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Abstract11

We give a characterization of star-free languages in a λ-calculus with support for non-commutative12

affine types (in the sense of linear logic), via the algebraic characterization of the former using13

aperiodic monoids. When the type system is made commutative, we show that we get regular14

languages instead. A key ingredient in our approach – that it shares with higher-order model15

checking – is the use of Church encodings for inputs and outputs. Our result is, to our knowledge,16

the first use of non-commutativity to control the expressible functions in a programming language.17
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2 Aperiodicity in a non-commutative logic

1 Introduction33

A type-theoretic implicit automata theory This paper explores connections between the34

languages recognized by automata and those definable in certain typed λ-calculi (minimalistic35

functional programming languages). It is intended to be the first in a series, whose next36

installments will investigate the functions computable by transducers (automata with output,37

see e.g. [14, 32]). Insofar as programming language theory is related to proof theory, via the38

Curry–Howard correspondence, we are therefore trying to bridge logic and automata. That39

said, our work does not fit in the “logics as specification languages” paradigm, exemplified40

by the equivalence of recognition by finite-state automata and Monadic Second-Order Logic41

(MSO). One could sum up the difference by analogy with the two main approaches to42

machine-free complexity: implicit computational complexity (ICC) and descriptive complexity.43

Both aim to characterize complexity classes without reference to a machine model, but the44

methods of ICC have a more computational flavor.45

programming paradigm declarative functional
complexity classes Descriptive Complexity Implicit Computational Complexity
automata theory subsystems of MSO this paper (and planned sequels)

46

To our knowledge, very few works have looked at this kind of “type-theoretic” or “proof-47

theoretic” ICC for automata. Let us mention a few recent papers [40, 25] concerning48

multi-head automata, and, most importantly, a remarkable result from 1996 that provides49

our starting point:50

I Theorem 1.1 (Hillebrand & Kanellakis [22, Theorem 3.4]). A language L ⊆ Σ∗ can be51

defined in the simply typed λ-calculus by some closed λ-term of type StrΣ[A]→ Bool for52

some type A (that may depend on L) if and only if it is a regular language.53

Let us explain this statement. We consider a grammar of simple types with a single base54

type: A,B ::= o | A→ B, and use the Church encodings of booleans and strings:55

Bool = o→ o→ o StrΣ = (o→ o)→ . . .→ (o→ o)→ o→ o56

with |Σ| arguments of type (o→ o), where Σ is a finite alphabet. Moreover, given any other57

chosen type A, one can form the type StrΣ[A] by substituting A for the ground type o:58

I Notation 1.2. For types A and B, we denote by B[A] the substitution B{o := A} of every59

occurrence of o in B by A.60

Every closed λ-term t of type StrΣ can also be seen as a term of type StrΣ[A]. (This is a61

way to simulate a modicum of parametric polymorphism in a monomorphic type system.)62

It follows that any closed λ-term of type StrΓ[A] → Bool in the simply typed λ-calculus63

defines a predicate on strings, i.e. a language L ⊆ Σ∗.64

Although little-known2, Hillebrand and Kanellakis’s theorem should not be surprising65

in retrospect: there are strong connections between Church encodings and automata (see66

e.g. [39, 42, 30]), that have been exploited in particular in higher-order model checking for67

the past 15 years [2, 34, 23, 19, 21, 43]. This is not a mere contrivance: these encodings have68

been a canonical data representation for λ-calculi for much longer3.69

2 See e.g. Damiano Mazza’s answer to this MathOverflow question: https://mathoverflow.net/q/296879
3 They were introduced for booleans and integers by Church in the 1930s, and later generalized by Böhm

and Berarducci [10], see also http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html.
(Similar ideas appear around the same time in [28].) As for the refined encodings with linear types that
we use later, they already appear in Girard’s founding paper on linear logic [15, §5.3.3].

https://mathoverflow.net/q/296879
http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
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Star-free languages We would like to extend this result by characterizing strict subclasses of70

regular languages, the most famous being the star-free languages. Recall that the canonicity71

of the class of regular languages is firmly established by its various definitions: regular72

expressions, finite automata, definability in MSO and the algebraic characterization.73

I Theorem 1.3 (classical). A language L ⊆ Σ∗ is regular if and only if for some finite monoid74

M , some subset P ⊆M and some monoid morphism ϕ ∈ Hom(Σ∗,M), L = ϕ−1(P ).75

Similarly, the seminal work of Schützenberger, Petrone, McNaughton and Papert in the76

1960s (see [41] for a historical discussion) has led to many equivalent definitions for star-free77

languages, with the algebraic notion of aperiodicity playing a key role:78

IDefinition 1.4. A monoidM is aperiodic when any sequence of iterated powers is eventually79

constant, i.e. for any x ∈M there exists an exponent n ∈ N such that xn = xn+1.80

I Theorem 1.5 (cf. [41]). For a language L ⊆ Σ∗, the following conditions are equivalent:81

L is defined by some star-free regular expression: E,E′ ::= ∅ | {a} | E ∪ E′ | E · E′ | Ec82

where a can be any letter in Σ and Ec denotes the complement of E (JEcK = Σ∗ \ JEK);83

L = ϕ−1(P ) for some finite and aperiodic monoid M , some subset P ⊆ M and some84

monoid morphism ϕ ∈ Hom(Σ∗,M);85

L is recognized by a deterministic finite automaton whose transition monoid is aperiodic;86

L is definable in first-order logic.87

Attempting to capture star-free languages in a λ-calculus presents a serious methodological88

challenge: they form a strict subclass of uniform AC0, and, as far as we know, type-theoretic89

ICC has never managed before to characterize complexity classes as small as this.90

Non-commutative affine types Monoids appear in typed λ-calculi when one looks at the91

functions from a type A to itself, i.e. at the (closed) terms of type A→ A. At first glance, it92

seems difficult indeed to enforce the aperiodicity of such monoids via a type system. For93

instance, one needs to rule out not = λb. λx. λy. b y x : Bool→ Bool since it has period two.94

Observe that not essentially exchanges the two arguments of b; to exclude it, we are therefore95

led to require functions to use their arguments in the same order that they are given in.96

It is well-known that in order to make such a non-commutative λ-calculus work – in97

particular to ensure that non-commutative λ-terms are closed under β-reduction – one98

needs to make the type system affine, that is, to restrict the duplication of data. This is99

achieved by considering a type system based on Girard’s linear4 logic [15], a system whose100

“resource-sensitive” nature has been previously exploited in ICC [18, 17]. Not coincidentally,101

the theme of non-commutativity first appeared in a form of linear logic ante litteram, namely102

the Lambek calculus [26], and resurfaced shortly after the official birth of linear logic: it is103

already mentioned by Girard in a 1987 colloquium [16].104

We shall therefore introduce and use a variant of Polakow and Pfenning’s Intuitionistic105

Non-Commutative Linear Logic [35, 36], making a distinction between two kinds of function106

arrows: A( B and A → B are, respectively, the types of affine functions and non-affine107

functions from A to B. Accordingly:108

I Definition 1.6. A type is said to be purely affine if it does not contain the ‘→’ connective.109

4 The main difference between so-called linear and affine type systems is that the latter allow weakening,
that is, to not use some argument. Typically, λx. λy. x is affine but not linear while λx. x x is neither
linear nor affine. The type system that we use in this paper is affine, not strictly linear.
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In our system that we call the λ℘-calculus, the types of Church encodings become110

Bool = o( o( o StrΣ = (o( o)→ . . .→ (o( o)→ (o( o)111

where StrΣ has |Σ| arguments of type (o ( o). Setting true = λ◦x. λ◦y. x : Bool and112

false = λ◦x. λ◦y. y : Bool for the rest of the paper, we can now state our main result:113

I Theorem 1.7. A language L ⊆ Σ∗ is star-free if and only if it can be defined by a closed114

λ℘-term of type StrΣ[A]( Bool for some purely affine type A (that may depend on L).115

However, if we use the commutative variant of the λ℘-calculus instead, then what we get is116

the class of regular languages (Theorem 5.1), just as in Hillebrand and Kanellakis’s theorem.117

As far as we know, this result on the computational power of a non-commutative λ-calculus118

is the first of its kind, despite the age of the subject. Previous works on non-commutative119

types indeed tend to see λ-terms (or proof nets) as static objects, and to focus on their120

topological aspects (e.g. [5, 44, 31]), though there is another tradition relating self-dual121

non-commutativity to process algebras [37, 20].122

Proof strategy As usual in implicit computational complexity, the proof of Theorem 1.7123

consists of a soundness part – “every λ℘-definable language is star-free” – and an extensional124

completeness part – the converse implication. In our case, soundness is a corollary of the125

following property of the purely affine fragment of the λ℘-calculus – what one might call the126

planar affine λ-calculus (cf. [1, 44]):127

I Theorem 1.8 (proved in §3). For any purely affine type A, the set of closed λ℘-terms128

of type A ( A, quotiented by βη-convertibility and endowed with function composition129

(f ◦ g = λ◦x. f (g x)), is a finite and aperiodic monoid.130

Extensional completeness turns out here to be somewhat deeper than the “programming131

exercise of limited theoretical interest” [29, p. 137] that one generally finds in ICC. Indeed, we132

have only managed to encode star-free languages in the λ℘-calculus by relying on a powerful133

tool from semigroup theory: the Krohn–Rhodes decomposition [24].134

Plan of the paper After having defined the λ℘-calculus in §2, we prove Theorem 1.7:135

soundness is treated in §3 and extensional completeness in §4. Then we discuss the analogous136

results for the commutative variant of the λ℘-calculus and its extension with additives (§5),137

and finally our plans for the next papers in the series (§6).138

Prerequisites We assume that the reader is familiar with the basics of λ-calculi and type139

systems, but require no prior knowledge of automata theory. This choice is motivated by the140

impression that it is more difficult to introduce the former than the latter in a limited number141

of pages. Nevertheless, we hope that our results will be of interest to both communities.142

2 Preliminaries: the λ℘-calculus and Church encodings143

The terms and types of the λ℘-calculus are defined by the respective grammars144

A,B ::= o | A→ B | A( B t, u ::= x | t u | λ�x. t | λ◦x. t145

As always, the λ℘ terms are identified up to α-equivalence (both λ� and λ◦ are binders).146

There are two rules for β-reduction (closed under contexts)147

(λ�x. t)u −→β t{x := u} (λ◦x. t)u −→β t{x := u}148
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Γ ] {x : A} | ∅ ` x : A
Γ | ∆ ` t : A→ B Γ | ∅ ` u : A

Γ | ∆ ` t u : B
Γ ] {x : A} | ∆ ` t : B
Γ | ∆ ` λ�x. t : A→ B

Γ | x : A ` x : A
Γ | ∆ ` t : A( B Γ | ∆′ ` u : A

Γ | ∆ ·∆′ ` t u : B
Γ | ∆ · (x : A) ` t : B

Γ | ∆ ` λ◦x. t : A( B

Γ | ∆ ` t : A
Γ | ∆′ ` t : A

when ∆ is a subsequence of ∆′

Figure 1 The typing rules of the λ℘-calculus.

and the remaining conversion rules are the expected η-reduction/η-expansion rules.149

The typing judgements make use of dual contexts (a common feature originating in [6]):150

they are of the form Γ | ∆ ` t : A where t is a term, A is a type, Γ is a set of bindings of the151

form x : B (x being a variable and B a type), and ∆ is an ordered list of bindings – this152

order is essential for non-commutativity. The typing rules are given in Figure 1, where ∆ ·∆′153

denotes the concatenation of the ordered lists ∆ and ∆′. For both Γ,Γ′, . . . and ∆,∆′, . . . we154

require each variable to appear at most once on the left of a colon.155

I Remark 2.1. Unlike Polakow and Pfenning’s system [35, 36], the λ℘-calculus:156

contains two function types instead of four5;157

is affine instead of linear (all functions can discard arguments) – this seems important to158

get enough expressive power for our purposes6.159

I Remark 2.2. Morally, the non-affine variables “commute with everything”. More formally,160

one could translate the λ℘-calculus into a non-commutative version of Intuitionistic Affine161

Logic whose exponential modality ‘!’ incorporates the customary rules162

Γ, !A,B,∆ ` C
Γ, B, !A,∆ ` C

Γ, B, !A,∆ ` C
Γ, !A,B,∆ ` C163

I Proposition 2.3. The λ℘-calculus enjoys subject reduction and admits normal forms (that164

is, every well-typed λ℘-term is convertible to a β-normal η-long one).165

Proof sketch. This is routine: subject reduction follows from a case analysis, while the fact166

that the simply typed λ-calculus has normal forms entails that the λ℘-calculus also does167

(the obvious translation preserves the β-reduction and η-expansion relations). J168

We have already seen the type StrΣ = (o ( o) → . . . → (o ( o) → (o ( o) of169

Church-encoded strings in the introduction. Let us now introduce the term-level encodings:170

I Definition 2.4. Let Σ be a finite alphabet, w = w[1] . . . w[n] ∈ Σ∗ be a string, and for each171

c ∈ Σ, let tc be a λ℘-term. We abbreviate the family (tc)c∈Σ as ~tΣ, and define the λ℘-term172

w†(~tΣ) = λ◦x. tw[1] (. . . (tw[n] x) . . .).173

5 Our ‘→’ and ‘(’ are called “intuitionistic functions” and “right ordered functions” in [35]; we have no
counterpart for the “linear [commutative] functions” and “left ordered functions” in the λ℘-calculus.

6 Usually, the linear/affine distinction does not matter for implicit computational complexity if we allow
collecting the garbage produced during the computation in a designated part of the output, as in
e.g. [27]. But non-commutativity obstructs the free movement of garbage.
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Given a total order on the alphabet Σ = {c1, . . . , c|Σ|}, the Church encoding of any string174

w ∈ Σ∗ is w = λ�fc1 . . . . λ
�fc|Σ| . w

†(~fΣ).175

We now summarize the classical properties of the Church encoding of strings.176

I Proposition 2.5. We reuse the notations of the above definition.177

If, for some type A and some context Γ | ∆ independent of c, we have Γ | ∆ ` tc : A( A178

for all c ∈ Σ, then Γ | ∆ ` w†(~tΣ) : A( A.179

Furthermore, for any choice of variables (fc)c∈Σ, there is a bijection between the strings180

over Σ and the λ℘-terms u such that {fc : o( o | c ∈ Σ} | ∅ ` u : o( o and considered up181

to βη-conversion, given by w ∈ Σ∗ 7→ w†(~xΣ).182

It follows from the above that w ∈ Σ∗ 7→ w is a bijection from Σ∗ to the set of closed183

λ℘-terms of type StrΣ modulo βη. Finally, we have w tc1 . . . tc|Σ| −→∗β w†(~tΣ).184

I Remark 2.6. For Σ = {a}, η-conversion is necessary to identify λ�f. f : StrΣ with a.185

I Remark 2.7. Our presentation of Church encodings stresses the role of open terms. Indeed,186

it is important to note that when the context Γ of non-affine variables contains fc : o( o187

for each c ∈ Σ, then any string can be represented as a term of type o( o in that context,188

and such strings can even be concatenated by function composition. This gives us a kind of189

purely affine type of strings, which will allow us in §4.2 to encode sequential transducers as190

λ℘-terms of type StrΣ[A]( StrΠ for some purely affine type A (compare Theorem 1.7).191

3 Proof of soundness192

We start by demonstrating how non-commutativity entails aperiodicity.193

Proof of Theorem 1.8. The monoid structure is obvious (the identity element is λ◦x. x),194

and it is well-known that in an affine type system, any purely affine type has finitely many195

βη-equivalence classes of closed inhabitants (here non-commutativity plays no role). Therefore,196

the remainder of the proof concerns aperiodicity.197

Let t : A( A; our goal is to show that the sequence tn = t ◦ . . . ◦ t =β λ
◦x. t (. . . (t x) . . .)198

is eventually constant modulo βη. We shall do so by induction on the size of A. The type A199

is purely affine by assumption, and can therefore be written as B1 ( . . .( Bm( o. The200

base case m = 0 being trivial, we assume m ≥ 1. In this case, t has an η-long β-normal form201

t = λ◦x. λ◦y1. . . . λ
◦ym. z u1 . . . uk202

Assume first that z = yi for some i. Then (yi : Bi) ·∆ ` z u1 . . . uk by application rule (we203

omit the non-affine context Γ which will always be empty during this proof). The abstraction204

rule only allows introducing λ◦yi when (yi : Bi) is on the right, so by then ∆ must have been205

entirely emptied out by previous abstractions. This means that λ◦yi. . . . λ◦ym. z u1 . . . uk is206

a closed term, so in particular it contains no free occurrence of x: t is a constant function207

from A to A. So in the case z = yi the sequence of iterations stabilizes from n = 1.208

From now on we can assume that z = x, which entails k = m since the variable x is of type209

A = B1 ( . . .( Bm ( o and we must have x : A, y1 : B1, . . . , ym : Bm ` xu1 . . . uk : o.210

By a straightforward induction, for n ∈ N, tn is βη-convertible to211

λ◦x. λ◦y1. . . . λ
◦yk. x u

(n)
1 . . . u

(n)
k where ~u(0) = (y1, . . . , yk), ~u(n+1) = ~u(n)[~y := ~u]212

Here ~u = (u1, . . . , uk) and ~u(n) are k-tuples of λ℘-terms. The notation [~y := ~u] denotes a213

parallel substitution, applied componentwise to ~u(n); in other words214

~u
(n+1)
i = ~u

(n)
i [y1 := u1, . . . , yk := uk] for i ∈ {1, . . . , k}215
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Thus, the question becomes: is the sequence of (~u(n))n∈N eventually constant modulo βη?216

To reach a positive answer, let us define the partial function µ~u : {1, . . . , k}⇀ {1, . . . , k}217

by µ~u(i) = j ⇐⇒ yi ∈ FV(uj). (FV(u) denotes the set of free variables of u.) The218

relation on the right-hand side of the equivalence is indeed a partial function because of219

the affineness of t = λ◦x. λ◦y1. . . . λ
◦yk. z u1 . . . uk. One can also show that for all n ∈ N,220

FV(u(n)
i ) = {yj | (µ~u)n(j) = i}.221

As a consequence of non-commutativity, µ~u is non-decreasing. This is because for the222

typing judgment on xu1 . . . uk to hold, there must exist ∆1, . . . ,∆k such that:223

for all j ∈ {1, . . . , k}, ∆j ` uj and ∀i, yi ∈ FV(uj) ⇐⇒ (yi : Bi) ∈ ∆j ;224

∆1 · . . . ·∆k is an ordered subsequence of (y1 : B1) · . . . · (yk : Bk).225

Therefore, for any i ∈ {1, . . . , k}, the sequence ((µ~u)n(i))n∈N is either non-increasing or non-226

decreasing as long as it is defined; so at some iteration n = Ni, either it becomes undefined227

or it reaches a fixed point of µ~u. By taking N = max1≤i≤kNi, we have (µ~u)N = (µ~u)N+1.228

Next, let i ∈ {1, . . . , k}. Recall that our goal is to prove that (u(n)
i )n∈N is eventually229

constant modulo βη. The simple case is when i /∈ (µ~u)N ({1, . . . , k}): u(N)
i has no free230

variables, so u(N+1)
i = u

(N)
i [~y := ~u] = u

(N)
i . For the remainder of the proof we assume231

otherwise, that is, we take i in the range of (µ~u)N .232

First, ~u(n+1) = ~u[~y := ~u(n)] because parallel substitution is associative7. Thus,233

∀n ∈ N, u(N+n+1)
i = ui

[
yj := u

(N+n)
j for j ∈ {1, . . . , k} such that µ~u(j) = i

]
234

Any j ∈ {1, . . . , k} \ {i} such that µ~u(j) = i is not a fixed point of µ~u, and therefore is not in235

the range of (µ~u)N since (µ~u)N = (µ~u)N+1 = µ~u ◦ (µ~u)N . By the simple case already treated,236

we then have u(N+n)
j = u

(N)
j . This allows us to write the above equation as237

u
(N+n+1)
i = ri[yi := u

(N+n)
i ] where ri = ui

[
yj := u

(N)
j for j 6= i s.t. µ~u(j) = i

]
238

Using β-conversion, u(N+n+1)
i =β (λ◦yi. ri)u(N+n)

i . So we just have to make sure that239

the sequence of iterates of the λ℘-term λ◦yi. ri : Bi( Bi is eventually constant modulo βη.240

Since the type Bi has size strictly smaller than A, the induction hypothesis applies. (It is241

clear that λ◦yi. ri is closed, but one should check that it is well-typed; to do so, one convenient242

observation is that the u(N)
j are closed (because j /∈ (µ~u)N ({1, . . . , k})) and well-typed (as243

closed subterms of a reduct of the N -fold composition tN ).) J244

After this, we must analyze the form of a closed λ℘-term of type StrΓ[A]( Bool.245

I Lemma 3.1. Let Σ = {c1, . . . , c|Σ|} be a finite alphabet, A be a purely affine type and246

t : StrΓ[A]( Bool be a closed λ℘-term. Then there exist some closed λ℘-terms gc : A( A247

for c ∈ Γ and h : (A( A)( Bool such that t =βη λ
◦s. h (s gc1 . . . gc|Σ|).248

Proof. By inspection of the normal form of t, see Appendix B.1. J249

Reusing the notations of this lemma, let us define250

ϕ : w = w[1] . . . w[n] ∈ Σ∗ 7→ λ◦x. gw[1] (. . . (gw[n] x)) ∈ {v | v : A( A}/=βη251

ϕ is a monoid morphism and ϕ−1({v | h v =βη true}) is none other than the language defined252

by the t : StrΣ[A]( Bool in the lemma. Since the codomain of ϕ is finite and aperiodic by253

Theorem 1.8, L is a star-free language. This proves the soundness part of Theorem 1.7.254

7 More precisely, (~t1[~x := ~t2])[~y := ~t3] = ~t1[~x := ~t2[~y := ~t3]] when ~y ∩ (FV(~t1) \ ~x) = ∅.
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4 Expressiveness of the λ℘-calculus255

We now turn to the extensional completeness part in Theorem 1.7. To prove it, the most256

convenient way that we have found is to take a detour through automata that compute an257

output string instead of a single bit (acceptance/rejection). We will define the notion of258

aperiodic sequential function, and then establish that:259

I Theorem 4.1. Any aperiodic sequential function Σ∗ → Π∗ can be expressed by a λ℘-term260

of type StrΣ[A]( StrΠ for some purely affine type A.261

A few straightforward lemmas, whose proof may be found in Appendix B, allow us to deduce262

immediately the desired extensional completeness result:263

I Lemma 4.2. If a language L ⊆ Σ∗ is star-free, then its indicator function χL : Σ∗ → {1}∗,264

defined by χL(w) = 1 if w ∈ L and χL(w) = ε otherwise, is aperiodic sequential.265

I Lemma 4.3. There exists a λ℘-term of type Str{1}[Bool]( Bool that tests whether its266

input string is non-empty.267

I Lemma 4.4. If ` t : A[T ]( B and ` u : B[U ]( C, then ` λ◦x. u (t x) : A[T [U ]]( C.268

This composition lemma is also involved in the proof of Theorem 4.1. Our proof strategy269

will indeed consist in encoding small “building blocks” for aperiodic sequential functions and270

composing them together, thanks to the Krohn–Rhodes decomposition (Theorem 4.8).271

4.1 Reminders on automata theory272

Sequential transducers are among the simplest models of automata with output. They are273

deterministic finite automata which can append a word to their output at each transition,274

and at the end, they can add a suffix to the output depending on the final state. The275

definition is classical; a possible reference is [38, Chapter V].276

I Definition 4.5. A sequential transducer with input alphabet Σ and output alphabet Π277

consists of a set of states Q, a transition function δ : Q × Σ → Q × Π∗, an initial state278

qI ∈ Q, and a final output function F : Q → Π∗. We abbreviate δi = πi ◦ δ for i ∈ {1, 2},279

where π1 : Q×Π∗ → Q and π2 : Q×Π∗ → Π∗ are the projections of the product.280

Given an input string w = w[1] . . . w[n] ∈ Σ∗, the run of the transducer over w is the281

sequence of states q0 = qI , q1 = δ1(q0, w[1]), . . . , qn = δ1(qn−1, w[n]). Its output is obtained282

as the concatenation δ2(q0, w[1]) · . . . · δ2(qn−1, w[n]) · F (qn).283

A sequential function is a function Σ∗ → Π∗ computed as described above by some284

sequential transducer.285

I Definition 4.6. The transition monoid of a sequential transducer is the submonoid of286

Q → Q (endowed with reverse function composition: fg = g ◦ f) generated by the maps287

{δ1(−, c) | c ∈ Σ} (where δ1(−, c) stands for q 7→ δ1(q, c)).288

A sequential transducer is said to be aperiodic when its transition monoid is aperiodic. A289

function that can be computed by such a transducer is called an aperiodic sequential function.290

I Remark 4.7. The converse to Lemma 4.2 is also true; more generally, the preimage of a291

star-free language by an aperiodic sequential function is star-free, and the preimage of a292

regular language is regular. But we will not need this here.293
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I Theorem 4.8 (Krohn–Rhodes decomposition, aperiodic case, cf. Appendix A). Any aperiodic294

sequential function f : Σ∗ → Π∗ can be realized as a composition f = f1 ◦ . . . ◦ fn (with295

fi : Ξ∗i → Ξ∗i−1, Ξ0 = Π and Ξn = Σ) where each function fi is computed by some aperiodic296

sequential transducer with 2 states.297

I Remark 4.9. This is not the standard way to state this theorem, though one may find it in298

the literature, usually without proof (e.g. [9, §1.1]); see [8] for a tutorial containing a proof299

sketch of this version. In Appendix A, we show how Theorem 4.8 follows from the more300

usual statement on wreath products of monoid actions.301

4.2 Encoding aperiodic sequential transducers302

Thanks to the Krohn–Rhodes decomposition and to the fact that the string functions303

definable in the λ℘-calculus (as specified by Theorem 4.1) are closed under composition (by304

Lemma 4.4), the following entails Theorem 4.1, thus concluding our completeness proof.305

I Lemma 4.10. Any function Σ∗ → Π∗ computed by some aperiodic sequential transducer306

with 2 states can be expressed by some λ℘-term of type StrΣ[A]( StrΠ, for a purely affine307

type A depending on the function.308

Proof. Let us start by exposing the rough idea of the trick using set-theoretic maps. We309

reuse the notations of Definition 4.5 and assume w.l.o.g. that the set of states is Q = {1, 2}.310

Suppose that at some point, after processing a prefix of the input, the transducer has arrived311

in state 1 (resp. 2) and in the meantime has outputted w ∈ Π∗. We can represent this by the312

pair (κw, ζ) (resp. (ζ, κw)) where ζ, κw : Π∗ → Π∗ are defined by ζ : x 7→ ε and κw : x 7→ wx.313

Some key observations are314

ζ ◦ κw = ζ κw ◦ κw′ = κww′ κw(w′)ζ(w′′) = ζ(w′′)κw(w′) = ww′315

Now, consider an input letter c ∈ Σ; how to encode the corresponding transition δ(−, c) as a316

transformation on the pair encoding the current state and output history? It depends on the317

state transition δ1(−, c); we have thanks to the above identities:318

(h, g) 7→ (h ◦ κδ2(1,c), g ◦ κδ2(2,c)) when δ1(−, c) = id;319

(h, g) 7→ (κh(δ2(1,c))g(δ2(2,c)), ζ) when δ1(−, c) : q′ 7→ 1 (note that h = ζ xor g = ζ);320

(h, g) 7→ (ζ, κh(δ2(1,c))g(δ2(2,c))) when δ1(−, c) : q′ 7→ 2;321

Crucially, the remaining case δ1(−, c) : q 7→ 3− q is excluded by aperiodicity.322

Next, we must transpose these ideas to the setting of the λ℘-calculus. We define the term of323

type StrΣ[A]( StrΠ meant to compute our sequential function as324

λ◦s. λ�fa1 . . . . λ
�fa|Π| . out (s transc1 . . . transc|Σ|)325

where Σ = {c1, . . . , c|Σ|}, Π = {a1, . . . , a|Π|} and, writing Γ = {fa : o( o | a ∈ Π},326

Γ | ∅ ` transc : A( A (for all c ∈ Σ) Γ | ∅ ` out : (A( A)( (o( o)327

In the presence of this non-affine context Γ, the type S = o( o morally serves as a purely328

affine type of strings, as mentioned in Remark 2.7. Moreover this “contextual encoding of329

strings” supports concatenation (by function composition), leading us to represent the maps330

ζ and κw as open terms of type T = S ( S that use non-affinely the variables fa for a ∈ Π.331

We shall take the type A, at which the input StrΣ is instantiated, to be A = T ( T ( S,332

which is indeed purely affine as required by the theorem statement. This can be seen morally333

as a type of continuations taking pairs of type T ⊗T (although our λ℘-calculus has no actual334

⊗ connective). Without further ado, let us program:335
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concat : λ◦w. λ◦w′. λ◦x.w (w′ x) : S ( S ( o( o = S ( S ( S = S ( T plays the336

roles of both the concatenation operator and of w 7→ κw (thanks to currying)337

zeta = λ◦w′. λ◦x. x : S ( o( o = T338

uq = δ2(q, c)†(~fΠ) (cf. Definition 2.4) represents the output word δ2(q, c) that corresponds339

to a given input letter c ∈ Σ and state q ∈ Q = {1, 2}340

case δ1(q, c) = q: transc = λ◦k. λ◦h. λ◦g. k (λ◦y. h (concatu1 y)) (λ◦z. g (concatu2 z)) –341

observe that if we wanted to handle the excluded case δ1(q, c) = 3−q, we would write a simi-342

lar term with the occurrences of h and g exchanged (λ◦k. λ◦h. λ◦g. k (λ◦y. g . . .) (λ◦z. h . . .))343

violating the non-commutativity requirement (contrast with the proof of Theorem 5.4);344

case δ1(q, c) = 1: transc = λ◦k. λ◦h. λ◦g. k (concat (concat (hu1) (g u2))) zeta345

case δ1(q, c) = 2: transc = λ◦k. λ◦h. λ◦g. k zeta (concat (concat (hu1) (g u2)))346

out = λ◦j. j (λ◦h. λ◦g. concat (h v1) (g v2)) (λ◦x. x) zeta, where vq = F (q)†(~fΠ) represents347

the output suffix for state q ∈ {1, 2}, assuming w.l.o.g. that the initial state is 1 (also,348

here λ◦x. x represents κε since the latter is the identity on Π∗)349

We leave it to the reader to check that these terms are well-typed – in particular that350

they enjoy the requisite non-commutativity conditions – and that they have the expected351

computational behavior. Note in particular that in functional programming terms, the use352

of continuations turns the “right fold” of the Church-encoded input string into a “left fold”,353

and the latter fits with the left-to-right processing of a sequential transducer. J354

5 Regular languages in extensions of the λ℘-calculus355

5.1 The commutative case356

The λ℘-calculus adds two restrictions to the simply typed λ-calculus, namely linearity357

(strictly speaking, affine typing) and non-commutativity, with the latter depending on the358

former as already mentioned. One could wonder whether linearity by itself would be enough359

to characterize star-free languages. We now show that it is not the case.360

The commutative variant of the λ℘-calculus – let us call this variant the λ`-calculus (by361

analogy with Clairambault et al.’s λ`Y-calculus [11]) – has the same grammar of types and362

terms as the λ℘-calculus (cf. §2). The typing rules are also given by Figure 1, but their363

interpretation differs from the previous one as follows: ∆,∆′ stand for sets of bindings x : A,364

∆ ·∆′ denotes the disjoint union of sets, and one must read “subset” instead of “subsequence”.365

In other words, the main difference is that in the λ`-calculus, the linear context ∆ does not366

keep track of the ordering of variables.367

By plugging this commutative system in the statement of our main result (Theorem 1.7),368

we get regular languages instead of star-free languages:369

I Theorem 5.1. A language L ⊆ Σ∗ is regular if and only if it can be defined by a closed370

λ`-term of type StrΣ[A]( Bool for some purely affine type A (that may depend on L).371

Proof. Soundness is a consequence of Hillebrand and Kanellakis’s Theorem 1.1, by a simple372

translation from the λ`-calculus to the simply typed λ-calculus which “forgets linearity”.373

For extensional completeness, consider a regular language L = ϕ−1(P ) where P is a374

subset of a finite monoid M and ϕ : Σ∗ → M is a morphism (cf. Theorem 1.3). If we375

represent an element m ∈M by a M -indexed bit vector vm such that vm[i] = 1 ⇐⇒ i = m,376

then a translation m 7→ mp can be represented by a purely disjunctive formula:377

vmp[i] = vm[j1] ∨ . . . ∨ vm[jk] where {j1, . . . , jk} = {j ∈M | jp = i}378
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Moreover, this is linear in the following sense: given a fixed p ∈ M , each index j ∈ M is379

involved in the right-hand side of this formula for exactly one i ∈M .380

Let ttt = λ◦x. true : Bool ( Bool and fff = λ◦x. x : Bool ( Bool. This makes the381

type B = Bool( Bool into a kind of type of booleans that supports a disjunction of type382

B ( B ( B (by function composition) and a type-cast function of type B ( Bool (by383

applying to false). (Of course B has other closed inhabitants besides ttt and fff, but we384

only use those two.) Using this type and the “iteration+continuations” recipe of the proof of385

Lemma 4.10, one can define a λ`-term of type StrΣ[A]( Bool that decides the language L386

with A = B( . . .( B( Bool (with |M | arguments of type B). J387

Let us go further. According to Theorem 4.1, the λ℘-calculus can define all aperiodic388

sequential functions; we show that as one can expect, the aperiodicity condition is lifted389

when moving to the commutative λ`-calculus. However, the trick used in the direct encoding390

of the above proof does not work, and we have only managed to encode general sequential391

functions by resorting to the Krohn–Rhodes theorem.392

I Theorem 5.2 (Krohn–Rhodes decomposition, non-aperiodic case, cf. Appendix A). Any393

sequential function f : Σ∗ → Π∗ can be realized as a composition f = f1 ◦ . . . ◦ fn (with394

fi : Ξ∗i → Ξ∗i−1, Ξ0 = Π and Ξn = Σ) where each function fi is computed by some sequential395

transducer whose transition monoid is either aperiodic or a group.396

I Remark 5.3. By Theorem 4.8, the aperiodic transducers among the fi can be further397

decomposed into two-state aperiodic transducers.398

I Theorem 5.4. Any sequential function Σ∗ → Π∗ can be expressed by some λ`-term of type399

StrΣ[A]( StrΠ, for a purely affine type A depending on the function.400

Proof sketch. First, by Theorem 4.1, we can already encode aperiodic sequential functions,401

since every well-typed λ℘-term is also a well-typed λ`-term. One can also show that402

Lemma 4.4 applies to the λ`-calculus. By the general Krohn–Rhodes theorem, we just need403

to handle the case of a sequential transducer whose transition monoid is a group.404

The idea, in terms of set-theoretic maps as in our explanation of the proof of Lemma 4.10405

(whose notations we borrow here), is as follows. The current state q ∈ Q and output history406

w ∈ Π∗ is represented by a Q-indexed family (gq′)q′∈Q of functions such that gq = κw and407

for q′ 6= q, gq′ = ζ. The transition δ(−, c) is represented by (gq)q∈Q 7→ (gσ(q) ◦ κδ2(σ(q),c))q∈Q408

where σ = (δ1(−, c))−1 – the latter is well-defined because the group assumption means that409

δ1(−, c) is a permutation of Q. The final output is obtained at the end as the concatenation410

gq1(F (q1)) . . . gqn
(F (qn)) where Q = {q1, . . . , qn} (with an arbitrary enumeration of Q).411

The elaboration of the corresponding λ`-term is left to the reader. Keep in mind that412

the reason this term will not be well-typed for the λ℘-calculus is that the inversions in the413

permutation δ1(−, c) correspond to violations of non-commutative typing. J414

5.2 Extension with additive pairs415

Let’s look at what happens if we add the additive conjunction connective of linear logic to the416

λ℘-calculus. The λ℘&-calculus is obtained by adding A,B ::= . . . | A&B to the grammar of417

types and t, u ::= . . . | 〈t, u〉 | π1 t | π2 t for terms, with the typing rules418

Γ | ∆ ` t : A Γ | ∆ ` u : B
Γ | ∆ ` 〈t, u〉 : A&B

Γ | ∆ ` t : A1 &A2

Γ | ∆ ` πi t : Ai
(see [35, §4])419

the β-reduction rules πi 〈t1, t2〉 −→β ti, and the corresponding η-conversion rules.420
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Recall that we discussed in the introduction the need to prevent the existence of a λ℘-term421

of type Bool( Bool for negation8. However, if we use the additive conjunction to define422

the type Bool& = (o& o)( o, the following are well-typed λ℘&-terms:423

true& = λ◦p. π1 p false& = λ◦p. π2 p not& = λ◦b. λ◦p. b 〈π2 p, π1 p〉424

This admits a straightforward generalization:425

I Proposition 5.5. Let Fin&(n) = (o & . . . & o)( o. For all n ∈ N, there is a canonical426

bijection between {1, . . . , n} and the closed λ℘&-terms of type Fin&(n). Furthermore, using427

this encoding, every map {1, . . . , n1} × . . . × {1, . . . , nk} → {1, . . . ,m} can be defined by a428

closed λ℘&-term of type Fin&(n1)( . . . Fin&(nk)( Fin&(m).429

I Corollary 5.6. Every regular language can be defined by a closed λ℘&-term of type430

StrΣ[A]( Bool for some purely affine type A – we consider ‘&’ as a linear connective and431

therefore allow it in A.432

Proof idea. Take A = Fin&(|M |) where M is any finite monoid that recognizes the language433

as specified in Theorem 1.3. (We could also prove the converse by relying on an extension of434

Hillebrand and Kanellakis’s Theorem 1.1 to the simply typed λ-calculus with products.) J435

Similarly, one could show that the addition of the additive disjunction ‘⊕’ of linear logic436

to the λ℘-calculus would be sufficient to encode all regular languages.437

5.3 On regular and first-order tree languages: a discussion438

There is a rich theory of tree automata that extends the notion of regular language to trees439

over ranked alphabets instead of strings. Such trees admit Church encodings; for instance,440

for an alphabet with arities (a : 2, b : 2, x : 0) (i.e. for trees with two kind of binary nodes441

and one kind of leaf) one would have Tree(2,2,0) = (o( o( o)→ (o( o( o)→ o→ o.442

We shall not go into the details of tree automata there, but the knowledgeable reader443

may check that Proposition 5.5 can be used to encode all regular tree languages over444

(a : 2, b : 2, x : 0) as closed λ℘&-terms of type Tree(2,2,0)[A] ( Bool for purely affine A.445

Predictably, this fails for the λ℘-calculus without additive connectives. More noteworthy446

is the failure of the trick used to prove Theorem 5.1 for the commutative λ`-calculus when447

one replaces strings with trees. Thus, it seems (though this remains conjectural) that the448

additives of linear logic might be required to express some regular tree languages.449

We believe that this is no accident and that some fundamental difficulty of automata450

theory is being manifested here. Indeed, if we had a characterization of regular tree languages451

in the λ`-calculus, we could expect that moving to the λ℘-calculus would yield the first-order452

tree languages, which are the commonly accepted counterpart of star-free languages for453

trees. (Recall from Theorem 1.5 that definability in first-order logic is among the equivalent454

definitions of star-free languages.) However, while Theorem 1.5 demonstrates that star-free455

languages are well-understood, the situation is quite different for first-order tree languages:456

there is no known algebraic characterization, and neither is there any known algorithm to457

decide whether a tree automaton recognizes a first-order language (see e.g. [7]).458

8 Actually, the λ℘-calculus does admit a term for negation: λ◦b. b false true : Bool[Bool]( Bool. The
heterogeneity of the input and output types means that this λ℘-term does not contradict Theorem 1.8
and cannot be iterated by a Church-encoded string.



L. T. D. Nguyễn and P. Pradic 13

6 Next episode preview: transducers in typed λ-calculi459

We started from Hillebrand and Kanellakis’s Theorem 1.1 and obtained an analogous460

statement for star-free languages instead of regular languages. Another direction that we could461

have pursued is to replace languages by functions, by looking at the type StrΣ[A]→ StrΠ.462

Indeed, an immediate consequence of this “regular = λ-definable” result is:463

I Corollary 6.1. If f : Σ∗ → Π∗ is definable by a closed simply typed λ-term of type464

StrΣ[A]→ StrΠ, then for any regular language L ⊆ Π∗, f−1(L) ⊆ Σ∗ is also regular.465

Proof idea. Let u : StrΠ[B] → Bool and t : StrΣ[A] → StrΠ be simply typed λ-terms466

defining L and f respectively. Then f−1(L) is defined by λx. u (t x) which is well-typed with467

type StrΣ[A[B]]→ Bool (analogously to Lemma 4.4). J468

This suggests a connection between these λ-definable string functions and automata theory;469

some partial results in that direction can be found in an old (and partially obsolete) preprint470

by the first author [33]. But while it is not too hard to define functions of hyperexponential471

growth in the simply typed λ-calculus, most classes of string functions from automata472

theory (see [32] for a recent survey) grow much more slowly (polynomially or even linearly473

in the input size). The challenge then becomes to restrict the expressiveness via types to474

capture such classes. This calls for the recipes that have worked here, namely linearity and475

non-commutativity. For string functions, it turns out that commutative linearity suffices to476

make a difference compared to the simply typed λ-calculus.477

B Claim 6.2 (to be proved in the sequel). The functions definable by closed terms of478

type StrΣ[A]( StrΠ, for purely affine A, are the MSO transductions9 [13] (a.k.a. regular479

functions10) in the λ`-calculus and the FO transductions in the λ℘-calculus.480

This goes beyond the encodings of sequential transducers presented in this paper (Theorem 4.1481

and Theorem 5.4). But the latter are an important stepping stone, since we do not know482

how to prove the above claim without using the Krohn–Rhodes decomposition somewhere.483

To summarize the results of the present paper together with its planned sequel:484

calculus affine commutative StrΣ[A]( Bool StrΣ[A]( StrΠ

λ℘ yes no star-free (FO-definable) languages FO transductions
λ` yes yes regular (MSO-definable) languages MSO transductions

485

While the connection between non-commutativity and aperiodicity came as a surprise to us,486

we had more reasons to suspect that affine types should have something to do with transducers.487

Indeed, the term “linearity” itself has been used to describe the copyless assignment condition488

on streaming string transducers [4], a machine model for MSO transductions, e.g. “updates489

should make a linear use of registers” [14, §5]. Moreover, it seems (informally speaking) that490

the more sophisticated single-use-restricted assignments of streaming tree transducers [3]491

correspond to a form of linearity that incorporates an additive conjunction, whereas copyless492

assignments are purely multiplicative; compare with the discussion of §5.3.493

9 MSO stands for Monadic Second-Order Logic while FO stands for First-Order Logic, cf. the introduction.
10This name is somewhat confusing, since there are multiple classes of string functions that collapse to

the single class of regular languages when we consider indicator functions. For example, in-between
the sequential functions (Definition 4.5) and the regular (MSO-definable) functions, there is a widely
studied strictly intermediate class called the rational functions. (The adjective “rational” is used to
refer to regular languages in a French tradition going back to Nivat and Schützenberger.)
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I Proposition A.3. The wreath product of transformation monoids is associative up to643

canonical isomorphism.644

Proof sketch. We give a direct description of (X,M) o (Y,N) o (Z,P ) = (X × Y × Z,W ):645

the underlying set of the monoid W is MY×Z × NZ × P – note that it is canonically646

isomorphic to (MY ×N)Z × P ;647

the right action is (x, y, z) · (f, g, p) = (x · f(y, z), y · g(z), z · p);648

the multiplication on W is649

(f, g, p)(f ′, g′, p′) = (((y, z) 7→ f(y, z)f ′(y · n, z · p)), (z 7→ g(z)g′(z · p)), pp′). J650

I Definition A.4. A transformation monoid (X,M) strongly divides (Y,N) if there exists a651

submonoid N ′ ≤ N , a surjective morphism ϕ : N ′ � M and a surjection s : Y � X such652

that for all y ∈ Y and n′ ∈ N ′, s(y · n′) = s(y) · ϕ(n′).653

A monoid M divides N if M is the homomorphic image of a submonoid of N .654

I Proposition A.5. A finite monoid is aperiodic if and only if it there are no non-trivial655

groups that divide it.656

Proof. Let M be a finite monoid. Suppose that for x ∈ M , there is no n ∈ N such that657

xn = xn+1; then by finiteness, (xi)i∈N must be ultimately periodic with period k ≥ 2, and658

one can define a surjective morphism from the submonoid generated by x to the cyclic group659

of order k by sending x to the latter’s generator. The converse follows a similar reasoning660

(recall that every non-trivial group contains a non-trivial cyclic subgroup). J661

I Theorem A.6 (Krohn–Rhodes with strong divisors [12, Theorem 4.1]). Every finite transfor-662

mation monoid (X,M) strongly divides some wreath product (Y1, N1) o . . . o (Yn, Nn) where663

each (Yk, Nk) is either:664

the flip-flop (Yk, Nk) = ({1, 2}, {id{1,2}, (x 7→ 1), (x 7→ 2)}) (with the action x · f = f(x)665

and the monoid multiplication fg = g ◦ f);666

a finite group dividing M acting on itself by right multiplication.667

In particular, if M is aperiodic, (X,M) strongly divides a wreath product of several copies of668

the flip-flop transformation monoid.669

I Remark A.7. We can also require G above to be a simple group. This is the statement670

given in [12], but group simplicity is not needed for our purposes. (To be more precise, every671

finite group divides a wreath product of its Jordan–Hölder factors.)672

I Remark A.8. Let (Y,N) = (Y1, N1) o . . . o (Yn, Nn). In both the flip-flop and group cases,673

the action of Nk on Yk is faithful, i.e. two distinct elements of Nk act differently on at least674

one element of Yk. Furthermore, the wreath product of faithful transformation monoids is675

faithful. Therefore, one can safely identify N with a submonoid of Y → Y .676

Now let us relate this wreath product operation to sequential functions. This is sufficient677

to derive Theorem 4.8 and Theorem 5.2 as corollaries of Theorem A.6.678

I Proposition A.9. Let (Q, δ, qI , F ) be a sequential transducter with transition monoid T
describing a function f : Σ∗ → Π∗. Suppose that (Q,T ) strongly divides some faithful
transformation monoid (X,M) o (Y,N). Then there is an alphabet Ξ and transducers

(X, δX , xI , FX) : Σ∗ → Ξ∗ and (Y, δY , yI , FY ) : Ξ∗ → Π∗

with respective transition monoid TX and TY corresponding to sequential functions fX : Σ∗ →679

Ξ∗ and fY : Ξ∗ → Π∗ such that f = fX ◦ fY . Moreover, there are injective homomorphisms680

TX ↪→M and TY ↪→ N .681
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Proof. Let (Q, δ, qI , F ) be the transducer under scrutiny. Let K ⊆ MY × N such that
ϕ : K � T , s : X×Y � Q be the maps witnessing that (Q,T ) strongly divides (X,M)o(Y,N).
We choose a pair (xI , yI) such that s(xI , yI) = qI and, for each a ∈ Σ, we choose an element
(ga, na) ∈ MY × N which is mapped by ϕ to δ1(−, a) ∈ T . Set Ξ = (Σ ] {∗}) × Y ,
(xI , yI) = s−1(x, y) and

FY (y) = (∗, y) FX(x) = ε

δY (y, a) = (y ·ma, y) δX(x, (a, y)) = (x · ga(y), δ2(s(x), a))
δX(x, (∗, y)) = (x, F (s(x, y)))

We leave checking that this defines transducers with the expected properties to the reader. J682

This generalizes to n-fold wreath products in the expected way.683

I Proposition A.10. Let T be the transition monoid of a sequential transducer with state684

space Q computing the function f : Σ∗ → Π∗. Suppose that (Q,T ) strongly divides some685

wreath product (X,M) = (X1,M1) o . . . o (Xn,Mn) of faithful transformation monoids. Then686

f admits a decomposition f = f1 ◦ . . . ◦ fn (with fi : Ξ∗i → Ξ∗i−1, Ξ0 = Π and Ξn = Σ) such687

that for each i ∈ {1, . . . , n}, fi is computed by a sequential transducer whose transformation688

monoid embeds in Mi and with state space Xi.689

Proof. By induction starting from n = 1.690

For n = 1, let ϕ : K � T and s : X � Q be the maps witnessing that (Q,T )691

strongly divides (X,M). Let xI be such that s(xI) = qI , and, for each a ∈ Σ, pick692

an element ma ∈ K such that ϕ(ma) = δ1(−, a). Then, letting (Q, δ, qI , F ) being693

the transducer under scrutiny, a suitable transducer (X, δ′, xI , F ′) is defined by setting694

δ′(x, a) = (x ·ma, δ2(s(x), a)) and F ′(x) = F (s(x)).695

For n > 1, use Proposition A.9 and the induction hypothesis.696

J697

Proof of Theorems 4.8 and 5.2. Let (Q, δ, qI , F ) be a transducter computing a certain698

sequential function f : Σ∗ → Π∗ and let T be its transition monoid. By Theorem A.6,699

there is a transformation monoid (Y,N) which can be written as a wreath product (Y,N) =700

(Y1, N1) o . . . o (Yk, Nk) such that (Q,T ) strongly divides (Y,N), and the (Yi, Ni) are either flip-701

flops or groups (the latter case being ruled out for Theorem 4.8, thanks to Proposition A.5). By702

applying Proposition A.10, we may obtain transducers Ti implementing sequential functions703

fi : Ξ∗i → Ξ∗i+1 such that Ξ0 = Σ, Ξk = Π and f = fk−1 ◦ . . .◦f0. Furthermore, we know that704

the state space of Ti is Yi and that the corresponding transition monoid Ti embeds into Ni.705

Recalling that “being aperiodic” and “being a finite subgroup” are properties stable under706

homomorphic embeddings, we know that either Yi has cardinality 2 and Ti is aperiodic with707

two states or Ti is a group (a trivial group if T was aperiodic), thus we may conclude. J708

B Omitted proofs709

B.1 Proof of Lemma 3.1710

The β-normal η-long form of a closed λ℘-term t of type StrΣ[A] ( (o ( o ( o) (by711

definition of Bool) is712

t =βη λ
◦s. λ◦x. λ◦y. z t1 . . . tn where ∅ | s : StrΣ[A], x : o, y : o ` z t1 . . . tn : o713

If z ∈ {x, y}, then n = 0 and t is a constant function from strings to booleans: the statement714

of Lemma 3.1 is true with gc = λ◦a. a and h = λ◦f. λ◦x. λ◦y. z (the latter is the constant715
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function equal to either true or false depending on whether z = x or z = y) or, said716

explicitly, t =βη λ
◦s. (λ◦f. λ◦x. λ◦y. z) (s (λ◦a. a) . . . (λ◦a. a)).717

In the remaining case z = s, one can take h = λ◦f. λ◦x. λ◦y. f t|Σ|+1 . . . tn and, for718

i ∈ {1, . . . , |Σ|}, gci = ti.719

B.2 Proof of Lemma 4.2720

Since L is star-free, L = ϕ−1(P ) for some ϕ ∈ Hom(Σ∗,M) and P ⊆ M , where M is721

an aperiodic monoid. Here is a sequential transducer computing χL: Q = M , δ(m, c) =722

(mϕ(c), ε) and F (m) = 1 if m ∈ P and F (m) = ε otherwise. Its transition monoid is723

ϕ(Σ∗) ⊆M , which is aperiodic.724

B.3 Proof of Lemma 4.3725

The λ℘-term in question is λ◦s. s (λ◦x. true) false.726

B.4 Proof of Lemma 4.4727

The lemma follows from the more usual stability of typing judgments under type substitution.728

We write Γ[A] and ∆[B] for the obvious extension of Notation 1.2 to contexts.729

I Lemma B.1. If Γ | ∆ ` t : A, then, for every type B, we have Γ[B] | ∆[B] ` t : A[B].730

Proof. Routine induction on the typing derivation. J731

Picturing Lemma B.1 as an admissible typing rule (dashed inference line), we have

∅ | ∅ ` u : B[U ]( C

∅ | ∅ ` t : A[T ]( B

∅ | ∅ ` t : A[T [U ]]( B[U ]
−−−−−−−−−−−−−−

∅ | x : A[T [U ]] ` x : A[T [U ]]
∅ | x : A[T [U ]] ` t x : B[U ]

∅ | x : A[T [U ]] ` u (t x) : C
∅ | ∅ ` λ◦x. u (t x) : A[T [U ]]( C
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