Lê Thành

Tito Nguyễn

Cécilia Pradic

Damiano Mazza

Thomas Seiller

Pierre Clairambault

Amina Doumane

Marie Fortin

Jérémy Ledent

Paolo Pistone

Lorenzo Tortora

Implicit automata in typed λ-calculi I: aperiodicity in a non-commutative logic

Keywords: 2012 ACM Subject Classification Theory of computation → Algebraic language theory; Theory of computation → Linear logic Church encodings, ordered linear types, star-free languages

We give a characterization of star-free languages in a λ-calculus with support for non-commutative affine types (in the sense of linear logic), via the algebraic characterization of the former using aperiodic monoids. When the type system is made commutative, we show that we get regular languages instead. A key ingredient in our approach -that it shares with higher-order model checking -is the use of Church encodings for inputs and outputs. Our result is, to our knowledge, the first use of non-commutativity in implicit computational complexity.

Introduction

A type-theoretic implicit automata theory This paper explores connections between the languages recognized by automata and those definable in certain typed λ-calculi (minimalistic functional programming languages). It is intended to be the first in a series, whose next installments will investigate the functions computable by transducers (automata with output, see e.g. [START_REF] Filiot | Transducers, Logic and Algebra for Functions of Finite Words[END_REF][START_REF] Muscholl | The Many Facets of String Transducers[END_REF]). Insofar as programming language theory is related to proof theory, via the Curry-Howard correspondence, we are therefore trying to bridge logic and automata. That said, our work does not fit in the "logics as specification languages" paradigm, exemplified by the equivalence of recognition by finite-state automata and Monadic Second-Order Logic (MSO). One could sum up the difference by analogy with the two main approaches to machinefree complexity: implicit computational complexity (ICC) and descriptive complexity.

Both aim to characterize complexity classes without reference to a machine model, but the methods of ICC have a more computational flavor.

programming paradigm declarative functional complexity classes Descriptive Complexity Implicit Computational Complexity automata theory subsystems of MSO this paper (and planned sequels)

To our knowledge, very few works have looked at this kind of "type-theoretic" or "prooftheoretic" ICC for automata. Let us mention a few recent papers (that we will discuss further in §7) concerning transducers [START_REF] Deyoung | Substructural proofs as automata[END_REF][START_REF]Polyregular functions[END_REF] and multi-head automata [START_REF] Seiller | Interaction Graphs: Non-Deterministic Automata[END_REF][START_REF] Kuperberg | Cyclic Proofs and Jumping Automata[END_REF] and, most importantly, a remarkable result from 1996 that provides our starting point:

Theorem 1.1 (Hillebrand & Kanellakis [START_REF] Gerd | On the Expressive Power of Simply Typed and Let-Polymorphic Lambda Calculi[END_REF]Theorem 3.4]). A language L ⊆ Σ * can be defined in the simply typed λ-calculus by some closed λ-term of type Str Σ [A] → Bool for some type A (that may depend on L) if and only if it is a regular language.

Let us explain this statement. We consider a grammar of simple types with a single base type: A, B ::= o | A → B, and use the Church encodings of booleans and strings: Every closed λ-term t of type Str Σ can also be seen as a term of type Str Σ [A]. (This is a way to simulate a modicum of parametric polymorphism in a monomorphic type system.) It follows that any closed λ-term of type Str Γ [A] → Bool in the simply typed λ-calculus defines a predicate on strings, i.e. a language L ⊆ Σ * .

Bool = o → o → o Str Σ = (o → o) → . . . → (o → o) → o →
Although little-known 1 , Hillebrand and Kanellakis's theorem should not be surprising in retrospect: there are strong connections between Church encodings and automata (see e.g. [START_REF] Salvati | Recognizability in the simply typed lambda-calculus[END_REF][START_REF] Terui | Semantic Evaluation, Intersection Types and Complexity of Simply Typed Lambda Calculus[END_REF][START_REF] Melliès | Higher-order parity automata[END_REF]), that have been exploited in particular in higher-order model checking for the past 15 years [START_REF] Aehlig | A Finite Semantics of Simply-Typed Lambda Terms for Infinite Runs of Automata[END_REF][START_REF] Ong | On Model-Checking Trees Generated by Higher-Order Recursion Schemes[END_REF][START_REF] Kobayashi | Model Checking Higher-Order Programs[END_REF][START_REF] Grellois | Semantics of linear logic and higher-order model-checking[END_REF][START_REF] Hague | Collapsible Pushdown Automata and Recursion Schemes[END_REF][START_REF] Walukiewicz | LambdaY-calculus with priorities[END_REF]. This is not a mere contrivance: these encodings have been a canonical data representation for λ-calculi for much longer 2 .

Star-free languages

We would like to extend this result by characterizing strict subclasses of regular languages, the most famous being the star-free languages. Recall that the canonicity of the class of regular languages is firmly established by its various definitions: regular expressions, finite automata, definability in MSO and the algebraic characterization.

Theorem 1.3 (cf. [44, §II.2.]).

A language L ⊆ Σ * is regular if and only if for some finite monoid M , some subset P ⊆ M and some monoid morphism ϕ ∈ Hom(Σ * , M), L = ϕ -1 (P).

Similarly, the seminal work of Schützenberger, Petrone, McNaughton and Papert in the 1960s (see [START_REF] Straubing | First-order logic and aperiodic languages: a revisionist history[END_REF] for a historical discussion) has led to many equivalent definitions for star-free languages, with the algebraic notion of aperiodicity playing a key role: Definition 1.4. A monoid M is aperiodic when any sequence of iterated powers is eventually constant, i.e. for any x ∈ M there exists an exponent n ∈ N such that x n = x n+1 . Theorem 1.5 (cf. [START_REF] Straubing | First-order logic and aperiodic languages: a revisionist history[END_REF]). For a language L ⊆ Σ * , the following conditions are equivalent: L is defined by some star-free regular expression: E, E ::

= ∅ | {a} | E ∪ E | E • E | E c
where a can be any letter in Σ and E c denotes the complement of E (E c = Σ * \ E); L = ϕ -1 (P) for some finite and aperiodic monoid M , some subset P ⊆ M and some monoid morphism ϕ ∈ Hom(Σ * , M); L is recognized by a deterministic finite automaton whose transition monoid is aperiodic; L is definable in first-order logic.

Attempting to capture star-free languages in a λ-calculus presents a serious methodological challenge: they form a strict subclass of uniform AC 0 , and, as far as we know, type-theoretic ICC has never managed before to characterize complexity classes as small as this.

Non-commutative affine types Monoids appear in typed λ-calculi when one looks at the functions from a type A to itself, i.e. at the (closed) terms of type A → A. At first glance, it seems difficult indeed to enforce the aperiodicity of such monoids via a type system. For instance, one needs to rule out not = λb. λx. λy. b y x : Bool → Bool since it "has period two": its iteration yields the sequence (modulo βη-conversion) not, id, not, id, . . . (where id = λb. b) which is not eventually constant. Observe that not essentially exchanges the two arguments of b; to exclude it, we are therefore led to require functions to use their arguments in the same order that they are given in.

It is well-known that in order to make such a non-commutative λ-calculus work -in particular to ensure that non-commutative λ-terms are closed under β-reduction -one needs to make the type system affine, that is, to restrict the duplication of data. This is achieved by considering a type system based on Girard's linear3 logic [START_REF] Girard | Linear logic[END_REF], a system whose "resource-sensitive" nature has been previously exploited in ICC [START_REF] Girard | Bounded linear logic: a modular approach to polynomial-time computability[END_REF][START_REF] Girard | Light Linear Logic[END_REF]. Not coincidentally, the theme of non-commutativity first appeared in a form of linear logic ante litteram, namely the Lambek calculus [START_REF] Lambek | The mathematics of sentence structure[END_REF], and resurfaced shortly after the official birth of linear logic: it is already mentioned by Girard in a 1987 colloquium [START_REF] Girard | Towards a geometry of interaction[END_REF].

We shall therefore introduce and use a variant of Polakow and Pfenning's Intuitionistic Non-Commutative Linear Logic [START_REF] Polakow | Natural deduction for intuitionistic non-communicative linear logic[END_REF][START_REF] Polakow | Relating Natural Deduction and Sequent Calculus for Intuitionistic Non-Commutative Linear Logic[END_REF], making a distinction between two kinds of function arrows: A B and A → B are, respectively, the types of affine functions and non-affine functions from A to B. Accordingly: Definition 1.6. A type is said to be purely affine if it does not contain the '→' connective.

In our system that we call the λ℘-calculus, the types of Church encodings become

Bool = o o o Str Σ = (o o) → . . . → (o o) → (o o)
where

Str Σ has |Σ| arguments 4 of type (o o). Setting true = λ • x. λ • y.
x : Bool and false = λ • x. λ • y. y : Bool for the rest of the paper, we can now state our main result:

Theorem 1.7. A language L ⊆ Σ * is star-free if

and only if it can be defined by a closed λ℘-term of type Str Σ [A]

Bool for some purely affine type A (that may depend on L).

However, if we use the commutative variant of the λ℘-calculus instead, then what we get is the class of regular languages (Theorem 5.1), just as in Hillebrand and Kanellakis's theorem.

As far as we know, non-commutative type systems have never been applied to implicit complexity before (but they have been used to control the expressivity of a domain-specific programming language [27]). Previous works indeed tend to see non-commutative λ-terms (or proof nets) as static objects, and to focus on their topological aspects (e.g. [START_REF] Andreoli | Permutative logic[END_REF][START_REF] Zeilberger | A correspondence between rooted planar maps and normal planar lambda terms[END_REF][START_REF] Melliès | Ribbon Tensorial Logic[END_REF]), though there is another tradition relating self-dual non-commutativity to process algebras5 [START_REF] Retoré | Pomset logic: A non-commutative extension of classical linear logic[END_REF][START_REF] Guglielmi | A system of interaction and structure[END_REF].

Proof strategy As usual in implicit computational complexity, the proof of Theorem 1.7 consists of a soundness part -"every λ℘-definable language is star-free" -and an extensional completeness part -the converse implication. In our case, soundness is a corollary of the following property of the purely affine fragment of the λ℘-calculus -what one might call the planar6 affine λ-calculus (cf. [START_REF] Abramsky | Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics[END_REF][START_REF] Zeilberger | A correspondence between rooted planar maps and normal planar lambda terms[END_REF]): Theorem 1.8 (proved in §3). For any purely affine type A, the set of closed λ℘-terms of type A A, quotiented by βη-convertibility and endowed with function composition

(f • g = λ • x. f (g x))
, is a finite and aperiodic monoid.

Extensional completeness turns out here to be somewhat deeper than the "programming exercise of limited theoretical interest" [34, p. 137] that one generally finds in ICC. Indeed, we have only managed to encode star-free languages in the λ℘-calculus by relying on a powerful tool from semigroup theory: the Krohn-Rhodes decomposition [START_REF] Krohn | Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines[END_REF].

Plan of the paper

After having defined the λ℘-calculus in §2, we prove Theorem 1.7: soundness is treated in §3 and extensional completeness in §4. Then we discuss the analogous results for the commutative variant of the λ℘-calculus and its extension with additives (§5), our plans for the next papers in the series (§6) and finally some related work (§7).

Prerequisites

We assume that the reader is familiar with the basics of λ-calculi and type systems, but require no prior knowledge of automata theory. This choice is motivated by the impression that it is more difficult to introduce the former than the latter in a limited number of pages. Nevertheless, we hope that our results will be of interest to both communities.

Preliminaries: the λ℘-calculus and Church encodings

The terms and types of the λ℘-calculus are defined by the respective grammars

A, B ::= o | A → B | A B t, u ::= x | t u | λ x. t | λ • x. t
As always, the λ℘ terms are identified up to α-equivalence (both λ and λ • are binders).

There are two rules for β-reduction (closed under contexts)

(λ x. t) u -→ β t{x := u} (λ • x. t) u -→ β t{x := u}
and the remaining conversion rules are the expected η-reduction/η-expansion rules. The typing judgements make use of dual contexts (a common feature originating in [START_REF] Barber | Dual Intuitionistic Linear Logic[END_REF]): they are of the form Γ | ∆ t : A where t is a term, A is a type, Γ is a set of bindings of the form x : B (x being a variable and B a type), and ∆ is an ordered list of bindings -this order is essential for non-commutativity. The typing rules are given in Figure 1, where ∆ • ∆ denotes the concatenation of the ordered lists ∆ and ∆ . For both Γ, Γ , . . . and ∆, ∆ , . . . we require each variable to appear at most once on the left of a colon.

Γ | ∆ λ • x. t : A B Γ | ∆ t : A Γ | ∆ t : A when ∆ is a subsequence of ∆
Remark 2.1. Unlike Polakow and Pfenning's system [START_REF] Polakow | Natural deduction for intuitionistic non-communicative linear logic[END_REF][START_REF] Polakow | Relating Natural Deduction and Sequent Calculus for Intuitionistic Non-Commutative Linear Logic[END_REF], the λ℘-calculus: contains two function types instead of four 7 , with the top two rows of Figure 1 corresponding almost exactly8 to the rules given for those connectives in [START_REF] Polakow | Natural deduction for intuitionistic non-communicative linear logic[END_REF]; is affine instead of linear, as expressed by the "ordered weakening" rule at the bottom of Figure 1 -this seems important to get enough expressive power for our purposes9 . Remark 2.2. Morally, the non-affine variables "commute with everything". More formally, one could translate the λ℘-calculus into a non-commutative version of Intuitionistic Affine Logic whose exponential modality '!' incorporates the customary rules (see e.g. [START_REF] Yetter | Quantales and (noncommutative) linear logic[END_REF])

Γ, !A, B, ∆ C Γ, B, !A, ∆ C Γ, B, !A, ∆ C Γ, !A, B, ∆ C
Proposition 2.3. The λ℘-calculus enjoys subject reduction and admits normal forms (that is, every well-typed λ℘-term is convertible to a β-normal η-long one).

Proof sketch. This is routine: subject reduction follows from a case analysis, while the fact that the simply typed λ-calculus has normal forms entails that the λ℘-calculus also does (the obvious translation preserves the β-reduction and η-expansion relations).

We have already seen the type Str

Σ = (o o) → . . . → (o o) → (o o)
of Church-encoded strings in the introduction. Let us now introduce the term-level encodings: Definition 2.4. Let Σ be a finite alphabet, w = w [START_REF] Abramsky | Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics[END_REF] . . . w[n] ∈ Σ * be a string, and for each c ∈ Σ, let t c be a λ℘-term (on which the next proposition will add typing assumptions). We abbreviate (t c) c∈Σ as t Σ , and define the λ℘-term w

† (t Σ) = λ • x. t w[1] (. . . (t w[n] x) . . .).
Given a total order c 1 < . . . < c |Σ| on the alphabet Σ = {c 1 , . . . , c |Σ| }, the Church encoding of any string w

∈ Σ * is w = λ f c1 λ f c |Σ| . w † (f Σ).
This is simpler than the notation might suggest: as an example, for Σ = {a, b} with a < b, baa = λ f a . λ f b . λ • x. f b (f a (f a x)). Our choice of presentation is meant to stress the role of the open subterm (baa) † (f {a,b}) = λ • x. f b (f a (f a x)), cf. Remark 2.9.

We now summarize the classical properties of the Church encoding of strings.

Proposition 2.5. We reuse the notations of the above definition. Assume that there is a type A and a typing context). For t a = λ • x. true and t b = λ • x. x, g decides the language of words in {a, b} * that contain at least one a; this language is indeed star-free as it can be expressed as ∅ c a∅ c . Coming back to a point raised in the introduction, if negation were definable by a λ℘-term not : Bool Bool, then for t a = t b = not, the language decided by g would consist of words of odd length: a standard example of regular language that is not star-free. Bool does "define negation". A point of utmost importance is that because of the heterogeneity of the input and output types, this term does not contradict Theorem 1.8 and cannot be iterated by a Church-encoded string. Monomorphism is therefore crucial for us: if our type system had actual polymorphism, one could give not the type (∀α. Bool[α]) (∀α. Bool[α]), whose input and output types are equal, and then the words of odd length would be λ℘-definable.

Γ | ∆ such that for all c ∈ Σ, Γ | ∆ t c : A A. Then Γ | ∆ w † (t Σ) : A A. In particular, {f c : o o | c ∈ Σ} | ∅ w † (f Σ) : o o for any variables (f c) c∈Σ . Furthermore, in the case of variables, w ∈ Σ * → w † (f Σ) is in
An analogous phenomenon in the simply typed λ-calculus is that one can define n → 2 n on the type of Church numerals Nat by a term of type Nat[o → o] → Nat, but not by a term of type Nat → Nat (since iterating it would give rise to a tower of exponentials of variable height, which is known to be inexpressible by any Nat[A] → Nat).

Yet our ersatz of polymorphism still allows for some form of compositionality that will prove useful in several places in §4 (the proof may be found in Appendix B): Str Π for some purely affine type A (compare Theorem 1.7).

Lemma 2.8. If t : A[T] B and u : B[U] C, then λ • x. u (t x) : A[T [U]] C.

Proof of soundness

As stated in the introduction, the soundness part of our main Theorem 1.7 will follow from Theorem 1.8, so we start this section by proving the latter. First, the monoid structure on the closed λ℘-terms of any type A A can be verified routinely: both (f Proof. This is a well-known property of affine type systems: here, non-commutativity plays no role. We provide a proof in Appendix B.

• g) • h and f • (g • h) β-reduce to λ • x. f (g (h x)),
The substantial part of Theorem 1.8 is the aperiodicity of this monoid. It is here that non-commutativity comes into play. Morally, it is a kind of monotonicity condition that λ℘-terms obey. A first idea would therefore be to seek to exploit the fact that the monoid of monotone functions on an ordered set is aperiodic. What we end up using is closely related: Lemma 3.2. For any k ∈ N, the monoid of partial non-decreasing functions from {1, . . . , k} to itself (endowed with usual function composition) is aperiodic.

Proof. Let f : {1, . . . , k} {1, . . . , k} be non-decreasing. For any i ∈ {1, . . . , k}, the sequence (f n (i)) n∈N is either non-increasing or non-decreasing as long as it is defined (depending on whether i ≥ f (i) or i ≤ f (i)); so at some n = N i , either it becomes undefined or it reaches a fixed point of f . By taking

N = max 1≤i≤k N i , we have f N = f N +1 .
This underlies the proof of the key lemma below, that allows one to reduce the aperiodicity of some t : A A to the aperiodicity of λ℘-terms at smaller types.

Notation 3.3. ∆ t :

A is an abbreviation for ∅ | ∆ t : A (indeed, the context of non-affine variables will be generally empty in our proof).

Notation 3.4. Let u 1 , . . . , u k and v 1 , . . . , v l be λ℘-terms. The notation v[y := u] denotes the componentwise parallel substitution (v i [y 1 := u 1 , . . . , y k := u k]) 1≤i≤l . Lemma 3.5. Let t = λ • x. λ • y 1 λ • y m . x u 1 . . . u k be a well-typed closed λ℘-term of type A A in η-long form, so that x : A, y 1 : B 1 , . . . , y k : B k x u 1 . . . u k : o with A = B 1 . . . B k o. Then: t n = t • . . . • t (n times) is β-convertible to λ • x. λ • y 1 λ • y k . x u (n) 1 . . . u (n) k where u (0) = (y 1 , . . . , y k), u (n+1) = u (n) [y := u]; For large enough n ∈ N, each u (n+1) i depends only on u (n) i
for the same i ∈ {1, . . . , k}. More precisely, there exists N ∈ N such that for all i ∈ {1, . . . , k} there exists a well-typed closed λ℘-term t i :

B i B i such that for all n ≥ N , u (n+1) i = t i u (n) i .
Proof. The first item is established by induction:

abbreviating λ • y 1 λ • y k . as λ • y., t • (λ • x. λ • y. x u (n) 1 . . . u (n) k) = β λ • x. λ • y. (λ • y. x u (n) 1 . . . u (n) k) u 1 . . . u k = β λ • x. λ • y. x (u (n) 1 [y := u]) . . . u (n) k ([y := u])
(We invite to reader to reproduce the full computation to check that no spurious capture of free variables happens.)

For the second item, let us define the partial function µ u : {1, . . . , k} {1, . . . , k} by µ u (i) = j ⇐⇒ y i ∈ FV(u j). (FV(u) denotes the set of free variables of u.) The relation on the right-hand side of the equivalence is indeed a partial function because of the affineness of t = λ • x. λ • y 1 λ • y k . z u 1 . . . u k . One can also show that for all n ∈ N, FV(u

(n) i) = {y j | (µ u) n (j) = i}.
As a consequence of non-commutativity, µ u is non-decreasing. This is because for the typing judgment on x u 1 . . . u k to hold, there must exist ∆ 1 , . . . , ∆ k such that: for all j ∈ {1, . . . , k}, ∆ j u j and ∀i,

y i ∈ FV(u j) ⇐⇒ (y i : B i) ∈ ∆ j ; ∆ 1 • . . . • ∆ k is an ordered subsequence of (y 1 : B 1) • . . . • (y k : B k). Therefore, by Lemma 3.2, there exists N ∈ N such that (µ u) N = (µ u) N +1 .
Next, let i ∈ {1, . . . , k}. We may reformulate our goal as finding t i :

B i B i such that t i u (N +n) i = βη u (N +n+1) for all n ∈ N. The simple case is when i / ∈ (µ u) N ({1, . . . , k}): u (N) i
has no free variables, so u

(N +1) i = u (N) i [y := u] = u (N) i
: we may then take t i = λ • z. z. For the remainder of the proof we assume otherwise, that is, we take i in the range of (µ u) N .

First,

u (n+1) = u[y := u (n)
] because parallel substitution is associative 11 . Thus,

∀n ∈ N, u (N +n+1) i = u i y j := u (N +n) j
for j ∈ {1, . . . , k} such that µ u (j) = i Any j ∈ {1, . . . , k} \ {i} such that µ u (j) = i is not a fixed point of µ u , and therefore is not in the range of (µ u

) N since (µ u) N = (µ u) N +1 = µ u • (µ u) N
. By the simple case already treated, we then have u

(N +n) j = u (N) j
. This allows us to write the above equation as

u (N +n+1) i = r i [y i := u (N +n) i
] where

r i = u i y j := u (N) j for j = i s.t. µ u (j) = i Using β-conversion, u (N +n+1) i = β (λ • y i . r i) u (N +n) i
. We conclude by setting t i = (λ • y i . r i). It is clear that this λ℘-term is closed, but one should check that it is well-typed; to do so, one convenient observation is that the u (N) j are closed (because j / ∈ (µ u) N ({1, . . . , k})) and well-typed (as closed subterms of a reduct of the N -fold composition t N).

The remainder of the proof of Theorem 1.8 is essentially bureaucratic.

Proof of the aperiodicity part of Theorem 1.8. Let t : A

A; our goal is to show that the sequence t n = t • . . . • t is eventually constant modulo βη. We shall do so by induction on the size of A. The type A is purely affine by assumption, and can therefore be written as B 1 . . . B m o where the B i are also purely affine for i ∈ {1, . . . , m}. The base case m = 0 being trivial, we assume m ≥ 1. In this case, by Proposition 2.3, t has an η-long β-normal form t = λ • x. λ • y 1 λ • y m . z u 1 . . . u k where z is a variable. There are two cases: z = y i for some i. Then (y i : Reusing the notations of this lemma, let us define ϕ : Σ * → {v | v : A A}/ = βη to be the monoid morphism such that ϕ(c) = g c for c ∈ Σ. Then for all w ∈ Σ * , ϕ(w) = w † (g Σ) (in the quotient): by a similar computation than for f

B i) • ∆ z u 1 . . .
• (g • h) = βη (f • g) • h, we have g w[1] • . . . • g w[n] -→ * β w † (g Σ). Therefore, by Proposition 2.5, ϕ -1 ({v | h v = βη true}
) is none other than the language defined by the t :

Str Σ [A]
Bool in the lemma. Thus, L fits the second definition of star-free languages given in Theorem 1.5: indeed, the codomain of ϕ is finite and aperiodic by Theorem 1.8. This proves the soundness part of Theorem 1.7.

Expressiveness of the λ℘-calculus

We now turn to the extensional completeness part in Theorem 1.7: our goal is to construct, for any star-free language, a closed λ℘-term of type Str Σ [A] Bool (for some purely affine A) that defines this language. To do so, the most convenient way that we have found is to take a detour through automata that compute an output string instead of a single bit (acceptance/rejection). We will recall the notion of aperiodic sequential function (Definition 4.4), and then establish that: Str Π for some purely affine type A.

The advantage of working with this class of functions is that they can be assembled from small "building blocks" by function composition, as the Krohn-Rhodes decomposition (Theorem 4.8) tells us. Our proof strategy for the above theorem will consist in encoding these blocks (Lemma 4.10) and composing them together (as a special case of Lemma 2.8).

To deduce the desired result, we rely on two lemmas (proved in Appendix B):

Lemma 4.2. If a language L ⊆ Σ * is star-free, then its (string-valued) indicator function χ L : Σ * → {1} * , defined by χ L (w) = 1 if w ∈ L and χ L (w) = ε otherwise, is aperiodic sequential.

Lemma 4.3. There exists a λ℘-term nonempty : Str {1} [Bool]

Bool that tests whether its input string is non-empty.

Let L be a star-free language. Combining Lemma 4.2 and Theorem 4.1, χ L is definable by some λ℘-term indic L :

Str Σ [A]
Str {1} where A is purely affine. To compose this with the non-emptiness test of Lemma 4.3, we use Lemma 2.8 again: the λ℘-term

t L = λ • x. nonempty (indic L x) : Str Σ [A[Bool]]
Bool defines L. Since A and Bool are purely affine, so is A[Bool]: we just deduced extensional completeness from Theorem 4.1. Proving the latter is the goal of the rest of this section.

Reminders on automata theory

Sequential transducers are among the simplest models of automata with output. They are deterministic finite automata which can append a word to their output at each transition, and at the end, they can add a suffix to the output depending on the final state. The definition is classical; a possible reference is [44, Chapter V]. A schematic representation of a sequential transducer whose formal definition is Q = {qa, q b }, δ(q, a) = (qa, a) and δ(q, b) = (q b , bb) for q ∈ Q, qI = qa, F (qa) = ab and F (q b) = bbb. Definition 4.4. A sequential transducer with input alphabet Σ and output alphabet Π consists of a set of states Q, a transition function δ :

Q × Σ → Q × Π * , an initial state q I ∈ Q, and a final output function F : Q → Π * . We abbreviate δ st = π 1 • δ and δ out = π 2 • δ, where π i : X 1 × X 2 → X i is the i-th projection of the product (i ∈ {1, 2}).
Given an input string w = w [START_REF] Abramsky | Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics[END_REF] . . . w[n] ∈ Σ * , the run of the transducer over w is the sequence of states q 0 = q I , q 1 = δ st (q 0 , w [START_REF] Abramsky | Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics[END_REF]), . . . , q n = δ st (q n-1 , w[n]). Its output is obtained as the concatenation δ out (q 0 , w [START_REF] Abramsky | Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics[END_REF]

) • . . . • δ out (q n-1 , w[n]) • F (q n).
A sequential function is a function Σ * → Π * computed as described above by some sequential transducer. ,c) stands for q → δ st (q, c)).

A sequential transducer is said to be aperiodic when its transition monoid is aperiodic. A function that can be computed by such a transducer is called an aperiodic sequential function. ,a) : q → q a), (δ st (-, b) : q → q b)}; one can verify that T = G ∪ {id} and therefore ∀h ∈ T, h • h = h. Thus, f is an aperiodic sequential function.

Remark 4.7. The converse to Lemma 4.2 is also true; more generally, the preimage of a star-free language by an aperiodic sequential function is star-free, and the preimage of a regular language is regular. But we will not need this here.

f = f 1 • . . . • f n (with f i : Ξ * i → Ξ * i-1 , Ξ 0 = Π and Ξ n = Σ)
where each function f i is computed by some aperiodic sequential transducer with 2 states. Figure 2 gives an example of aperiodic transducer with two states. Remark 4.9. This is not the standard way to state this theorem, though one may find it in the literature, usually without proof (e.g. [10, §1.1]); see [START_REF] Bojańczyk | The simplest transducer models and their Krohn-Rhodes decompositions[END_REF] for a tutorial containing a proof sketch of this version. In Appendix A, we show how Theorem 4.8 follows from the more usual statement on wreath products of monoid actions.

Encoding aperiodic sequential transducers

Thanks to the Krohn-Rhodes decomposition and to the fact that the string functions definable in the λ℘-calculus (as specified by Theorem 4.1) are closed under composition (by Lemma 2.8), the following entails Theorem 4.1, thus concluding our completeness proof. Str Π , for a purely affine type A depending on the function.

Let us start by exposing the rough idea of the encoding's trick using set-theoretic maps. We reuse the notations of Definition 4.4 and assume w.l.o.g. that the set of states is Q = {1, 2}.

Suppose that at some point, after processing a prefix of the input, the transducer has arrived in state 1 (resp. 2) and in the meantime has outputted w ∈ Π * . We can represent this "history" by the pair (κ w , ζ) (resp. (ζ, κ w)) where

ζ, κ w : Π * → Π * ζ : x → ε κ w : x → w • x
For instance, in the case of Example 4.6, after reading a string s = s b, the transducer is in the state q b and has outputted12 w = a • ψ(s), which we represent as (ζ, κ a•ψ(s)) (taking q a = 1 and q b = 2; ψ is described in Example 4.6). In general, some key observations are

ζ • κ w = ζ κ w • κ w = κ ww κ w (w)ζ(w) = ζ(w)κ w (w) = ww
Now, consider an input letter c ∈ Σ; how to encode the corresponding transition δ(-, c) as a transformation on the pair encoding the current state and output history? It depends on the state transition δ st (-, c); we have thanks to the above identities:

(h, g) → (h • κ δout(1,c) , g • κ δout(2,c)) when δ st (-, c) = id; (h, g) → (κ h(δout(1,c))g(δout(2,c)) , ζ) when δ st (-, c) : q → 1 (note that h = ζ xor g = ζ); (h, g) → (ζ, κ h(δout(1,c))g(δout(2,c))
) when δ st (-, c) : q → 2;

The remaining case δ st (-, c) : q → 3 -q is excluded by aperiodicity. This point is crucial: this case would correspond to (h, g) → (g

• κ δout(2,c) , h • κ δout(1,c
)) which morally "uses its arguments h, g in the wrong order". Coming back to Example 4.6, let us say that after the transducer has read a prefix s = s b of its input string as we previously described, the next letter is a. Then the expression

h(δ out (1, c))g(δ out (2, c)) above is in this case ζ(a)κ a•ψ(s) (bb) = ε • a • ψ(s) • bb = a • ψ(s)
which is indeed the output that the transducer produces after reading the input prefix sa = s ba.

Next, we must transpose these ideas to the setting of the λ℘-calculus.

Proof of Lemma 4.10. We define the λ℘-term meant to compute our sequential function as

λ • s. λ f a1
: o o | a ∈ Π}, Γ | ∅ trans c : A A (for all c ∈ Σ) Γ | ∅ out : (A A) (o o)
In the presence of this non-affine context Γ, the type S = o o morally serves as a purely affine type of strings, as mentioned in Remark 2.9. Moreover this "contextual encoding of strings" supports concatenation (by function composition), leading us to represent the maps ζ and κ w as open terms of type T = S S that use non-affinely the variables f a for a ∈ Π. We shall take the type A, at which the input Str Σ is instantiated, to be A = T T S, which is indeed purely affine as required by the theorem statement. This can be seen morally as a type of continuations [START_REF] Reynolds | The discoveries of continuations[END_REF] taking pairs of type T ⊗ T (although our λ℘-calculus has no actual ⊗ connective). Without further ado, let us program (the typing derivations for some of the following λ℘-terms are given in Appendix C):

cat = λ • w. λ • w . λ • x. w (w x) : S S o o = S S S = S
T plays the roles of both the concatenation operator and of w → κ w (thanks to currying)

zeta = λ • w . λ • x. x : S o o = T u q = δ out (q, c) † (f Π) : o
o (by Proposition 2.5) represents the output word δ out (q, c) that corresponds to a given input letter c ∈ Σ and state q ∈ Q = {1, 2} case δ st (q, c) = q:

trans c = λ • k. λ • h. λ • g. k (λ • y. h (cat u 1 y)) (λ • z. g (cat u 2 z
)) -if we wanted to handle the excluded case δ st (q, c) = 3 -q, we would write a similar term with the occurrences of h and g exchanged (λ • k. λ • h. λ • g. k (λ • y. g . . .) (λ • z. h . . .)), violating the non-commutativity requirement (contrast with the proof of Theorem 5.4); case δ st (q, c) = 1:

trans c = λ • k. λ • h. λ • g. k (cat (cat (h u 1) (g u 2))) zeta case δ st (q, c) = 2: trans c = λ • k. λ • h. λ • g. k zeta (cat (cat (h u 1) (g u 2))) out = λ • j. j (λ • h. λ • g. cat (h v 1) (g v 2)) (λ • x.
x) zeta, where v q = F (q) † (f Π) represents the output suffix for state q ∈ {1, 2}, assuming w.l.o.g. that the initial state is 1 (also, here λ • x. x represents κ ε since the latter is the identity on Π *) We leave it to the reader to check that these λ℘-terms have the expected computational behavior; again, see Appendix C for typing derivations. Note that in functional programming terms, the use of continuations turns the "right fold" of the Church-encoded input string into a "left fold", and the latter fits with the left-to-right processing of a sequential transducer.

5

Regular languages in extensions of the λ℘-calculus

The commutative case

The λ℘-calculus adds two restrictions to the simply typed λ-calculus, namely affineness and non-commutativity, with the latter depending on the former as already mentioned. One could wonder whether affineness by itself would be enough to characterize star-free languages.

We now show that it is not the case.

The commutative variant of the λ℘-calculus -let us call this variant the λa-calculus 13 -has the same grammar of types and terms as the λ℘-calculus (cf. §2). The typing rules are also given by Figure 1, but their interpretation differs from the previous one as follows: ∆, ∆ stand for sets of bindings x : A, ∆ • ∆ denotes the disjoint union of sets, and one must read "subset" instead of "subsequence". In other words, the main difference is that in the λa-calculus, the affine context ∆ does not keep track of the ordering of variables.

By plugging this commutative system in the statement of our main result (Theorem 1.7), we get regular languages instead of star-free languages:

Theorem 5.1. A language L ⊆ Σ * is regular if

and only if it can be defined by a closed λa-term of type Str Σ [A]

Bool for some purely affine type A (that may depend on L).

Proof. Soundness is a consequence of Hillebrand and Kanellakis's Theorem 1.1, by a simple translation from the λa-calculus to the simply typed λ-calculus which "forgets affineness". For extensional completeness, consider a regular language L = ϕ -1 (P) where P is a subset of a finite monoid M and ϕ : Σ * → M is a morphism (cf. Theorem 1.3). If we represent an element m ∈ M by a M -indexed bit vector v m such that v m [i] = 1 ⇐⇒ i = m, then a translation m → mp can be represented by a purely disjunctive formula: Let us go further. According to Theorem 4.1, the λ℘-calculus can define all aperiodic sequential functions; we show that as one can expect, the aperiodicity condition is lifted when moving to the commutative λa-calculus. However, the trick used in the direct encoding of the above proof does not work, and we have only managed to encode general sequential functions by resorting to the Krohn-Rhodes theorem.

v mp [i] = v m [j 1] ∨ . . . ∨ v m [j k] where {j 1 , . . . , j k } = {j ∈ M | jp = i}

Theorem 5.2 (Krohn-Rhodes decomposition, non-aperiodic case, cf. Appendix A). Any sequential function

f : Σ * → Π * can be realized as a composition f = f 1 • . . . • f n (with f i : Ξ * i → Ξ * i-1 , Ξ 0 = Π and Ξ n = Σ)
where each function f i is computed by some sequential transducer whose transition monoid is either aperiodic or a group. Str Π , for a purely affine type A depending on the function.

Proof sketch. First, by Theorem 4.1, we can already encode aperiodic sequential functions, since every well-typed λ℘-term is also a well-typed λa-term. One can also show that Lemma 2.8 applies to the λa-calculus. By the general Krohn-Rhodes theorem, we just need to handle the case of a sequential transducer whose transition monoid is a group. The idea, in terms of set-theoretic maps as in our explanation of the proof of Lemma 4.10 (whose notations we borrow here), is as follows. The current state q ∈ Q and output history w ∈ Π * is represented by a Q-indexed family (g q) q ∈Q of functions such that g q = κ w and for q = q, g q = ζ. The transition δ(-, c) is represented by (g q) q∈Q → (g σ(q) • κ δout(σ(q),c)) q∈Q where σ = (δ st (-, c)) -1 -the latter is well-defined because the group assumption means that δ st (-, c) is a permutation of Q. The final output is obtained at the end as the concatenation g q1 (F (q 1)) . . . g qn (F (q n)) where Q = {q 1 , . . . , q n } (with an arbitrary enumeration of Q).

Recall that we discussed both in the introduction and in Remark 2.7 the need to prevent the existence of a λ℘-term of type Bool Bool for negation. However, if we use the additive conjunction to define the type

Bool & = (o & o)
o, the following are well-typed λ℘ & -terms:

true & = λ • p. π 1 p false & = λ • p. π 2 p not & = λ • b. λ • p. b π 2 p, π 1 p
More generally:

Proposition 5.5. Let Fin & (n) = (o & . . . & o) o.
For all n ∈ N, there is a canonical bijection between {1, . . . , n} and the closed λ℘ & -terms of type Fin & (n). Furthermore, using this encoding, every map {1, . . . , n 1 } × . . . × {1, . . . , n k } → {1, . . . , m} can be defined by a closed λ℘ & -term of type Fin & (n 1)

. . .

Fin & (n k) Fin & (m).
Corollary 5.6. Every regular language can be defined by a closed λ℘ & -term of type

Str Σ [A]
Bool for some purely affine type A -we consider '&' as an affine connective and therefore allow it in A.

Proof idea. Take

A = Fin & (|M |)
where M is any finite monoid that recognizes the language as specified in Theorem 1.3. (We could also prove the converse by relying on an extension of Hillebrand and Kanellakis's Theorem 1.1 to the simply typed λ-calculus with products.) Similarly, one could show that the addition of the additive disjunction '⊕' of linear logic to the λ℘-calculus would be sufficient to encode all regular languages.

On regular and first-order tree languages: a discussion

There is a rich theory of tree automata that extends the notion of regular language to trees over ranked alphabets instead of strings. Such trees admit Church encodings; for instance, for an alphabet with arities (a : 2, b : 2, x : 0) (i.e. for trees with two kind of binary nodes and one kind of leaf) one would have Tree Str Σ , this choice does not make much difference (thanks again to Lemma 2.8).

We shall not go into the details of tree automata here, but the knowledgeable reader may check that Proposition 5.5 can be used to encode all regular tree languages over (a : 2, b : 2, x : 0) as closed λ℘ & -terms of type Tree (2,2,0) [A] Bool for purely affine A. Predictably, this fails for the λ℘-calculus without additive connectives. More noteworthy is the failure of the trick used to prove Theorem 5.1 for the commutative λa-calculus when one replaces strings with trees. Thus, it seems (though this remains conjectural) that the additives of linear logic might be required to express some regular tree languages.

We believe that this is no accident and that some fundamental difficulty of automata theory is being manifested here. Indeed, if we had a characterization of regular tree languages in the λa-calculus, we could expect that moving to the λ℘-calculus would yield the first-order tree languages, which are the commonly accepted counterpart of star-free languages for trees. (Recall from Theorem 1.5 that definability in first-order logic is among the equivalent definitions of star-free languages.) However, while Theorem 1.5 demonstrates that star-free languages are well-understood, the situation is quite different for first-order tree languages: there is no known algebraic characterization, and neither is there any known algorithm to decide whether a tree automaton recognizes a first-order language (see e.g. [9, §3]). Another argument for the necessity of additives, discussed in the next section, comes from transducers.

6

Next episode preview: transducers in typed λ-calculi

We started from Hillebrand and Kanellakis's Theorem 1.1 and obtained an analogous statement for star-free languages instead of regular languages. Another direction that we could have pursued is to replace languages by functions, by looking at the type Str Σ [A] → Str Π . Indeed, an immediate consequence of this "regular = λ-definable" result is:

Corollary 6.1. If f : Σ * → Π * is definable by a closed simply typed λ-term of type Str Σ [A] → Str Π , then for any regular language L ⊆ Π * , f -1 (L) ⊆ Σ * is also regular. Proof idea. Let u : Str Π [B] → Bool and t : Str Σ [A] → Str Π be simply typed λ-terms defining L and f respectively. Then f -1 (L) is defined by λx. u (t x) which is well-typed with type Str Σ [A[B]] → Bool (analogously to Lemma 2.8).
This suggests a connection between these λ-definable string functions and automata theory. But while it is not too hard to define functions of hyperexponential growth in the simply typed λ-calculus, most classes of string functions from automata theory (see [START_REF] Muscholl | The Many Facets of String Transducers[END_REF] for a recent survey) grow much more slowly (polynomially or even linearly in the input size). The challenge then becomes to restrict the expressiveness via types to capture such classes. This calls for the recipes that have worked here, namely affine types and non-commutativity. Claim 6.2 (to be proved in a sequel). The functions definable by closed terms of type

Str Σ [A]
Str Π , for purely affine A, are the MSO transductions 14 [15] (a.k.a. regular functions 15) in the λa-calculus and the FO transductions in the λ℘-calculus. This goes beyond the encodings of sequential transducers presented in this paper (Theorem 4.1 and Theorem 5.4). But the latter are an important stepping stone, since we do not know how to prove the above claim without using the Krohn-Rhodes decomposition somewhere. To summarize the results of the present paper together with its planned sequel: While the connection between non-commutativity and aperiodicity came as a surprise to us, we had more reasons to suspect that affine types should have something to do with transducers. Indeed, the term "linear" itself has been used to describe the copyless assignment condition on streaming string transducers (SSTs) [START_REF] Alur | Expressiveness of streaming string transducers[END_REF], a machine model for MSO transductions, e.g. "updates should make a linear use of registers" [16, §5] (in our terminology, the register assignments of SSTs are in fact affine, not strictly linear). Moreover, it seems (informally speaking) that the more sophisticated single-use-restricted assignments of streaming tree transducers [START_REF] Alur | Streaming Tree Transducers[END_REF] correspond to a form of linearity that incorporates an additive conjunction, whereas copyless assignments are purely multiplicative; compare with the discussion of §5.3.

14 MSO stands for Monadic Second-Order Logic while FO stands for First-Order Logic, cf. the introduction. 15 This name is somewhat confusing, since there are multiple classes of string functions that collapse to the single class of regular languages when we consider indicator functions. For example, in-between the sequential functions (Definition 4.4) and the regular (MSO-definable) functions, there is a widely studied strictly intermediate class called the rational functions. (The adjective "rational" is used to refer to regular languages in a French tradition going back to Nivat and Schützenberger.)

Related work

We have already mentioned in the introduction several lines of tangentially related research, such as higher-order model checking or the topology of non-commutative proofs. In this section, we discuss a few references that we deemed to be more directly relevant.

Automata as circular proofs Aside from Hillebrand and Kanellakis's Theorem 1.1, perhaps our most direct precursors in "implicit automata theory" are the works by DeYoung and Pfenning [START_REF] Deyoung | Substructural proofs as automata[END_REF] on sequential transducers (their version seems to be equivalent to Definition 4.4) and by Kuperberg, Pinault and Pous [START_REF] Kuperberg | Cyclic Proofs and Jumping Automata[END_REF] characterizing regular languages and deterministic logarithmic space complexity. Both rely on a proofs-as-programs interpretation of circular 16 proof systems for some variants of linear logic with fixed points. The Church encoding of is obtained by a systematic procedure [START_REF] Böhm | Automatic synthesis of typed λ-programs on term algebras[END_REF] from the inductive definition s ::

= ε | c 1 • s | . . . | c |Σ| • s (Σ = {c 1 , . . . , c |Σ| }).
Using fixed points of formulas, one can instead turn it into the recursive type 17 Str µ Σ = 1 ⊕ Str µ Σ ⊕ . . . ⊕ Str µ Σ ; this is the definition of the type of strings in [START_REF] Deyoung | Substructural proofs as automata[END_REF], and it is also implicitly at work in 18 [START_REF] Kuperberg | Cyclic Proofs and Jumping Automata[END_REF].

So both our approach (following Hillebrand and Kanellakis [START_REF] Gerd | On the Expressive Power of Simply Typed and Let-Polymorphic Lambda Calculi[END_REF]) and those using fixed point logics morally work because the consumption of strings represented as inductive data types is similar to their traversal by automata. However, while the use of the "right fold" provided by a Church-encoded string involves an "inversion of control" (in programming jargon) that, in the case of the simply typed λ-calculus, has drastic effects on expressive power 19 (contrast Theorem 1.1 with the fact that βη-convertibility of simply typed λ-terms is not elementary recursive [START_REF] Harry | A simple proof of a theorem of Statman[END_REF]), circular proofs seem to give the programmer more degrees of freedom: Kuperberg et al. do not need to add polymorphism to go beyond regular languages.

Recognizable languages of λ-terms

A modern point of view on Hillebrand and Kanellakis's Theorem 1.1 can be implicitly found in a paper by Terui [START_REF] Terui | Semantic Evaluation, Intersection Types and Complexity of Simply Typed Lambda Calculus[END_REF] emphasizing the method of evaluation in a finite denotational semantics used to prove it. Along these lines, general notions of recognizable languages of closed λ-terms of a given type (specializing to regular languages for the type of Church-encoded strings) have been proposed, based on finite semantics, in the simply-typed λ-calculus by Salvati [START_REF] Salvati | Recognizability in the simply typed lambda-calculus[END_REF] and in an infinitary λ-calculus by Melliès [START_REF] Melliès | Higher-order parity automata[END_REF]. It is plausible that Theorem 1.1 can be extended to give an equivalent syntactic definition for Salvati's recognizable languages: for a simple type B they would be the languages definable by B[A] → Bool. An interesting question would be whether one can give an encoding of higher-dimensional trees in the simply typed λ-calculus so that this notion of recognizability coincides with Rogers's automata for those trees [START_REF] Rogers | Syntactic Structures as Multi-dimensional Trees[END_REF][START_REF] Ghani | Higher dimensional trees, algebraically[END_REF].

Other implicit automata results

In a recent preprint, Bojańczyk [START_REF]Polyregular functions[END_REF] introduces a new class of string-to-string functions that admits several equivalent definitions (see also [START_REF] Bojańczyk | String-to-String Interpretations With Polynomial-Size Output[END_REF]). One of them uses the simply typed λ-calculus enriched with a ground type of lists and several primitive functions on lists. Strings are represented as lists of characters, which differs from our use of functional encodings in a λ-calculus without any primitive data type. 16 These are sometimes called "cyclic" proofs, but in our context, this would create a confusion with an unrelated non-commutative logic, cyclic linear logic [START_REF] Yetter | Quantales and (noncommutative) linear logic[END_REF]. 17 Formally, this is expressed as the least fixed point Str µ Σ = µα. 1 ⊕ α ⊕ . . . ⊕ α. 18 The left rules given in [29, Figure 1] for A and A * correspond to A = 1 ⊕ . . . ⊕ 1 and A * = 1 ⊕ (A ⊗ A *). 19 To overcome those limits and express any elementary recursive function as a simply typed λ-term, Hillebrand and Kanellakis use an alternative representation of inputs inspired by database theory [START_REF] Gerd | On the Expressive Power of Simply Typed and Let-Polymorphic Lambda Calculi[END_REF].

Using a computational model inspired by denotational semantics of linear logic, Seiller [START_REF] Seiller | Interaction Graphs: Non-Deterministic Automata[END_REF] gives a characterization of each level of the k-head two-way non-deterministic automata hierarchy. The lowest level (k = 1) corresponds to regular languages, while the union over k ∈ N ≥1 gives the complexity class NL (non-deterministic logarithmic space). Something in common with our work is that the representation of strings used by [START_REF] Seiller | Interaction Graphs: Non-Deterministic Automata[END_REF] is more or less a semantic version of Church encodings (see [46, §3.2]). There is one main difference with what one usually calls implicit complexity: Seiller's result does not take place inside a syntactically defined programming language (and it is far from obvious how to turn this model into a similarly expressive syntax, because of the previously mentioned inversion of control).

Controlling expressible functions with non-commutativity

The tree-processing programming language of Kodama, Suenaga and Kobayashi [27] uses non-commutative types to force programs to process their input in a depth-first, left-to-right fashion. This allows them to be compiled into a target language that works on a stream of tokens, suggesting a possible connection with nested word automata [START_REF] Alur | Adding nesting structure to words[END_REF]. The non-commutativity is restricted to arguments of ground type in [27], whereas it is important for our λ℘-calculus that it applies at all orders (indeed, since we encode data as functions, higher-order functions are pervasive).

the multiplication on

W is (f, g, p)(f , g , p) = (((y, z) → f (y, z)f (y • n, z • p)), (z → g(z)g (z • p)), pp).
Definition A.4. A transformation monoid (X, M) strongly divides (Y, N) if there exists a submonoid N ≤ N , a surjective morphism ϕ : N M and a surjection s : Y X such that for all y ∈ Y and n ∈ N , s(y

• n) = s(y) • ϕ(n).
A monoid M divides N if M is the homomorphic image of a submonoid of N .

Proposition A.5. A finite monoid is aperiodic if and only if it there are no non-trivial groups that divide it.

Proof. Let M be a finite monoid. Suppose that for x ∈ M , there is no n ∈ N such that x n = x n+1 ; then finiteness, (x i) i∈N must be ultimately periodic with period k ≥ 2, and one can define a surjective morphism from the submonoid generated by x to the cyclic group of order k by sending x to the latter's generator. The converse follows a similar reasoning (recall that every non-trivial group contains a non-trivial cyclic subgroup).

Theorem A.6 (Krohn-Rhodes with strong divisors [START_REF] Volker Diekert | The Krohn-Rhodes Theorem and Local Divisors[END_REF]Theorem 4.1]). Every finite transformation monoid (X, M) strongly divides some wreath product

(Y 1 , N 1) . . . (Y n , N n) where each (Y k , N k) is either: the flip-flop (Y k , N k) = ({1, 2}, {id {1,2} , (x → 1), (x → 2)}) (with the action x • f = f (x)
and the monoid multiplication f g = g • f); a finite group dividing M acting on itself by right multiplication. In particular, if M is aperiodic, (X, M) strongly divides a wreath product of several copies of the flip-flop transformation monoid.

Remark A.7. The flip-flop transformation monoid is precisely the transition monoid of the transducer of Example 4.6 endowed with its action on the set of states.

Remark A.8. We can also require G above to be a simple group. This is the statement given in [START_REF] Volker Diekert | The Krohn-Rhodes Theorem and Local Divisors[END_REF], but group simplicity is not needed for our purposes. (To be more precise, every finite group divides a wreath product of its Jordan-Hölder factors.) Remark A.9. Let (Y, N) = (Y 1 , N 1) . . . (Y n , N n). In both the flip-flop and group cases, the action of N k on Y k is faithful, i.e. two distinct elements of N k act differently on at least one element of Y k . Furthermore, the wreath product of faithful transformation monoids is faithful. Therefore, one can safely identify N with a submonoid of Y → Y . Now let us relate this wreath product operation to sequential functions. This is sufficient to derive Theorem 4.8 and Theorem 5.2 as corollaries of Theorem A.6.

Proposition A.10. Let (Q, δ, q I , F) be a sequential transducter with transition monoid T describing a function f : Σ * → Π * . Suppose that (Q, T) strongly divides some faithful transformation monoid (X, M) (Y, N). Then there is an alphabet Ξ and transducers Proof. Let (Q, δ, q I , F) be the transducer under scrutiny. Let K ⊆ M Y × N such that ϕ : K T , s : X ×Y Q be the maps witnessing that (Q, T) strongly divides (X, M) (Y, N). We choose a pair (x I , y I) such that s(x I , y I) = q I and, for each a ∈ Σ, we choose an element (g a , n a) ∈ M Y × N which is mapped by ϕ to δ st (-, a) ∈ T . Set Ξ = (Σ { * }) × Y , (x I , y I) = s -1 (x, y) and F Y (y) (* , y) F X (x) = δ Y (y, a) = (y • m a , y) δ X (x, (a, y)) = (x • g a (y), δ out (s(x), a)) δ X (x, (* , y)) = (x, F (s(x, y)))

We leave checking that this defines transducers with the expected properties to the reader.

This generalizes to n-fold wreath products in the expected way.

Proposition A.11. Let T be the transition monoid of a sequential transducer with state space Q computing the function f : Σ * → Π * . Suppose that (Q, T) strongly divides some wreath product (X, M) = (X 1 , M 1) . . . (X n , M n) of faithful transformation monoids. Then f admits a decomposition f = f 1 • . . . • f n (with f i : Ξ * i → Ξ * i-1 , Ξ 0 = Π and Ξ n = Σ) such that for each i ∈ {1, . . . , n}, f i is computed by a sequential transducer whose transformation monoid embeds in M i and with state space X i .

Proof. By induction starting from n = 1.

For n = 1, let ϕ : K T and s : X Q be the maps witnessing that (Q, T) strongly divides (X, M). Let x I be such that s(x I) = q I , and, for each a ∈ Σ, pick an element m a ∈ K such that ϕ(m a) = δ st (-, a). Then, letting (Q, δ, q I , F) being the transducer under scrutiny, a suitable transducer (X, δ , x I , F) is defined by setting δ (x, a) = (x • m a , δ out (s(x), a)) and F (x) = F (s(x)). For n > 1, use Proposition A.10 and the induction hypothesis.

Proof of Theorems 4.8 and 5.2. Let (Q, δ, q I , F) be a transducter computing a certain sequential function f : Σ * → Π * and let T be its transition monoid. By Theorem A.6, there is a transformation monoid (Y, N) which can be written as a wreath product (Y, N) = (Y 1 , N 1) . . . (Y k , N k) such that (Q, T) strongly divides (Y, N), and the (Y i , N i) are either flipflops or groups (the latter case being ruled out for Theorem 4.8, thanks to Proposition A.5). By applying Proposition A.11, we may obtain transducers T i implementing sequential functions f i : Ξ * i → Ξ * i+1 such that Ξ 0 = Σ, Ξ k = Π and f = f k-1 • . . . • f 0 . Furthermore, we know that the state space of T i is Y i and that the corresponding transition monoid T i embeds into N i . Recalling that "being aperiodic" and "being a finite subgroup" are properties stable under homomorphic embeddings, we know that either Y i has cardinality 2 and T i is aperiodic with two states or T i is a group (a trivial group if T was aperiodic), thus we may conclude.

B

Omitted proofs

B.1 Proof of Lemma 2.8

The lemma follows from the more usual stability of typing judgments under type substitution. We write Γ[A] and ∆[B] for the obvious extension of Notation 1.2 to contexts. Proof. Routine induction on the typing derivation.

B.4 Proof of Lemma 4.2

Since L is star-free, L = ϕ -1 (P) for some ϕ ∈ Hom(Σ * , M) and P ⊆ M , where M is an aperiodic monoid. Here is a sequential transducer computing χ L : Q = M , q I = e (the identity element of M), δ(m, c) = (mϕ(c), ε), F (m) = 1 if m ∈ P and F (m) = ε otherwise. Its transition monoid is isomorphic to ϕ(Σ *) ⊆ M , which is aperiodic.

B.5 Proof of Lemma 4.3

The λ℘-term in question is nonempty = λ • s. s (λ • x. true) false.

C

Typing derivations for the proof of Lemma 4.10

Notation 1 . 2 .

 12 o with |Σ| arguments of type (o → o), where Σ is a finite alphabet. Moreover, given any other chosen type A, one can form the type Str Σ [A] by substituting A for the ground type o: For types A and B, we denote by B[A] the substitution B{o := A} of every occurrence of o in B by A.

Figure 1

 1 Figure 1 The typing rules of the λ℘-calculus (see Appendix C for examples of derivations).

Remark 2 . 7 .

 27 Actually, the λ℘-term not : λ • b. b false true : Bool[Bool]

Remark 2 . 9 .

 29 One final observation on Church encodings: when the context Γ of non-affine variables contains f c : o o for each c ∈ Σ, then any string w ∈ Σ * can be represented as the open λ℘-term Γ | . . . w † (f Σ) : o o in that context, and such strings can even be concatenated by function composition. The point is that this gives us a kind of purely affine type of strings, which will allow us in §4.2 to encode sequential transducers as λ℘-terms of type Str Σ [A]

Proposition 3 . 1 .

 31 and λ • x. x provides the identity element. The finiteness of this monoid for A purely affine comes from a slightly more general statement: For any purely affine type B, there are finitely many βη-equivalence classes of closed λ℘-terms of type B.

Theorem 4 . 1 .

 41 Any aperiodic sequential function Σ * → Π * can be expressed by a λ℘-term of type Str Σ [A]

Figure 2

 2 Figure2A schematic representation of a sequential transducer whose formal definition is Q = {qa, q b }, δ(q, a) = (qa, a) and δ(q, b) = (q b , bb) for q ∈ Q, qI = qa, F (qa) = ab and F (q b) = bbb.

Definition 4 . 5 .

 45 The transition monoid of a sequential transducer is the submonoid of Q → Q (endowed with reverse function composition: f g = g • f) generated by the maps {δ st (-, c) | c ∈ Σ} (where δ st (-

Example 4 . 6 .

 46 The transducer in Figure 2 computes f : w ∈ {a, b} * → a • ψ(w) • b where ψ is the monoid morphism that doubles every b: ψ(a) = a and ψ(b) = bb. Its transition monoid T is generated by G = {(δ st (-

Theorem 4 . 8 (

 48 Krohn-Rhodes decomposition, aperiodic case, cf. Appendix A). Any aperiodic sequential function f : Σ * → Π * can be realized as a composition

Lemma 4 . 10 .

 410 Any function Σ * → Π * computed by some aperiodic sequential transducer with 2 states can be expressed by some λ℘-term of type Str Σ[A]

 Moreover, this is linear in the following sense: given a fixed p ∈ M , each index j ∈ M is involved in the right-hand side of this formula for exactly one i ∈ M .Let ttt = λ • x. true : Bool Bool and fff = λ • x. x : Bool Bool. This makes the type B = Bool Bool into a kind of type of booleans that supports a disjunction of type B B B (by function composition) and a type-cast function of type B Bool (by applying to false). (Of course B has other closed inhabitants besides ttt and fff, but we only use those two.) Using this type and the "iteration+continuations" recipe of the proof of Lemma 4.10, one can define a λa-term of type Str Σ [A] Bool that decides the language L with A = B . . . B Bool (with |M | arguments of type B).

Remark 5 . 3 .Theorem 5 . 4 .

 5354 By Theorem 4.8, the aperiodic transducers among the f i can be further decomposed into two-state aperiodic transducers. Any sequential function Σ * → Π * can be expressed by some λa-term of type Str Σ[A]

 (2,2,0) = (o o o) → (o o o) → o → o. Remark 5.7. A string over an alphabet Σ = {c 1 , . . . , c |Σ| } can be seen as a tree with arities (c 1 : 1, . . . , c |Σ| : 1, ε : 0). This would lead to defining the type of Church-encoded strings as Str Σ = (o o) → . . . → (o o) → o → o. Our type Str Σ , which is the traditional choice in linear logic (see the discussion on Church numerals in [18, §5.3.2]), is a bit more precise since it expresses that such a "unary tree" can only contain one ε node. But as there exist conversion functions Str Σ Str Σ and Str Σ [o o]

(

 X, δ X , x I , F X) : Σ * → Ξ * and (Y, δ Y , y I , F Y) : Ξ * → Π * such that the sequential functions f X : Σ * → Ξ * and f Y : Ξ * → Π * that they respectively compute verify f = f X • f Y ;there are injective homomorphisms T X → M and T Y → N from their respective transition monoids.

Lemma B. 1 .

 1 If Γ | ∆ t : A, then, for every type B, we have Γ[B] | ∆[B] t : A[B].

Example 2.6. Given

 fact a bijection between the strings over Σ and the λ℘-terms u such that {f c : o o | c ∈ Σ} | ∅ u : o o and considered up to βη-conversion 10 . It follows from the above that w ∈ Σ * → w is a bijection from Σ * to the set of closed λ℘-terms of type Str Σ modulo βη. Finally, with the assumptions on t c of the first item, we have w t c1 . . . t c |Σ| -→ * β w † (t Σ). two closed λ℘-terms t a , t b : Bool Bool, one can define the term g = λ • s. s t a t b false : Str {a,b} [Bool] Bool. Then for any w = w[1] . . . w[n] ∈ {a, b} * , we have g w -→ * β w † (t {a,b}) false -→

* β t w[1] (. . . (t w[n] false)

 A, y 1 : B 1 , . . . , y m : B m x u 1 . . . u k : o. Lemma 3.5 gives us closed λ℘-terms t i : B i B i (i ∈ {1, . . . , k}) whose iterates eventually determine those of t. Since the type B i has size strictly smaller than A, the induction hypothesis applies: each ((t i) n) n∈N is eventually constant modulo βη. Therefore, this is also the case for t.Let us now apply Theorem 1.8 to the λ℘-terms defining languages. Let Σ = {c 1 , . . . , c |Σ| } be a finite alphabet, A be a purely affine type and t :Str Σ [A]Bool be a closed λ℘-term. Then there exist some closed λ℘-terms g c : A A for c ∈ Γ and h : (A A) Bool such that t = βη λ • s. h (s g c1 . . . g c |Σ|).

	we must have x : Lemma 3.6.	. . .	B m	o and

u k by application rule (we omit the non-affine context Γ which will always be empty during this proof). The abstraction rule only allows introducing λ • y i when (y i : B i) is on the right, so by then ∆ must have been entirely emptied out by previous abstractions. This means that λ • y i λ • y m . z u 1 . . . u k is a closed term, so in particular it contains no free occurrence of x: t is a constant function from A to A. So the sequence of iterations stabilizes from n = 1. z = x, which entails k = m since the variable x is of type A = B 1 Proof. By inspection of the normal form of t, see Appendix B.

The main difference between so-called linear and affine type systems is that the latter allow weakening, that is, to not use some argument. Typically, λx. λy. x is affine but not linear while λx. x x is neither linear nor affine. The type system that we use in this paper is affine, not strictly linear.

o o occurs |Σ| + 1 times in Str Σ : |Σ| arguments plus the output.

This connection with the sequential composition of processes can be seen as a sort of embodiment of Girard's slogan "time is the contents of non-commutative linear logic"[START_REF] Girard | Towards a geometry of interaction[END_REF] IV.6]. But generally, these works follow a "proof search as computation" paradigm (logic programming) rather than "normalization as computation" (functional programming).

Hence our choice of name: the "Weierstraß P" character '℘' in 'λ℘' stands for "planar".

Γ {x : A} | ∅ x : A Γ | ∆ t : A → B Γ | ∅ u : A Γ | ∆ t u : B Γ {x : A} | ∆ t : B Γ | ∆ λ x. t : A → B Γ | x : A x : A Γ | ∆ t : A B Γ | ∆ u : A Γ | ∆ • ∆ t u : B Γ | ∆ • (x : A) t : B

Our '→' and ' ' are called "intuitionistic functions" and "right ordered functions" in[START_REF] Polakow | Natural deduction for intuitionistic non-communicative linear logic[END_REF]; we have no counterpart for the "linear [commutative] functions" and "left ordered functions" in the λ℘-calculus.

The only difference is that we drop the linear commutative context.

Usually, the linear/affine distinction does not matter for implicit computational complexity if we allow collecting the garbage produced during the computation in a designated part of the output, as in e.g.[START_REF] Laurent | Polynomial time in untyped elementary linear logic[END_REF]. But non-commutativity obstructs the free movement of garbage.

η-conversion is necessary to identify λ f. f : Str {a} with a = λ f. λ • x. f x : Str {a} .

This is indeed a • ψ(s) and not a • ψ(s) = a • ψ(s) • bb. If the input turns out to end there, the final output function will provide the missing suffixF (q b) = bbb to obtain f (s) = a • ψ(s) • b = a • ψ(s) • bbb.

The elaboration of the corresponding λa-term is left to the reader. Keep in mind that the reason this term will not be well-typed for the λ℘-calculus is that the inversions in the permutation δ st (-, c) correspond to violations of non-commutative typing.5.2 Extension with additive pairsLet's look at what happens if we add the additive conjunction connective of linear logic to the λ℘-calculus. The λ℘ & -calculus is obtained by adding A, B ::= . . . | A & B to the grammar of types and t, u ::= . . . | t, u | π 1 t | π 2 t for terms, with the typing rulesΓ | ∆ t : A Γ | ∆ u : B Γ | ∆ t, u : A & B Γ | ∆ t : A 1 & A 2 Γ | ∆ π i t : A i (see [39, §4])the β-reduction rules π i t 1 , t 2 -→ β t i , and the corresponding η-conversion rules.

Koichi Kodama, Kohei Suenaga, and Naoki Kobayashi. Translation of tree-processing programs into stream-processing programs based on ordered linear type. Journal of Functional Programming, 18(3):333-371, 2008. doi:10.1017/S0956796807006570.

Aperiodicity in a non-commutative logic

We set Γ = {f a : S | a ∈ Π}. Recall that S = o o, T = S S and A = T T S.C.1 cat = λ • w. λ • w . λ • x. w (w x) Γ | w : S w : S = o o Γ | w : S w : S = o o Γ | x : o x : o Γ | w : S, x : o w x : o Γ | w : S, w : S, x : o w (w x) : o Γ | w : S, w : S λ • x. w (w x) : o o Γ | w : S λ • w . λ • x. w (w x) : S o o Γ | ∅ λ • w. λ • w . λ • x. w (w x) : S S o o

First of all, for q ∈ Q = {1, 2}, since u q = δ out (q, c) † (f Π) and (f a : o o) ∈ Γ for all a ∈ Π, by Proposition 2.5 we have Γ | ∅ u q : o o. We start by typing a subterm:Γ | h : T h : T [see Appendix C.1] Γ | ∅ cat : S S S [see above] Γ | ∅ u 1 : S Γ | y : S catu 1 y : S S Γ | y : S y : S Γ | y : S cat u 1 y : S Γ | h : T = S S, y : S h (cat u 1 y) : S Γ | h : T λ • y. h (cat u 1 y) : S S = T

A

Reminder: the Krohn-Rhodes decomposition theorems, from transformation monoids to sequential transducers While we have not found a source with a proof for the precise versions of the Krohn-Rhodes theorem for sequential functions that we use, all the material covered in this subsection is well-known among practitioners of automata theory. In other words, we make no claim to originality.

Definition A.1. A transformation monoid (X, M) consists of a set X, a monoid M and a right action of M on X (kept implicit in the notation (X, M), and denoted by (x, m) → x•m). It is finite when both X and M are finite.

Typical transformation monoids are obtained by considering pairs (Q, T) such that Q is the state space of some transducer (Q, δ, q I , F) and T is its transition monoid, acting on Q via function application. Definition A.2. Let (X, M) and (Y, N) be two transformation monoids. Their wreath product is a transformation monoid

, nk) -it is chosen so that the above item is a legitimate monoid action.

Proposition A.3. The wreath product of transformation monoids is associative up to canonical isomorphism.

Proof sketch. We give a direct description of (

Picturing Lemma B.1 as an admissible typing rule (dashed inference line), we have

we can apply the induction hypothesis to reduce to a case with m = 0 i.e. A = o and t = u. We assume these conditions for the rest of the proof.

Let t be in head normal form: t = z v 1 . . . v p . There are finitely many possible choices for z in ∆. Suppose we make one of these choices:

The induction hypothesis then applies to show that there are finitely many possibilities for v i : the fact that the variable z can only be used once means that a typing judgment of the form ∆ i v i : E i for some subsequence ∆ i of ∆ \ {z} must necessarily be proven as part of the typing derivation for t. This concludes the proof.

The reader may verify that our arguments can be applied verbatim to the commutative λa-calculus of §5.

B.3 Proof of Lemma 3.6

The β-normal η-long form of a closed λ℘-term t of type

y}, then n = 0 and t is a constant function from strings to booleans: the statement of Lemma 3.6 is true with g c = λ • a. a and h = λ • f. λ • x. λ • y. z (the latter is the constant function equal to either true or false depending on whether z = x or z = y) or, said explicitly

In the remaining case z = s, the t i must be closed λ℘-terms for i ≤ |Σ|. That is because if they contained any free variable, it would necessarily be either x or y, so it would be an affine variable. But since s : (A A) → . .

. → (A A) → A

A is non-affine in its |Σ| first arguments, the dependency on this non-affine variable would contradict the elimination rule for '→' (cf. Figure 1) which requires the emptiness of the affine context for the argument -this is analogous to the condition for the promotion rule of linear logic. This ensures that one can take g ci = t i for i ∈ {1, . . . , |Σ|}. To conclude, observe that h = λ • f. λ • x. λ • y. f t |Σ|+1 . . . t n works (s t 1 . . . t n already uses the affine variable s once, so the t j for j ∈ {|Σ| + 1, . . . , n} can only have x and y as free variables).

Similarly, Γ | g : T λ • z. g (cat u 2 z) : T . We can now type the full term, using A = T S S, so that k : T S S. For the same reason, the conclusion of the following derivation tree is indeed what we want:

Aperiodicity vs non-commutativity, concretely Let us substantiate the claim made in the main text that if the transition monoid on our two states were not aperiodic -that is, if for some c ∈ Σ we had δ(q, c) = 3 -q -we would encounter a problem with non-commutative typing. The corresponding λ℘-term that we would want to write is very similar the the one we just successfully typed above:

Its typing derivation must end with . . .

The next rule cannot be a weakening since k, h, g all occur as affine free variables in the λ℘-term k (λ • y. g (cat u 2 y)) (λ • z. h (cat u 1 z)). Therefore, we must have, for some type R and some affine contexts ∆, ∆ such that ∆ • ∆ = (k : A, h : T, g : T), But this would lead to a contradiction: g ∈ (FV(k (λ • y. g (cat u 2 y))) \ Γ) ⊆ ∆ and h ∈ ∆ so (g, h) would be an ordered subsequence of (k, h, g).