from the Rayleigh to the geometrical limits
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Figure 7: Computed intrinsic anharmonic scattering rates for phonons in graphene at
T = 300 K alongside the elastic scattering rates corresponding to a number density of T1

defects ρ0 = 1010 cm−2.

(with the corresponding reduction in scattering efficiency per unit volume of the

defect) as the particle size is increased. In other words, the agglomeration of

defect-laden unit cells reduces their effect on phonon propagation as compared

with the same number of independent scatterers. Interestingly, the triple flower

(T2) is still a more efficient phonon scatterer than T1, maybe because of the

breakdown of in-plane inversion symmetry it entails.

We also note that for the kind of concentrations considered in previous sec-

tions (ρ = 1011 − 1013 cm−2), defects reduce the thermal conductivity of gra-

phene by up to two orders of magnitude by dramatically depressing the contri-
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butions from all the acoustic branches. Such an effect can be interesting with a

view to thermoelectric energy generation.

4. Conclusion

To summarize, we investigated the structural and transport properties of

flowered graphene. Our study of the structural properties of flower defects by

high-resolution transmission electron microscopy and ab initio simulation al-

lowed us to propose a new mechanism underlying their growth. Our findings

represent a first step toward the future development of experimental techniques

to control the flower density and position by controlling the bulge nucleation

mechanism that we identified during the recrystallization process. The simula-

tion of electron transport in large flowered graphene samples revealed a strongly

asymmetric conductance, with a large transmission coefficient for holes and the

development of a transport gap for electrons. Such an asymmetry origins from

the presence of odd-numbered carbon rings, which break the sublattice symme-

try of graphene. We analyzed the resulting quasi-ballistic, diffusive and localized

transport regimes and described them in terms of local density of states, local

spectral current distribution and frequency distribution of the transmission co-

efficient for a large ensemble of disordered configurations. Finally, we reported

a strong reduction in room-temperature thermal conductivity due to the in-

sertion of flower defects, as well as the related Stone-Wales defects and triple

flowers, in the graphene sheet. The dependence of the calculated conductivity

on defect density shows that the concentration required to drastically impede

heat transport by flexural phonons is rather modest, around 1010 cm−2. Higher

concentrations ( 1013 cm−2) can affect all phonon branches and reduce thermal

conductivity by up to two orders of magnitude. However, flower defects are less

effective phonon scatters than Stone-Wales defects covering the same area.

In conclusion, on one hand, our results are useful for characterizing the trans-

port properties of defective CVD graphene, which is among the most promising

large-scale growth techniques for graphene. On the other hand, our findings may
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also be exploited for more practical applications, as energy filtering or creation

of conductive paths in graphene.

5. Experimental and numerical methods

5.1. High-resolution transmission electron microscopy

CVD graphene was synthesized on Pt thin layer substrate [61] and trans-

ferred onto the HRTEM grid. HRTEM experiments were performed using a dou-

ble aberration-corrected FEI Titan Ultimate operated at 80 kV. The monochro-

mator was excited to reduce the energy spread of the electron beam to 0.15 eV.

HRTEM images were acquired using a CCD Ultra Scan camera and treated by

low-pass filtering based on FFT and numerical max-filtering in order to identify

pentagons and heptagons formed in the graphene hexagonal structure.

5.2. Ab initio density functional approach

Calculations were performed with the BigDFT software [84] in a supercell

that guarantees negligible elastic interactions between the periodic defects [85,

86]. Due to the large flower clusters we considered, an orthorhombic supercell

with 836 atoms was needed. Geometries were considered optimized when the

forces on atoms were less than 15 meV/Å. We used a Perdew-Burke-Ernzerhof

(PBE) exchange-correlation functional [87] together with Hartwigsen-Goedecker-

Hutter pseudopotentials [88] and only the Γ point. The formation energy was

calculated directly with respect to bare graphene, as flower defects do not con-

tain vacancies or interstitials.

5.3. Tight-binding Hamiltonian and Green’s function approach for electron trans-

port simulations

To describe graphene and flowers we adopted a tight-binding Hamiltonian

with a single pz orbital per carbon atom and hopping parameter t = −2.7 eV.

The Hamiltonian reads

H =
∑

<ij>

t c†i cj , (4)

where c†i and ci are the creation and annihilation operators for electrons on the

carbon identified by the index i, and < ... > indicates couples of first neighbor
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atoms. From the DFT calculations, it turned out that the strain of the C-C

distance (< 2%) was very localized in the region of the flowers. In a first

approximation, we thus disregarded the corresponding variation of the hopping

parameter.

The electron transport properties were simulated with the Green’s function

approach in the two-terminal configuration, i.e. with the flowered ribbon con-

nected to electron reservoirs by two semi-infinite pristine graphene ribbons of

the same width. The transmission coefficient can be expressed in a Landauer

form as

T (E) = Tr
[

GR(E) ΓS(E) GA(E) ΓD(E)
]

, (5)

where E is the energy of the injected electrons, GR/A are the retarded and

advanced Green’s functions, and ΓS/D are the linewidth functions of source and

drain contacts. The finite temperature differential conductance G was obtained

from the transmission coefficients as

G(µ, T ) =
2e2

h

∫

T (E)

4kBT cosh2
(

E − µ

2kBT

) dE , (6)

where T is the temperature, µ is the chemical potential, kB is the Boltzmann

constant, and 2e2/h is the spin-degenerate conductance quantum.

Within the same formalism, we obtained the local density of states (propor-

tional to the imaginary part of the retarded Green’s function) and the spatial

distribution of spectral currents [89].

5.4. Phonon transport simulations

Starting from the relaxed coordinates of pristine graphene, we employed

Phonopy [90] to generate a minimal set of displaced 9 × 9 supercell configu-

rations. We obtained the forces on all atoms in those configurations the DFT

package VASP [91] with projector-augmented-wave datasets [92, 93], the PBE

approximation to exchange and correlation [87], a plane-wave cutoff of 520 eV

and a simulation box with a height of 17 Å to avoid spurious interactions be-

tween periodic images of the graphene layers. From these forces, we rebuilt the
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harmonic force constants needed to obtain the phonon spectrum of graphene.

We followed a similar procedure using a minimal set of displaced configurations

generated using thirdorder.py [76] to obtain the third-order force constants for

the supercell. As described in ref. [76], these are the ingredients required to ob-

tain the intrinsic scattering rates in the material. The 2D causal phonon Green’s

function of pristine graphene was obtained as described in ref. [78] using a dense

163× 163 grid.

We then obtained minimized configurations of the Stone-Wales, flower and

triple flower defects embedded in 9 × 9 graphene supercells using a variation

on the Tersoff potential specifically optimized for thermal-conductivity calcu-

lations in graphene [80]. Using an explicit parameterization of the potential

energy allowed us to extract all of its first and second derivatives with respect

to positions more efficiently by means of automatic differentiation. From the dif-

ference in the second derivatives with respect to pristine graphene we extracted

a perturbation matrix, which we combined with the phonon Green’s function to

compute the elastic scattering rates due to the defect following the procedure

outlined in refs. [77, 79, 94].

Calculations of phonon frequencies, group velocities, intrinsic and extrinsic

scattering rates, and Green’s functions were carried out using the almaBTE

software package [79]. All thermal conductivity calculations used a 150 × 150

regular grid in reciprocal space.
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Deb, A. Sadeghi, et al., Norm-conserving pseudopotentials with chemical

accuracy compared to all-electron calculations, The Journal of Chemical

Physics 138 (10) (2013) 104109. doi:10.1063/1.4793260.

[89] A. Cresti, R. Farchioni, G. Grosso, G. P. Parravicini, Keldysh-Green func-

tion formalism for current profiles in mesoscopic systems, Phys. Rev. B

68 (7) (2003) 075306. doi:10.1103/PhysRevB.68.075306.

[90] A. Togo, I. Tanaka, First principles phonon calcula-

tions in materials science, Scr. Mater. 108 (2015) 1–5.

doi:10.1016/j.scriptamat.2015.07.021.

[91] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-

energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996)

11169–11186. doi:10.1103/PhysRevB.54.11169.
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