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Abstract
We give a characterization of star-free languages in a λ-calculus with support for non-commutative
affine types (in the sense of linear logic), via the algebraic characterization of the former using
aperiodic monoids. When the type system is made commutative, we show that we get regular
languages instead. A key ingredient in our approach – that it shares with higher-order model
checking – is the use of Church encodings for inputs and outputs. Our result is, to our knowledge,
the first use of non-commutativity in implicit computational complexity.
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1 Introduction

A type-theoretic implicit automata theory This paper explores connections between the
languages recognized by automata and those definable in certain typed λ-calculi (minimalistic
functional programming languages). It is intended to be the first in a series, whose next
installments will investigate the functions computable by transducers (automata with output,
see e.g. [16, 37]). Insofar as programming language theory is related to proof theory, via the
Curry–Howard correspondence, we are therefore trying to bridge logic and automata. That
said, our work does not fit in the “logics as specification languages” paradigm, exemplified
by the equivalence of recognition by finite-state automata and Monadic Second-Order Logic
(MSO). One could sum up the difference by analogy with the two main approaches to machine-
free complexity: implicit computational complexity (ICC) and descriptive complexity.
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2 Aperiodicity in a non-commutative logic

Both aim to characterize complexity classes without reference to a machine model, but the
methods of ICC have a more computational flavor.

programming paradigm declarative functional
complexity classes Descriptive Complexity Implicit Computational Complexity
automata theory subsystems of MSO this paper (and planned sequels)

To our knowledge, very few works have looked at this kind of “type-theoretic” or “proof-
theoretic” ICC for automata. Let us mention a few recent papers (that we will discuss
further in §7) concerning transducers [13, 10] and multi-head automata [46, 29] and, most
importantly, a remarkable result from 1996 that provides our starting point:

I Theorem 1.1 (Hillebrand & Kanellakis [25, Theorem 3.4]). A language L ⊆ Σ∗ can be
defined in the simply typed λ-calculus by some closed λ-term of type StrΣ[A]→ Bool for
some type A (that may depend on L) if and only if it is a regular language.

Let us explain this statement. We consider a grammar of simple types with a single base
type: A,B ::= o | A→ B, and use the Church encodings of booleans and strings:

Bool = o→ o→ o StrΣ = (o→ o)→ . . .→ (o→ o)→ o→ o

with |Σ| arguments of type (o→ o), where Σ is a finite alphabet. Moreover, given any other
chosen type A, one can form the type StrΣ[A] by substituting A for the ground type o:

I Notation 1.2. For types A and B, we denote by B[A] the substitution B{o := A} of every
occurrence of o in B by A.

Every closed λ-term t of type StrΣ can also be seen as a term of type StrΣ[A]. (This is a
way to simulate a modicum of parametric polymorphism in a monomorphic type system.)
It follows that any closed λ-term of type StrΓ[A] → Bool in the simply typed λ-calculus
defines a predicate on strings, i.e. a language L ⊆ Σ∗.

Although little-known1, Hillebrand and Kanellakis’s theorem should not be surprising
in retrospect: there are strong connections between Church encodings and automata (see
e.g. [45, 48, 35]), that have been exploited in particular in higher-order model checking for
the past 15 years [2, 38, 26, 22, 24, 49]. This is not a mere contrivance: these encodings have
been a canonical data representation for λ-calculi for much longer2.

Star-free languages We would like to extend this result by characterizing strict subclasses of
regular languages, the most famous being the star-free languages. Recall that the canonicity
of the class of regular languages is firmly established by its various definitions: regular
expressions, finite automata, definability in MSO and the algebraic characterization.

I Theorem 1.3 (cf. [44, §II.2.]). A language L ⊆ Σ∗ is regular if and only if for some finite
monoid M , some subset P ⊆M and some monoid morphism ϕ ∈ Hom(Σ∗,M), L = ϕ−1(P ).

Similarly, the seminal work of Schützenberger, Petrone, McNaughton and Papert in the
1960s (see [47] for a historical discussion) has led to many equivalent definitions for star-free
languages, with the algebraic notion of aperiodicity playing a key role:

1 See e.g. Damiano Mazza’s answer to this MathOverflow question: https://mathoverflow.net/q/296879
2 They were introduced for booleans and integers by Church in the 1930s, and later generalized by Böhm

and Berarducci [12], see also http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html.
(Similar ideas appear around the same time in [32].) As for the refined encodings with linear types that
we use later, they already appear in Girard’s founding paper on linear logic [18, §5.3.3].

https://mathoverflow.net/q/296879
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I Definition 1.4. A monoidM is aperiodic when any sequence of iterated powers is eventually
constant, i.e. for any x ∈M there exists an exponent n ∈ N such that xn = xn+1.

I Theorem 1.5 (cf. [47]). For a language L ⊆ Σ∗, the following conditions are equivalent:
L is defined by some star-free regular expression: E,E′ ::= ∅ | {a} | E ∪ E′ | E · E′ | Ec
where a can be any letter in Σ and Ec denotes the complement of E (JEcK = Σ∗ \ JEK);
L = ϕ−1(P ) for some finite and aperiodic monoid M , some subset P ⊆ M and some
monoid morphism ϕ ∈ Hom(Σ∗,M);
L is recognized by a deterministic finite automaton whose transition monoid is aperiodic;
L is definable in first-order logic.

Attempting to capture star-free languages in a λ-calculus presents a serious methodological
challenge: they form a strict subclass of uniform AC0, and, as far as we know, type-theoretic
ICC has never managed before to characterize complexity classes as small as this.

Non-commutative affine types Monoids appear in typed λ-calculi when one looks at the
functions from a type A to itself, i.e. at the (closed) terms of type A→ A. At first glance, it
seems difficult indeed to enforce the aperiodicity of such monoids via a type system. For
instance, one needs to rule out not = λb. λx. λy. b y x : Bool → Bool since it “has period
two”: its iteration yields the sequence (modulo βη-conversion) not, id, not, id, . . . (where
id = λb. b) which is not eventually constant. Observe that not essentially exchanges the two
arguments of b; to exclude it, we are therefore led to require functions to use their arguments
in the same order that they are given in.

It is well-known that in order to make such a non-commutative λ-calculus work – in
particular to ensure that non-commutative λ-terms are closed under β-reduction – one
needs to make the type system affine, that is, to restrict the duplication of data. This is
achieved by considering a type system based on Girard’s linear3 logic [18], a system whose
“resource-sensitive” nature has been previously exploited in ICC [21, 20]. Not coincidentally,
the theme of non-commutativity first appeared in a form of linear logic ante litteram, namely
the Lambek calculus [30], and resurfaced shortly after the official birth of linear logic: it is
already mentioned by Girard in a 1987 colloquium [19].

We shall therefore introduce and use a variant of Polakow and Pfenning’s Intuitionistic
Non-Commutative Linear Logic [39, 40], making a distinction between two kinds of function
arrows: A( B and A → B are, respectively, the types of affine functions and non-affine
functions from A to B. Accordingly:

I Definition 1.6. A type is said to be purely affine if it does not contain the ‘→’ connective.

In our system that we call the λ℘-calculus, the types of Church encodings become

Bool = o( o( o StrΣ = (o( o)→ . . .→ (o( o)→ (o( o)

where StrΣ has |Σ| arguments4 of type (o ( o). Setting true = λ◦x. λ◦y. x : Bool and
false = λ◦x. λ◦y. y : Bool for the rest of the paper, we can now state our main result:

I Theorem 1.7. A language L ⊆ Σ∗ is star-free if and only if it can be defined by a closed
λ℘-term of type StrΣ[A]( Bool for some purely affine type A (that may depend on L).

3 The main difference between so-called linear and affine type systems is that the latter allow weakening,
that is, to not use some argument. Typically, λx. λy. x is affine but not linear while λx. x x is neither
linear nor affine. The type system that we use in this paper is affine, not strictly linear.

4 o( o occurs |Σ|+ 1 times in StrΣ: |Σ| arguments plus the output.



4 Aperiodicity in a non-commutative logic

However, if we use the commutative variant of the λ℘-calculus instead, then what we get is
the class of regular languages (Theorem 5.1), just as in Hillebrand and Kanellakis’s theorem.

As far as we know, non-commutative type systems have never been applied to implicit
complexity before (but they have been used to control the expressivity of a domain-specific
programming language [27]). Previous works indeed tend to see non-commutative λ-terms (or
proof nets) as static objects, and to focus on their topological aspects (e.g. [6, 51, 36]), though
there is another tradition relating self-dual non-commutativity to process algebras5 [41, 23].

Proof strategy As usual in implicit computational complexity, the proof of Theorem 1.7
consists of a soundness part – “every λ℘-definable language is star-free” – and an extensional
completeness part – the converse implication. In our case, soundness is a corollary of the
following property of the purely affine fragment of the λ℘-calculus – what one might call the
planar6 affine λ-calculus (cf. [1, 51]):

I Theorem 1.8 (proved in §3). For any purely affine type A, the set of closed λ℘-terms
of type A ( A, quotiented by βη-convertibility and endowed with function composition
(f ◦ g = λ◦x. f (g x)), is a finite and aperiodic monoid.

Extensional completeness turns out here to be somewhat deeper than the “programming
exercise of limited theoretical interest” [34, p. 137] that one generally finds in ICC. Indeed, we
have only managed to encode star-free languages in the λ℘-calculus by relying on a powerful
tool from semigroup theory: the Krohn–Rhodes decomposition [28].

Plan of the paper After having defined the λ℘-calculus in §2, we prove Theorem 1.7:
soundness is treated in §3 and extensional completeness in §4. Then we discuss the analogous
results for the commutative variant of the λ℘-calculus and its extension with additives (§5),
our plans for the next papers in the series (§6) and finally some related work (§7).

Prerequisites We assume that the reader is familiar with the basics of λ-calculi and type
systems, but require no prior knowledge of automata theory. This choice is motivated by the
impression that it is more difficult to introduce the former than the latter in a limited number
of pages. Nevertheless, we hope that our results will be of interest to both communities.

2 Preliminaries: the λ℘-calculus and Church encodings

The terms and types of the λ℘-calculus are defined by the respective grammars

A,B ::= o | A→ B | A( B t, u ::= x | t u | λ�x. t | λ◦x. t

As always, the λ℘ terms are identified up to α-equivalence (both λ� and λ◦ are binders).
There are two rules for β-reduction (closed under contexts)

(λ�x. t)u −→β t{x := u} (λ◦x. t)u −→β t{x := u}

and the remaining conversion rules are the expected η-reduction/η-expansion rules.

5 This connection with the sequential composition of processes can be seen as a sort of embodiment of
Girard’s slogan “time is the contents of non-commutative linear logic” [19, IV.6]. But generally, these
works follow a “proof search as computation” paradigm (logic programming) rather than “normalization
as computation” (functional programming).

6 Hence our choice of name: the “Weierstraß P” character ‘℘’ in ‘λ℘’ stands for “planar”.
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Γ ] {x : A} | ∅ ` x : A
Γ | ∆ ` t : A→ B Γ | ∅ ` u : A

Γ | ∆ ` t u : B
Γ ] {x : A} | ∆ ` t : B
Γ | ∆ ` λ�x. t : A→ B

Γ | x : A ` x : A
Γ | ∆ ` t : A( B Γ | ∆′ ` u : A

Γ | ∆ ·∆′ ` t u : B
Γ | ∆ · (x : A) ` t : B

Γ | ∆ ` λ◦x. t : A( B

Γ | ∆ ` t : A
Γ | ∆′ ` t : A

when ∆ is a subsequence of ∆′

Figure 1 The typing rules of the λ℘-calculus (see Appendix C for examples of derivations).

The typing judgements make use of dual contexts (a common feature originating in [7]):
they are of the form Γ | ∆ ` t : A where t is a term, A is a type, Γ is a set of bindings of the
form x : B (x being a variable and B a type), and ∆ is an ordered list of bindings – this
order is essential for non-commutativity. The typing rules are given in Figure 1, where ∆ ·∆′
denotes the concatenation of the ordered lists ∆ and ∆′. For both Γ,Γ′, . . . and ∆,∆′, . . . we
require each variable to appear at most once on the left of a colon.
I Remark 2.1. Unlike Polakow and Pfenning’s system [39, 40], the λ℘-calculus:

contains two function types instead of four7, with the top two rows of Figure 1 corre-
sponding almost exactly8 to the rules given for those connectives in [39];
is affine instead of linear, as expressed by the “ordered weakening” rule at the bottom of
Figure 1 – this seems important to get enough expressive power for our purposes9.

I Remark 2.2. Morally, the non-affine variables “commute with everything”. More formally,
one could translate the λ℘-calculus into a non-commutative version of Intuitionistic Affine
Logic whose exponential modality ‘!’ incorporates the customary rules (see e.g. [50])

Γ, !A,B,∆ ` C
Γ, B, !A,∆ ` C

Γ, B, !A,∆ ` C
Γ, !A,B,∆ ` C

I Proposition 2.3. The λ℘-calculus enjoys subject reduction and admits normal forms (that
is, every well-typed λ℘-term is convertible to a β-normal η-long one).

Proof sketch. This is routine: subject reduction follows from a case analysis, while the fact
that the simply typed λ-calculus has normal forms entails that the λ℘-calculus also does
(the obvious translation preserves the β-reduction and η-expansion relations). J

We have already seen the type StrΣ = (o ( o) → . . . → (o ( o) → (o ( o) of
Church-encoded strings in the introduction. Let us now introduce the term-level encodings:

I Definition 2.4. Let Σ be a finite alphabet, w = w[1] . . . w[n] ∈ Σ∗ be a string, and for each
c ∈ Σ, let tc be a λ℘-term (on which the next proposition will add typing assumptions). We
abbreviate (tc)c∈Σ as ~tΣ, and define the λ℘-term w†(~tΣ) = λ◦x. tw[1] (. . . (tw[n] x) . . .).

7 Our ‘→’ and ‘(’ are called “intuitionistic functions” and “right ordered functions” in [39]; we have no
counterpart for the “linear [commutative] functions” and “left ordered functions” in the λ℘-calculus.

8 The only difference is that we drop the linear commutative context.
9 Usually, the linear/affine distinction does not matter for implicit computational complexity if we allow
collecting the garbage produced during the computation in a designated part of the output, as in
e.g. [31]. But non-commutativity obstructs the free movement of garbage.
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Given a total order c1 < . . . < c|Σ| on the alphabet Σ = {c1, . . . , c|Σ|}, the Church
encoding of any string w ∈ Σ∗ is w = λ�fc1 . . . . λ

�fc|Σ| . w
†(~fΣ).

This is simpler than the notation might suggest: as an example, for Σ = {a, b} with a < b,
baa = λ�fa. λ

�fb. λ
◦x. fb (fa (fa x)). Our choice of presentation is meant to stress the role

of the open subterm (baa)†(~f{a,b}) = λ◦x. fb (fa (fa x)), cf. Remark 2.9.
We now summarize the classical properties of the Church encoding of strings.

I Proposition 2.5. We reuse the notations of the above definition.
Assume that there is a type A and a typing context Γ | ∆ such that for all c ∈ Σ,
Γ | ∆ ` tc : A( A. Then Γ | ∆ ` w†(~tΣ) : A( A.
In particular, {fc : o( o | c ∈ Σ} | ∅ ` w†(~fΣ) : o( o for any variables (fc)c∈Σ.
Furthermore, in the case of variables, w ∈ Σ∗ 7→ w†(~fΣ) is in fact a bijection between the
strings over Σ and the λ℘-terms u such that {fc : o( o | c ∈ Σ} | ∅ ` u : o( o and
considered up to βη-conversion10.
It follows from the above that w ∈ Σ∗ 7→ w is a bijection from Σ∗ to the set of closed
λ℘-terms of type StrΣ modulo βη.
Finally, with the assumptions on tc of the first item, we have w tc1 . . . tc|Σ| −→∗β w†(~tΣ).

I Example 2.6. Given two closed λ℘-terms ta, tb : Bool( Bool, one can define the term
g = λ◦s. s ta tb false : Str{a,b}[Bool]( Bool. Then for any w = w[1] . . . w[n] ∈ {a, b}∗, we
have g w −→∗β w†(~t{a,b}) false −→∗β tw[1] (. . . (tw[n] false)).

For ta = λ◦x. true and tb = λ◦x. x, g decides the language of words in {a, b}∗ that
contain at least one a; this language is indeed star-free as it can be expressed as ∅ca∅c.
Coming back to a point raised in the introduction, if negation were definable by a λ℘-term
not : Bool( Bool, then for ta = tb = not, the language decided by g would consist of
words of odd length: a standard example of regular language that is not star-free.

I Remark 2.7. Actually, the λ℘-term not′ : λ◦b. b false true : Bool[Bool] ( Bool does
“define negation”. A point of utmost importance is that because of the heterogeneity of the
input and output types, this term does not contradict Theorem 1.8 and cannot be iterated by
a Church-encoded string. Monomorphism is therefore crucial for us: if our type system had
actual polymorphism, one could give not′ the type (∀α. Bool[α])( (∀α. Bool[α]), whose
input and output types are equal, and then the words of odd length would be λ℘-definable.

An analogous phenomenon in the simply typed λ-calculus is that one can define n 7→ 2n
on the type of Church numerals Nat by a term of type Nat[o→ o]→ Nat, but not by a term
of type Nat→ Nat (since iterating it would give rise to a tower of exponentials of variable
height, which is known to be inexpressible by any Nat[A]→ Nat).

Yet our ersatz of polymorphism still allows for some form of compositionality that will
prove useful in several places in §4 (the proof may be found in Appendix B):

I Lemma 2.8. If ` t : A[T ]( B and ` u : B[U ]( C, then ` λ◦x. u (t x) : A[T [U ]]( C.

I Remark 2.9. One final observation on Church encodings: when the context Γ of non-affine
variables contains fc : o( o for each c ∈ Σ, then any string w ∈ Σ∗ can be represented as
the open λ℘-term Γ | . . . ` w†(~fΣ) : o ( o in that context, and such strings can even be
concatenated by function composition. The point is that this gives us a kind of purely affine
type of strings, which will allow us in §4.2 to encode sequential transducers as λ℘-terms of
type StrΣ[A]( StrΠ for some purely affine type A (compare Theorem 1.7).

10 η-conversion is necessary to identify λ�f. f : Str{a} with a = λ�f. λ◦x. f x : Str{a}.
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3 Proof of soundness

As stated in the introduction, the soundness part of our main Theorem 1.7 will follow from
Theorem 1.8, so we start this section by proving the latter. First, the monoid structure on the
closed λ℘-terms of any type A( A can be verified routinely: both (f ◦ g) ◦ h and f ◦ (g ◦ h)
β-reduce to λ◦x. f (g (h x)), and λ◦x. x provides the identity element. The finiteness of this
monoid for A purely affine comes from a slightly more general statement:

I Proposition 3.1. For any purely affine type B, there are finitely many βη-equivalence
classes of closed λ℘-terms of type B.

Proof. This is a well-known property of affine type systems: here, non-commutativity plays
no role. We provide a proof in Appendix B. J

The substantial part of Theorem 1.8 is the aperiodicity of this monoid. It is here that
non-commutativity comes into play. Morally, it is a kind of monotonicity condition that
λ℘-terms obey. A first idea would therefore be to seek to exploit the fact that the monoid of
monotone functions on an ordered set is aperiodic. What we end up using is closely related:

I Lemma 3.2. For any k ∈ N, the monoid of partial non-decreasing functions from {1, . . . , k}
to itself (endowed with usual function composition) is aperiodic.

Proof. Let f : {1, . . . , k} ⇀ {1, . . . , k} be non-decreasing. For any i ∈ {1, . . . , k}, the
sequence (fn(i))n∈N is either non-increasing or non-decreasing as long as it is defined
(depending on whether i ≥ f(i) or i ≤ f(i)); so at some n = Ni, either it becomes undefined
or it reaches a fixed point of f . By taking N = max1≤i≤kNi, we have fN = fN+1. J

This underlies the proof of the key lemma below, that allows one to reduce the aperiodicity
of some t : A( A to the aperiodicity of λ℘-terms at smaller types.

I Notation 3.3. ∆ ` t : A is an abbreviation for ∅ | ∆ ` t : A (indeed, the context of
non-affine variables will be generally empty in our proof).

I Notation 3.4. Let u1, . . . , uk and v1, . . . , vl be λ℘-terms. The notation ~v[~y := ~u] denotes
the componentwise parallel substitution (vi[y1 := u1, . . . , yk := uk])1≤i≤l.

I Lemma 3.5. Let t = λ◦x. λ◦y1. . . . λ
◦ym. x u1 . . . uk be a well-typed closed λ℘-term of

type A ( A in η-long form, so that x : A, y1 : B1, . . . , yk : Bk ` xu1 . . . uk : o with
A = B1 ( . . .( Bk ( o. Then:

tn = t ◦ . . . ◦ t (n times) is β-convertible to λ◦x. λ◦y1. . . . λ
◦yk. x u

(n)
1 . . . u

(n)
k where

~u(0) = (y1, . . . , yk), ~u(n+1) = ~u(n)[~y := ~u];
For large enough n ∈ N, each u(n+1)

i depends only on u
(n)
i for the same i ∈ {1, . . . , k}.

More precisely, there exists N ∈ N such that for all i ∈ {1, . . . , k} there exists a well-typed
closed λ℘-term t′i : Bi( Bi such that for all n ≥ N , u(n+1)

i = t′i u
(n)
i .

Proof. The first item is established by induction: abbreviating λ◦y1. . . . λ
◦yk. as λ◦~y.,

t ◦ (λ◦x. λ◦~y. x u(n)
1 . . . u

(n)
k ) =β λ

◦x. λ◦~y. (λ◦~y. x u(n)
1 . . . u

(n)
k )u1 . . . uk

=β λ
◦x. λ◦~y. x (u(n)

1 [~y := ~u]) . . . u(n)
k ([~y := ~u])

(We invite to reader to reproduce the full computation to check that no spurious capture of
free variables happens.)
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For the second item, let us define the partial function µ~u : {1, . . . , k} ⇀ {1, . . . , k}
by µ~u(i) = j ⇐⇒ yi ∈ FV(uj). (FV(u) denotes the set of free variables of u.) The
relation on the right-hand side of the equivalence is indeed a partial function because of
the affineness of t = λ◦x. λ◦y1. . . . λ

◦yk. z u1 . . . uk. One can also show that for all n ∈ N,
FV(u(n)

i ) = {yj | (µ~u)n(j) = i}.
As a consequence of non-commutativity, µ~u is non-decreasing. This is because for the

typing judgment on xu1 . . . uk to hold, there must exist ∆1, . . . ,∆k such that:
for all j ∈ {1, . . . , k}, ∆j ` uj and ∀i, yi ∈ FV(uj) ⇐⇒ (yi : Bi) ∈ ∆j ;
∆1 · . . . ·∆k is an ordered subsequence of (y1 : B1) · . . . · (yk : Bk).

Therefore, by Lemma 3.2, there exists N ∈ N such that (µ~u)N = (µ~u)N+1.
Next, let i ∈ {1, . . . , k}. We may reformulate our goal as finding t′i : Bi( Bi such that

t′i u
(N+n)
i =βη u

(N+n+1) for all n ∈ N. The simple case is when i /∈ (µ~u)N ({1, . . . , k}): u(N)
i

has no free variables, so u(N+1)
i = u

(N)
i [~y := ~u] = u

(N)
i : we may then take t′i = λ◦z. z. For

the remainder of the proof we assume otherwise, that is, we take i in the range of (µ~u)N .
First, ~u(n+1) = ~u[~y := ~u(n)] because parallel substitution is associative11. Thus,

∀n ∈ N, u(N+n+1)
i = ui

[
yj := u

(N+n)
j for j ∈ {1, . . . , k} such that µ~u(j) = i

]
Any j ∈ {1, . . . , k} \ {i} such that µ~u(j) = i is not a fixed point of µ~u, and therefore is not in
the range of (µ~u)N since (µ~u)N = (µ~u)N+1 = µ~u ◦ (µ~u)N . By the simple case already treated,
we then have u(N+n)

j = u
(N)
j . This allows us to write the above equation as

u
(N+n+1)
i = ri[yi := u

(N+n)
i ] where ri = ui

[
yj := u

(N)
j for j 6= i s.t. µ~u(j) = i

]
Using β-conversion, u(N+n+1)

i =β (λ◦yi. ri)u(N+n)
i . We conclude by setting t′i = (λ◦yi. ri).

It is clear that this λ℘-term is closed, but one should check that it is well-typed; to do so,
one convenient observation is that the u(N)

j are closed (because j /∈ (µ~u)N ({1, . . . , k})) and
well-typed (as closed subterms of a reduct of the N -fold composition tN ). J

The remainder of the proof of Theorem 1.8 is essentially bureaucratic.

Proof of the aperiodicity part of Theorem 1.8. Let t : A ( A; our goal is to show that
the sequence tn = t ◦ . . . ◦ t is eventually constant modulo βη. We shall do so by induction
on the size of A. The type A is purely affine by assumption, and can therefore be written
as B1 ( . . .( Bm ( o where the Bi are also purely affine for i ∈ {1, . . . ,m}. The base
case m = 0 being trivial, we assume m ≥ 1. In this case, by Proposition 2.3, t has an η-long
β-normal form t = λ◦x. λ◦y1. . . . λ

◦ym. z u1 . . . uk where z is a variable. There are two cases:
z = yi for some i. Then (yi : Bi) · ∆ ` z u1 . . . uk by application rule (we omit the
non-affine context Γ which will always be empty during this proof). The abstraction rule
only allows introducing λ◦yi when (yi : Bi) is on the right, so by then ∆ must have been
entirely emptied out by previous abstractions. This means that λ◦yi. . . . λ◦ym. z u1 . . . uk
is a closed term, so in particular it contains no free occurrence of x: t is a constant
function from A to A. So the sequence of iterations stabilizes from n = 1.
z = x, which entails k = m since the variable x is of type A = B1 ( . . .( Bm( o and
we must have x : A, y1 : B1, . . . , ym : Bm ` xu1 . . . uk : o. Lemma 3.5 gives us closed
λ℘-terms t′i : Bi ( Bi (i ∈ {1, . . . , k}) whose iterates eventually determine those of t.
Since the type Bi has size strictly smaller than A, the induction hypothesis applies: each
((t′i)n)n∈N is eventually constant modulo βη. Therefore, this is also the case for t. J

11More precisely, (~t1[~x := ~t2])[~y := ~t3] = ~t1[~x := ~t2[~y := ~t3]] when ~y ∩ (FV(~t1) \ ~x) = ∅.
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Let us now apply Theorem 1.8 to the λ℘-terms defining languages.

I Lemma 3.6. Let Σ = {c1, . . . , c|Σ|} be a finite alphabet, A be a purely affine type and
t : StrΣ[A]( Bool be a closed λ℘-term. Then there exist some closed λ℘-terms gc : A( A

for c ∈ Γ and h : (A( A)( Bool such that t =βη λ
◦s. h (s gc1 . . . gc|Σ|).

Proof. By inspection of the normal form of t, see Appendix B. J

Reusing the notations of this lemma, let us define ϕ : Σ∗ → {v | v : A( A}/=βη to be
the monoid morphism such that ϕ(c) = gc for c ∈ Σ. Then for all w ∈ Σ∗, ϕ(w) = w†(~gΣ)
(in the quotient): by a similar computation than for f ◦ (g ◦ h) =βη (f ◦ g) ◦ h, we have
gw[1] ◦ . . . ◦ gw[n] −→∗β w†(~gΣ). Therefore, by Proposition 2.5, ϕ−1({v | h v =βη true}) is
none other than the language defined by the t : StrΣ[A]( Bool in the lemma. Thus, L fits
the second definition of star-free languages given in Theorem 1.5: indeed, the codomain of ϕ
is finite and aperiodic by Theorem 1.8. This proves the soundness part of Theorem 1.7.

4 Expressiveness of the λ℘-calculus

We now turn to the extensional completeness part in Theorem 1.7: our goal is to construct,
for any star-free language, a closed λ℘-term of type StrΣ[A] ( Bool (for some purely
affine A) that defines this language. To do so, the most convenient way that we have
found is to take a detour through automata that compute an output string instead of a
single bit (acceptance/rejection). We will recall the notion of aperiodic sequential function
(Definition 4.4), and then establish that:

I Theorem 4.1. Any aperiodic sequential function Σ∗ → Π∗ can be expressed by a λ℘-term
of type StrΣ[A]( StrΠ for some purely affine type A.

The advantage of working with this class of functions is that they can be assembled from small
“building blocks” by function composition, as the Krohn–Rhodes decomposition (Theorem 4.8)
tells us. Our proof strategy for the above theorem will consist in encoding these blocks
(Lemma 4.10) and composing them together (as a special case of Lemma 2.8).

To deduce the desired result, we rely on two lemmas (proved in Appendix B):

I Lemma 4.2. If a language L ⊆ Σ∗ is star-free, then its (string-valued) indicator function
χL : Σ∗ → {1}∗, defined by χL(w) = 1 if w ∈ L and χL(w) = ε otherwise, is aperiodic
sequential.

I Lemma 4.3. There exists a λ℘-term nonempty : Str{1}[Bool]( Bool that tests whether
its input string is non-empty.

Let L be a star-free language. Combining Lemma 4.2 and Theorem 4.1, χL is definable
by some λ℘-term indicL : StrΣ[A] ( Str{1} where A is purely affine. To compose
this with the non-emptiness test of Lemma 4.3, we use Lemma 2.8 again: the λ℘-term
tL = λ◦x. nonempty (indicL x) : StrΣ[A[Bool]] ( Bool defines L. Since A and Bool are
purely affine, so is A[Bool]: we just deduced extensional completeness from Theorem 4.1.
Proving the latter is the goal of the rest of this section.

4.1 Reminders on automata theory
Sequential transducers are among the simplest models of automata with output. They are
deterministic finite automata which can append a word to their output at each transition,
and at the end, they can add a suffix to the output depending on the final state. The
definition is classical; a possible reference is [44, Chapter V].
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qa qb

end|ab end|bbb

a|a b|a

a|bb

b|bb

Figure 2 A schematic representation of a sequential transducer whose formal definition is
Q = {qa, qb}, δ(q, a) = (qa, a) and δ(q, b) = (qb, bb) for q ∈ Q, qI = qa, F (qa) = ab and F (qb) = bbb.

I Definition 4.4. A sequential transducer with input alphabet Σ and output alphabet Π
consists of a set of states Q, a transition function δ : Q × Σ → Q × Π∗, an initial state
qI ∈ Q, and a final output function F : Q→ Π∗. We abbreviate δst = π1 ◦δ and δout = π2 ◦δ,
where πi : X1 ×X2 → Xi is the i-th projection of the product (i ∈ {1, 2}).

Given an input string w = w[1] . . . w[n] ∈ Σ∗, the run of the transducer over w is the
sequence of states q0 = qI , q1 = δst(q0, w[1]), . . . , qn = δst(qn−1, w[n]). Its output is obtained
as the concatenation δout(q0, w[1]) · . . . · δout(qn−1, w[n]) · F (qn).

A sequential function is a function Σ∗ → Π∗ computed as described above by some
sequential transducer.

I Definition 4.5. The transition monoid of a sequential transducer is the submonoid of
Q → Q (endowed with reverse function composition: fg = g ◦ f) generated by the maps
{δst(−, c) | c ∈ Σ} (where δst(−, c) stands for q 7→ δst(q, c)).

A sequential transducer is said to be aperiodic when its transition monoid is aperiodic. A
function that can be computed by such a transducer is called an aperiodic sequential function.

I Example 4.6. The transducer in Figure 2 computes f : w ∈ {a, b}∗ 7→ a · ψ(w) · b where
ψ is the monoid morphism that doubles every b: ψ(a) = a and ψ(b) = bb. Its transition
monoid T is generated by G = {(δst(−, a) : q 7→ qa), (δst(−, b) : q 7→ qb)}; one can verify that
T = G ∪ {id} and therefore ∀h ∈ T, h ◦ h = h. Thus, f is an aperiodic sequential function.

I Remark 4.7. The converse to Lemma 4.2 is also true; more generally, the preimage of a
star-free language by an aperiodic sequential function is star-free, and the preimage of a
regular language is regular. But we will not need this here.

I Theorem 4.8 (Krohn–Rhodes decomposition, aperiodic case, cf. Appendix A). Any aperiodic
sequential function f : Σ∗ → Π∗ can be realized as a composition f = f1 ◦ . . . ◦ fn (with
fi : Ξ∗i → Ξ∗i−1, Ξ0 = Π and Ξn = Σ) where each function fi is computed by some aperiodic
sequential transducer with 2 states.

Figure 2 gives an example of aperiodic transducer with two states.
I Remark 4.9. This is not the standard way to state this theorem, though one may find it in
the literature, usually without proof (e.g. [10, §1.1]); see [8] for a tutorial containing a proof
sketch of this version. In Appendix A, we show how Theorem 4.8 follows from the more
usual statement on wreath products of monoid actions.

4.2 Encoding aperiodic sequential transducers
Thanks to the Krohn–Rhodes decomposition and to the fact that the string functions
definable in the λ℘-calculus (as specified by Theorem 4.1) are closed under composition (by
Lemma 2.8), the following entails Theorem 4.1, thus concluding our completeness proof.
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I Lemma 4.10. Any function Σ∗ → Π∗ computed by some aperiodic sequential transducer
with 2 states can be expressed by some λ℘-term of type StrΣ[A]( StrΠ, for a purely affine
type A depending on the function.

Let us start by exposing the rough idea of the encoding’s trick using set-theoretic maps. We
reuse the notations of Definition 4.4 and assume w.l.o.g. that the set of states is Q = {1, 2}.

Suppose that at some point, after processing a prefix of the input, the transducer has
arrived in state 1 (resp. 2) and in the meantime has outputted w ∈ Π∗. We can represent
this “history” by the pair (κw, ζ) (resp. (ζ, κw)) where

ζ, κw : Π∗ → Π∗ ζ : x 7→ ε κw : x 7→ w · x

For instance, in the case of Example 4.6, after reading a string s = s′b, the transducer is in
the state qb and has outputted12 w = a · ψ(s′), which we represent as (ζ, κa·ψ(s′)) (taking
qa = 1 and qb = 2; ψ is described in Example 4.6). In general, some key observations are

ζ ◦ κw = ζ κw ◦ κw′ = κww′ κw(w′)ζ(w′′) = ζ(w′′)κw(w′) = ww′

Now, consider an input letter c ∈ Σ; how to encode the corresponding transition δ(−, c) as a
transformation on the pair encoding the current state and output history? It depends on the
state transition δst(−, c); we have thanks to the above identities:

(h, g) 7→ (h ◦ κδout(1,c), g ◦ κδout(2,c)) when δst(−, c) = id;
(h, g) 7→ (κh(δout(1,c))g(δout(2,c)), ζ) when δst(−, c) : q′ 7→ 1 (note that h = ζ xor g = ζ);
(h, g) 7→ (ζ, κh(δout(1,c))g(δout(2,c))) when δst(−, c) : q′ 7→ 2;
The remaining case δst(−, c) : q 7→ 3− q is excluded by aperiodicity. This point is crucial:
this case would correspond to (h, g) 7→ (g ◦ κδout(2,c), h ◦ κδout(1,c)) which morally “uses
its arguments h, g in the wrong order”.

Coming back to Example 4.6, let us say that after the transducer has read a prefix s = s′b

of its input string as we previously described, the next letter is a. Then the expression
h(δout(1, c))g(δout(2, c)) above is in this case ζ(a)κa·ψ(s′)(bb) = ε ·a ·ψ(s′) · bb = a ·ψ(s) which
is indeed the output that the transducer produces after reading the input prefix sa = s′ba.

Next, we must transpose these ideas to the setting of the λ℘-calculus.

Proof of Lemma 4.10. We define the λ℘-term meant to compute our sequential function as

λ◦s. λ�fa1 . . . . λ
�fa|Π| . out (s transc1 . . . transc|Σ|) : StrΣ[A]( StrΠ

where Σ = {c1, . . . , c|Σ|}, Π = {a1, . . . , a|Π|} and, writing Γ = {fa : o( o | a ∈ Π},

Γ | ∅ ` transc : A( A (for all c ∈ Σ) Γ | ∅ ` out : (A( A)( (o( o)

In the presence of this non-affine context Γ, the type S = o( o morally serves as a purely
affine type of strings, as mentioned in Remark 2.9. Moreover this “contextual encoding of
strings” supports concatenation (by function composition), leading us to represent the maps
ζ and κw as open terms of type T = S ( S that use non-affinely the variables fa for a ∈ Π.

We shall take the type A, at which the input StrΣ is instantiated, to be A = T ( T ( S,
which is indeed purely affine as required by the theorem statement. This can be seen morally
as a type of continuations [42] taking pairs of type T ⊗ T (although our λ℘-calculus has no
actual ⊗ connective). Without further ado, let us program (the typing derivations for some
of the following λ℘-terms are given in Appendix C):

12This is indeed a · ψ(s′) and not a · ψ(s) = a · ψ(s′) · bb. If the input turns out to end there, the final
output function will provide the missing suffix F (qb) = bbb to obtain f(s) = a · ψ(s) · b = a · ψ(s′) · bbb.
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cat = λ◦w. λ◦w′. λ◦x.w (w′ x) : S ( S ( o( o = S ( S ( S = S ( T plays the roles
of both the concatenation operator and of w 7→ κw (thanks to currying)
zeta = λ◦w′. λ◦x. x : S ( o( o = T

uq = δout(q, c)†(~fΠ) : o ( o (by Proposition 2.5) represents the output word δout(q, c)
that corresponds to a given input letter c ∈ Σ and state q ∈ Q = {1, 2}
case δst(q, c) = q: transc = λ◦k. λ◦h. λ◦g. k (λ◦y. h (catu1 y)) (λ◦z. g (catu2 z)) – if we
wanted to handle the excluded case δst(q, c) = 3− q, we would write a similar term with
the occurrences of h and g exchanged (λ◦k. λ◦h. λ◦g. k (λ◦y. g . . .) (λ◦z. h . . .)), violating
the non-commutativity requirement (contrast with the proof of Theorem 5.4);
case δst(q, c) = 1: transc = λ◦k. λ◦h. λ◦g. k (cat (cat (hu1) (g u2))) zeta
case δst(q, c) = 2: transc = λ◦k. λ◦h. λ◦g. k zeta (cat (cat (hu1) (g u2)))
out = λ◦j. j (λ◦h. λ◦g. cat (h v1) (g v2)) (λ◦x. x) zeta, where vq = F (q)†(~fΠ) represents
the output suffix for state q ∈ {1, 2}, assuming w.l.o.g. that the initial state is 1 (also,
here λ◦x. x represents κε since the latter is the identity on Π∗)

We leave it to the reader to check that these λ℘-terms have the expected computational
behavior; again, see Appendix C for typing derivations. Note that in functional programming
terms, the use of continuations turns the “right fold” of the Church-encoded input string into
a “left fold”, and the latter fits with the left-to-right processing of a sequential transducer. J

5 Regular languages in extensions of the λ℘-calculus

5.1 The commutative case
The λ℘-calculus adds two restrictions to the simply typed λ-calculus, namely affineness and
non-commutativity, with the latter depending on the former as already mentioned. One
could wonder whether affineness by itself would be enough to characterize star-free languages.
We now show that it is not the case.

The commutative variant of the λ℘-calculus – let us call this variant the λa-calculus13

– has the same grammar of types and terms as the λ℘-calculus (cf. §2). The typing rules
are also given by Figure 1, but their interpretation differs from the previous one as follows:
∆,∆′ stand for sets of bindings x : A, ∆ ·∆′ denotes the disjoint union of sets, and one must
read “subset” instead of “subsequence”. In other words, the main difference is that in the
λa-calculus, the affine context ∆ does not keep track of the ordering of variables.

By plugging this commutative system in the statement of our main result (Theorem 1.7),
we get regular languages instead of star-free languages:

I Theorem 5.1. A language L ⊆ Σ∗ is regular if and only if it can be defined by a closed
λa-term of type StrΣ[A]( Bool for some purely affine type A (that may depend on L).

Proof. Soundness is a consequence of Hillebrand and Kanellakis’s Theorem 1.1, by a simple
translation from the λa-calculus to the simply typed λ-calculus which “forgets affineness”.

For extensional completeness, consider a regular language L = ϕ−1(P ) where P is a
subset of a finite monoid M and ϕ : Σ∗ → M is a morphism (cf. Theorem 1.3). If we
represent an element m ∈M by a M -indexed bit vector vm such that vm[i] = 1 ⇐⇒ i = m,
then a translation m 7→ mp can be represented by a purely disjunctive formula:

vmp[i] = vm[j1] ∨ . . . ∨ vm[jk] where {j1, . . . , jk} = {j ∈M | jp = i}

13a standing for “affine”.
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Moreover, this is linear in the following sense: given a fixed p ∈ M , each index j ∈ M is
involved in the right-hand side of this formula for exactly one i ∈M .

Let ttt = λ◦x. true : Bool ( Bool and fff = λ◦x. x : Bool ( Bool. This makes the
type B = Bool( Bool into a kind of type of booleans that supports a disjunction of type
B ( B ( B (by function composition) and a type-cast function of type B ( Bool (by
applying to false). (Of course B has other closed inhabitants besides ttt and fff, but we
only use those two.) Using this type and the “iteration+continuations” recipe of the proof of
Lemma 4.10, one can define a λa-term of type StrΣ[A]( Bool that decides the language L
with A = B( . . .( B( Bool (with |M | arguments of type B). J

Let us go further. According to Theorem 4.1, the λ℘-calculus can define all aperiodic
sequential functions; we show that as one can expect, the aperiodicity condition is lifted
when moving to the commutative λa-calculus. However, the trick used in the direct encoding
of the above proof does not work, and we have only managed to encode general sequential
functions by resorting to the Krohn–Rhodes theorem.

I Theorem 5.2 (Krohn–Rhodes decomposition, non-aperiodic case, cf. Appendix A). Any
sequential function f : Σ∗ → Π∗ can be realized as a composition f = f1 ◦ . . . ◦ fn (with
fi : Ξ∗i → Ξ∗i−1, Ξ0 = Π and Ξn = Σ) where each function fi is computed by some sequential
transducer whose transition monoid is either aperiodic or a group.

I Remark 5.3. By Theorem 4.8, the aperiodic transducers among the fi can be further
decomposed into two-state aperiodic transducers.

I Theorem 5.4. Any sequential function Σ∗ → Π∗ can be expressed by some λa-term of type
StrΣ[A]( StrΠ, for a purely affine type A depending on the function.

Proof sketch. First, by Theorem 4.1, we can already encode aperiodic sequential functions,
since every well-typed λ℘-term is also a well-typed λa-term. One can also show that
Lemma 2.8 applies to the λa-calculus. By the general Krohn–Rhodes theorem, we just need
to handle the case of a sequential transducer whose transition monoid is a group.

The idea, in terms of set-theoretic maps as in our explanation of the proof of Lemma 4.10
(whose notations we borrow here), is as follows. The current state q ∈ Q and output history
w ∈ Π∗ is represented by a Q-indexed family (gq′)q′∈Q of functions such that gq = κw and for
q′ 6= q, gq′ = ζ. The transition δ(−, c) is represented by (gq)q∈Q 7→ (gσ(q) ◦ κδout(σ(q),c))q∈Q
where σ = (δst(−, c))−1 – the latter is well-defined because the group assumption means that
δst(−, c) is a permutation of Q. The final output is obtained at the end as the concatenation
gq1(F (q1)) . . . gqn

(F (qn)) where Q = {q1, . . . , qn} (with an arbitrary enumeration of Q).
The elaboration of the corresponding λa-term is left to the reader. Keep in mind that

the reason this term will not be well-typed for the λ℘-calculus is that the inversions in the
permutation δst(−, c) correspond to violations of non-commutative typing. J

5.2 Extension with additive pairs
Let’s look at what happens if we add the additive conjunction connective of linear logic to the
λ℘-calculus. The λ℘&-calculus is obtained by adding A,B ::= . . . | A&B to the grammar of
types and t, u ::= . . . | 〈t, u〉 | π1 t | π2 t for terms, with the typing rules

Γ | ∆ ` t : A Γ | ∆ ` u : B
Γ | ∆ ` 〈t, u〉 : A&B

Γ | ∆ ` t : A1 &A2

Γ | ∆ ` πi t : Ai
(see [39, §4])

the β-reduction rules πi 〈t1, t2〉 −→β ti, and the corresponding η-conversion rules.
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Recall that we discussed both in the introduction and in Remark 2.7 the need to prevent
the existence of a λ℘-term of type Bool( Bool for negation. However, if we use the additive
conjunction to define the type Bool& = (o& o)( o, the following are well-typed λ℘&-terms:

true& = λ◦p. π1 p false& = λ◦p. π2 p not& = λ◦b. λ◦p. b 〈π2 p, π1 p〉

More generally:

I Proposition 5.5. Let Fin&(n) = (o & . . . & o)( o. For all n ∈ N, there is a canonical
bijection between {1, . . . , n} and the closed λ℘&-terms of type Fin&(n). Furthermore, using
this encoding, every map {1, . . . , n1} × . . . × {1, . . . , nk} → {1, . . . ,m} can be defined by a
closed λ℘&-term of type Fin&(n1)( . . . Fin&(nk)( Fin&(m).

I Corollary 5.6. Every regular language can be defined by a closed λ℘&-term of type
StrΣ[A]( Bool for some purely affine type A – we consider ‘&’ as an affine connective and
therefore allow it in A.

Proof idea. Take A = Fin&(|M |) where M is any finite monoid that recognizes the language
as specified in Theorem 1.3. (We could also prove the converse by relying on an extension of
Hillebrand and Kanellakis’s Theorem 1.1 to the simply typed λ-calculus with products.) J

Similarly, one could show that the addition of the additive disjunction ‘⊕’ of linear logic
to the λ℘-calculus would be sufficient to encode all regular languages.

5.3 On regular and first-order tree languages: a discussion
There is a rich theory of tree automata that extends the notion of regular language to trees
over ranked alphabets instead of strings. Such trees admit Church encodings; for instance,
for an alphabet with arities (a : 2, b : 2, x : 0) (i.e. for trees with two kind of binary nodes
and one kind of leaf) one would have Tree(2,2,0) = (o( o( o)→ (o( o( o)→ o→ o.
I Remark 5.7. A string over an alphabet Σ = {c1, . . . , c|Σ|} can be seen as a tree with arities
(c1 : 1, . . . , c|Σ| : 1, ε : 0). This would lead to defining the type of Church-encoded strings as
Str′Σ = (o( o)→ . . .→ (o( o)→ o→ o. Our type StrΣ, which is the traditional choice
in linear logic (see the discussion on Church numerals in [18, §5.3.2]), is a bit more precise
since it expresses that such a “unary tree” can only contain one ε node. But as there exist
conversion functions StrΣ ( Str′Σ and Str′Σ[o ( o] ( StrΣ, this choice does not make
much difference (thanks again to Lemma 2.8).

We shall not go into the details of tree automata here, but the knowledgeable reader
may check that Proposition 5.5 can be used to encode all regular tree languages over
(a : 2, b : 2, x : 0) as closed λ℘&-terms of type Tree(2,2,0)[A] ( Bool for purely affine A.
Predictably, this fails for the λ℘-calculus without additive connectives. More noteworthy
is the failure of the trick used to prove Theorem 5.1 for the commutative λa-calculus when
one replaces strings with trees. Thus, it seems (though this remains conjectural) that the
additives of linear logic might be required to express some regular tree languages.

We believe that this is no accident and that some fundamental difficulty of automata
theory is being manifested here. Indeed, if we had a characterization of regular tree languages
in the λa-calculus, we could expect that moving to the λ℘-calculus would yield the first-order
tree languages, which are the commonly accepted counterpart of star-free languages for
trees. (Recall from Theorem 1.5 that definability in first-order logic is among the equivalent
definitions of star-free languages.) However, while Theorem 1.5 demonstrates that star-free
languages are well-understood, the situation is quite different for first-order tree languages:
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there is no known algebraic characterization, and neither is there any known algorithm to
decide whether a tree automaton recognizes a first-order language (see e.g. [9, §3]). Another
argument for the necessity of additives, discussed in the next section, comes from transducers.

6 Next episode preview: transducers in typed λ-calculi

We started from Hillebrand and Kanellakis’s Theorem 1.1 and obtained an analogous
statement for star-free languages instead of regular languages. Another direction that we could
have pursued is to replace languages by functions, by looking at the type StrΣ[A]→ StrΠ.
Indeed, an immediate consequence of this “regular = λ-definable” result is:

I Corollary 6.1. If f : Σ∗ → Π∗ is definable by a closed simply typed λ-term of type
StrΣ[A]→ StrΠ, then for any regular language L ⊆ Π∗, f−1(L) ⊆ Σ∗ is also regular.

Proof idea. Let u : StrΠ[B] → Bool and t : StrΣ[A] → StrΠ be simply typed λ-terms
defining L and f respectively. Then f−1(L) is defined by λx. u (t x) which is well-typed with
type StrΣ[A[B]]→ Bool (analogously to Lemma 2.8). J

This suggests a connection between these λ-definable string functions and automata theory.
But while it is not too hard to define functions of hyperexponential growth in the simply
typed λ-calculus, most classes of string functions from automata theory (see [37] for a recent
survey) grow much more slowly (polynomially or even linearly in the input size). The
challenge then becomes to restrict the expressiveness via types to capture such classes. This
calls for the recipes that have worked here, namely affine types and non-commutativity.

B Claim 6.2 (to be proved in a sequel). The functions definable by closed terms of type
StrΣ[A] ( StrΠ, for purely affine A, are the MSO transductions14 [15] (a.k.a. regular
functions15) in the λa-calculus and the FO transductions in the λ℘-calculus.

This goes beyond the encodings of sequential transducers presented in this paper (Theorem 4.1
and Theorem 5.4). But the latter are an important stepping stone, since we do not know
how to prove the above claim without using the Krohn–Rhodes decomposition somewhere.
To summarize the results of the present paper together with its planned sequel:

calculus affine commutative StrΣ[A]( Bool StrΣ[A]( StrΠ

λ℘ yes no star-free (FO-definable) languages FO transductions
λa yes yes regular (MSO-definable) languages MSO transductions

While the connection between non-commutativity and aperiodicity came as a surprise to
us, we had more reasons to suspect that affine types should have something to do with
transducers. Indeed, the term “linear” itself has been used to describe the copyless assignment
condition on streaming string transducers (SSTs) [3], a machine model for MSO transductions,
e.g. “updates should make a linear use of registers” [16, §5] (in our terminology, the register
assignments of SSTs are in fact affine, not strictly linear). Moreover, it seems (informally
speaking) that the more sophisticated single-use-restricted assignments of streaming tree
transducers [4] correspond to a form of linearity that incorporates an additive conjunction,
whereas copyless assignments are purely multiplicative; compare with the discussion of §5.3.

14MSO stands for Monadic Second-Order Logic while FO stands for First-Order Logic, cf. the introduction.
15This name is somewhat confusing, since there are multiple classes of string functions that collapse to

the single class of regular languages when we consider indicator functions. For example, in-between
the sequential functions (Definition 4.4) and the regular (MSO-definable) functions, there is a widely
studied strictly intermediate class called the rational functions. (The adjective “rational” is used to
refer to regular languages in a French tradition going back to Nivat and Schützenberger.)
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7 Related work

We have already mentioned in the introduction several lines of tangentially related research,
such as higher-order model checking or the topology of non-commutative proofs. In this
section, we discuss a few references that we deemed to be more directly relevant.

Automata as circular proofs Aside from Hillebrand and Kanellakis’s Theorem 1.1, perhaps
our most direct precursors in “implicit automata theory” are the works by DeYoung and
Pfenning [13] on sequential transducers (their version seems to be equivalent to Definition 4.4)
and by Kuperberg, Pinault and Pous [29] characterizing regular languages and deterministic
logarithmic space complexity. Both rely on a proofs-as-programs interpretation of circular16

proof systems for some variants of linear logic with fixed points.
The Church encoding of strings is obtained by a systematic procedure [12] from the

inductive definition s ::= ε | c1 · s | . . . | c|Σ| · s (Σ = {c1, . . . , c|Σ|}). Using fixed points of
formulas, one can instead turn it into the recursive type17 StrµΣ = 1⊕ StrµΣ ⊕ . . .⊕ StrµΣ;
this is the definition of the type of strings in [13], and it is also implicitly at work in18 [29].

So both our approach (following Hillebrand and Kanellakis [25]) and those using fixed
point logics morally work because the consumption of strings represented as inductive data
types is similar to their traversal by automata. However, while the use of the “right fold”
provided by a Church-encoded string involves an “inversion of control” (in programming
jargon) that, in the case of the simply typed λ-calculus, has drastic effects on expressive
power19 (contrast Theorem 1.1 with the fact that βη-convertibility of simply typed λ-terms is
not elementary recursive [33]), circular proofs seem to give the programmer more degrees of
freedom: Kuperberg et al. do not need to add polymorphism to go beyond regular languages.

Recognizable languages of λ-terms A modern point of view on Hillebrand and Kanellakis’s
Theorem 1.1 can be implicitly found in a paper by Terui [48] emphasizing the method of
evaluation in a finite denotational semantics used to prove it. Along these lines, general
notions of recognizable languages of closed λ-terms of a given type (specializing to regular
languages for the type of Church-encoded strings) have been proposed, based on finite
semantics, in the simply-typed λ-calculus by Salvati [45] and in an infinitary λ-calculus
by Melliès [35]. It is plausible that Theorem 1.1 can be extended to give an equivalent
syntactic definition for Salvati’s recognizable languages: for a simple type B they would be
the languages definable by B[A] → Bool. An interesting question would be whether one
can give an encoding of higher-dimensional trees in the simply typed λ-calculus so that this
notion of recognizability coincides with Rogers’s automata for those trees [43, 17].

Other implicit automata results In a recent preprint, Bojańczyk [10] introduces a new
class of string-to-string functions that admits several equivalent definitions (see also [11]).
One of them uses the simply typed λ-calculus enriched with a ground type of lists and several
primitive functions on lists. Strings are represented as lists of characters, which differs from
our use of functional encodings in a λ-calculus without any primitive data type.

16These are sometimes called “cyclic” proofs, but in our context, this would create a confusion with an
unrelated non-commutative logic, cyclic linear logic [50].

17Formally, this is expressed as the least fixed point StrµΣ = µα. 1⊕ α⊕ . . .⊕ α.
18The left rules given in [29, Figure 1] for A and A∗ correspond to A = 1⊕ . . .⊕ 1 and A∗ = 1⊕ (A⊗A∗).
19To overcome those limits and express any elementary recursive function as a simply typed λ-term,

Hillebrand and Kanellakis use an alternative representation of inputs inspired by database theory [25].
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Using a computational model inspired by denotational semantics of linear logic, Seiller [46]
gives a characterization of each level of the k-head two-way non-deterministic automata
hierarchy. The lowest level (k = 1) corresponds to regular languages, while the union over
k ∈ N≥1 gives the complexity class NL (non-deterministic logarithmic space). Something in
common with our work is that the representation of strings used by [46] is more or less a
semantic version of Church encodings (see [46, §3.2]). There is one main difference with what
one usually calls implicit complexity: Seiller’s result does not take place inside a syntactically
defined programming language (and it is far from obvious how to turn this model into a
similarly expressive syntax, because of the previously mentioned inversion of control).

Controlling expressible functions with non-commutativity The tree-processing program-
ming language of Kodama, Suenaga and Kobayashi [27] uses non-commutative types to force
programs to process their input in a depth-first, left-to-right fashion. This allows them to
be compiled into a target language that works on a stream of tokens, suggesting a possible
connection with nested word automata [5]. The non-commutativity is restricted to arguments
of ground type in [27], whereas it is important for our λ℘-calculus that it applies at all orders
(indeed, since we encode data as functions, higher-order functions are pervasive).
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A Reminder: the Krohn–Rhodes decomposition theorems, from
transformation monoids to sequential transducers

While we have not found a source with a proof for the precise versions of the Krohn–Rhodes
theorem for sequential functions that we use, all the material covered in this subsection is
well-known among practitioners of automata theory. In other words, we make no claim to
originality.

I Definition A.1. A transformation monoid (X,M) consists of a set X, a monoid M and a
right action of M on X (kept implicit in the notation (X,M), and denoted by (x,m) 7→ x ·m).
It is finite when both X and M are finite.

Typical transformation monoids are obtained by considering pairs (Q,T ) such that Q is
the state space of some transducer (Q, δ, qI , F ) and T is its transition monoid, acting on Q
via function application.

I Definition A.2. Let (X,M) and (Y,N) be two transformation monoids. Their wreath
product is a transformation monoid (X,M) o (Y,N) = (X × Y,W ) where:

the underlying set of the monoid W is MY ×N ;
the right action of (f, n) ∈W = MY ×N on (x, y) ∈ X×Y is (x, y)·(f, n) = (x·f(y), y·n);
the multiplication on W is (f, n)(g, k) = ((y 7→ f(y)g(y · n)), nk) – it is chosen so that
the above item is a legitimate monoid action.

I Proposition A.3. The wreath product of transformation monoids is associative up to
canonical isomorphism.

Proof sketch. We give a direct description of (X,M) o (Y,N) o (Z,P ) = (X × Y × Z,W ):
the underlying set of the monoid W is MY×Z × NZ × P – note that it is canonically
isomorphic to (MY ×N)Z × P ;
the right action is (x, y, z) · (f, g, p) = (x · f(y, z), y · g(z), z · p);

https://doi.org/10.1007/978-3-642-02261-6_5
https://doi.org/10.1145/3226594
https://doi.org/10.1145/3242953.3242956
https://doi.org/10.4230/LIPIcs.RTA.2012.323
https://doi.org/10.1109/LICS.2019.8785674
https://doi.org/10.2307/2274953
https://doi.org/10.2168/LMCS-11(3:22)2015
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the multiplication on W is
(f, g, p)(f ′, g′, p′) = (((y, z) 7→ f(y, z)f ′(y · n, z · p)), (z 7→ g(z)g′(z · p)), pp′). J

I Definition A.4. A transformation monoid (X,M) strongly divides (Y,N) if there exists a
submonoid N ′ ≤ N , a surjective morphism ϕ : N ′ � M and a surjection s : Y � X such
that for all y ∈ Y and n′ ∈ N ′, s(y · n′) = s(y) · ϕ(n′).

A monoid M divides N if M is the homomorphic image of a submonoid of N .

I Proposition A.5. A finite monoid is aperiodic if and only if it there are no non-trivial
groups that divide it.

Proof. Let M be a finite monoid. Suppose that for x ∈ M , there is no n ∈ N such that
xn = xn+1; then by finiteness, (xi)i∈N must be ultimately periodic with period k ≥ 2, and
one can define a surjective morphism from the submonoid generated by x to the cyclic group
of order k by sending x to the latter’s generator. The converse follows a similar reasoning
(recall that every non-trivial group contains a non-trivial cyclic subgroup). J

I Theorem A.6 (Krohn–Rhodes with strong divisors [14, Theorem 4.1]). Every finite transfor-
mation monoid (X,M) strongly divides some wreath product (Y1, N1) o . . . o (Yn, Nn) where
each (Yk, Nk) is either:

the flip-flop (Yk, Nk) = ({1, 2}, {id{1,2}, (x 7→ 1), (x 7→ 2)}) (with the action x · f = f(x)
and the monoid multiplication fg = g ◦ f);
a finite group dividing M acting on itself by right multiplication.

In particular, if M is aperiodic, (X,M) strongly divides a wreath product of several copies of
the flip-flop transformation monoid.

I Remark A.7. The flip-flop transformation monoid is precisely the transition monoid of the
transducer of Example 4.6 endowed with its action on the set of states.

I Remark A.8. We can also require G above to be a simple group. This is the statement
given in [14], but group simplicity is not needed for our purposes. (To be more precise, every
finite group divides a wreath product of its Jordan–Hölder factors.)

I Remark A.9. Let (Y,N) = (Y1, N1) o . . . o (Yn, Nn). In both the flip-flop and group cases,
the action of Nk on Yk is faithful, i.e. two distinct elements of Nk act differently on at least
one element of Yk. Furthermore, the wreath product of faithful transformation monoids is
faithful. Therefore, one can safely identify N with a submonoid of Y → Y .

Now let us relate this wreath product operation to sequential functions. This is sufficient
to derive Theorem 4.8 and Theorem 5.2 as corollaries of Theorem A.6.

I Proposition A.10. Let (Q, δ, qI , F ) be a sequential transducter with transition monoid
T describing a function f : Σ∗ → Π∗. Suppose that (Q,T ) strongly divides some faithful
transformation monoid (X,M) o (Y,N). Then there is an alphabet Ξ and transducers

(X, δX , xI , FX) : Σ∗ → Ξ∗ and (Y, δY , yI , FY ) : Ξ∗ → Π∗

such that
the sequential functions fX : Σ∗ → Ξ∗ and fY : Ξ∗ → Π∗ that they respectively compute
verify f = fX ◦ fY ;
there are injective homomorphisms TX ↪→M and TY ↪→ N from their respective transition
monoids.
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Proof. Let (Q, δ, qI , F ) be the transducer under scrutiny. Let K ⊆ MY × N such that
ϕ : K � T , s : X×Y � Q be the maps witnessing that (Q,T ) strongly divides (X,M)o(Y,N).
We choose a pair (xI , yI) such that s(xI , yI) = qI and, for each a ∈ Σ, we choose an element
(ga, na) ∈ MY × N which is mapped by ϕ to δst(−, a) ∈ T . Set Ξ = (Σ ] {∗}) × Y ,
(xI , yI) = s−1(x, y) and

FY (y) = (∗, y) FX(x) = ε

δY (y, a) = (y ·ma, y) δX(x, (a, y)) = (x · ga(y), δout(s(x), a))
δX(x, (∗, y)) = (x, F (s(x, y)))

We leave checking that this defines transducers with the expected properties to the reader. J

This generalizes to n-fold wreath products in the expected way.

I Proposition A.11. Let T be the transition monoid of a sequential transducer with state
space Q computing the function f : Σ∗ → Π∗. Suppose that (Q,T ) strongly divides some
wreath product (X,M) = (X1,M1) o . . . o (Xn,Mn) of faithful transformation monoids. Then
f admits a decomposition f = f1 ◦ . . . ◦ fn (with fi : Ξ∗i → Ξ∗i−1, Ξ0 = Π and Ξn = Σ) such
that for each i ∈ {1, . . . , n}, fi is computed by a sequential transducer whose transformation
monoid embeds in Mi and with state space Xi.

Proof. By induction starting from n = 1.
For n = 1, let ϕ : K � T and s : X � Q be the maps witnessing that (Q,T )
strongly divides (X,M). Let xI be such that s(xI) = qI , and, for each a ∈ Σ, pick
an element ma ∈ K such that ϕ(ma) = δst(−, a). Then, letting (Q, δ, qI , F ) being
the transducer under scrutiny, a suitable transducer (X, δ′, xI , F ′) is defined by setting
δ′(x, a) = (x ·ma, δout(s(x), a)) and F ′(x) = F (s(x)).
For n > 1, use Proposition A.10 and the induction hypothesis. J

Proof of Theorems 4.8 and 5.2. Let (Q, δ, qI , F ) be a transducter computing a certain
sequential function f : Σ∗ → Π∗ and let T be its transition monoid. By Theorem A.6,
there is a transformation monoid (Y,N) which can be written as a wreath product (Y,N) =
(Y1, N1) o . . . o (Yk, Nk) such that (Q,T ) strongly divides (Y,N), and the (Yi, Ni) are either flip-
flops or groups (the latter case being ruled out for Theorem 4.8, thanks to Proposition A.5). By
applying Proposition A.11, we may obtain transducers Ti implementing sequential functions
fi : Ξ∗i → Ξ∗i+1 such that Ξ0 = Σ, Ξk = Π and f = fk−1 ◦ . . .◦f0. Furthermore, we know that
the state space of Ti is Yi and that the corresponding transition monoid Ti embeds into Ni.
Recalling that “being aperiodic” and “being a finite subgroup” are properties stable under
homomorphic embeddings, we know that either Yi has cardinality 2 and Ti is aperiodic with
two states or Ti is a group (a trivial group if T was aperiodic), thus we may conclude. J

B Omitted proofs

B.1 Proof of Lemma 2.8
The lemma follows from the more usual stability of typing judgments under type substitution.
We write Γ[A] and ∆[B] for the obvious extension of Notation 1.2 to contexts.

I Lemma B.1. If Γ | ∆ ` t : A, then, for every type B, we have Γ[B] | ∆[B] ` t : A[B].

Proof. Routine induction on the typing derivation. J
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Picturing Lemma B.1 as an admissible typing rule (dashed inference line), we have

∅ | ∅ ` u : B[U ]( C

∅ | ∅ ` t : A[T ]( B

∅ | ∅ ` t : A[T [U ]]( B[U ]
−−−−−−−−−−−−−−

∅ | x : A[T [U ]] ` x : A[T [U ]]
∅ | x : A[T [U ]] ` t x : B[U ]

∅ | x : A[T [U ]] ` u (t x) : C
∅ | ∅ ` λ◦x. u (t x) : A[T [U ]]( C

B.2 Proof of Proposition 3.1
We follow Notation 3.3 throughout this subsection, writing ∆ ` . . . instead of ∅ | ∆ ` . . ..

Let us show something slightly stronger: for any ∆ containing only purely affine types,
and any purely affine type A, there are finitely many λ℘-terms t such that ∆ ` t : A, up to
βη-conversion. Our proof is by strong induction on |∆|+ |A|, where |A| is the size of A (as a
syntax tree) and |∆| = |B1|+ . . .+ |Bn| for ∆ = x1 : B1, . . . , xn : Bn.

If A = C1 ( . . .( Cm ( o, such a term admits an η-long form t = λy1. . . . λym. u

where ∆, y1 : C1, . . . , ym : Cm ` u : o. Since t is determined by u (modulo βη), and
|∆|+ |C1|+ . . .+ |Cm|+ o < |∆|+ |A|, we can apply the induction hypothesis to reduce to a
case with m = 0 i.e. A = o and t = u. We assume these conditions for the rest of the proof.

Let t be in head normal form: t = z v1 . . . vp. There are finitely many possible choices
for z in ∆. Suppose we make one of these choices: z : D = E1 ( . . . ( Ep ( o. Then
for any i ∈ {1, . . . , p}, |∆ \ {z}| + |Ei| = |∆| − |D| + |Ei| = |∆| − (|D| − |Ei|) < |∆|. The
induction hypothesis then applies to show that there are finitely many possibilities for vi:
the fact that the variable z can only be used once means that a typing judgment of the form
∆′i ` vi : Ei for some subsequence ∆′i of ∆ \ {z} must necessarily be proven as part of the
typing derivation for t. This concludes the proof.

The reader may verify that our arguments can be applied verbatim to the commutative
λa-calculus of §5.

B.3 Proof of Lemma 3.6
The β-normal η-long form of a closed λ℘-term t of type StrΣ[A] ( (o ( o ( o) (by
definition of Bool) is

t =βη λ
◦s. λ◦x. λ◦y. z t1 . . . tn where ∅ | s : StrΣ[A], x : o, y : o ` z t1 . . . tn : o

If z ∈ {x, y}, then n = 0 and t is a constant function from strings to booleans: the statement
of Lemma 3.6 is true with gc = λ◦a. a and h = λ◦f. λ◦x. λ◦y. z (the latter is the constant
function equal to either true or false depending on whether z = x or z = y) or, said
explicitly, t =βη λ

◦s. (λ◦f. λ◦x. λ◦y. z) (s (λ◦a. a) . . . (λ◦a. a)).
In the remaining case z = s, the ti must be closed λ℘-terms for i ≤ |Σ|. That is because

if they contained any free variable, it would necessarily be either x or y, so it would be
an affine variable. But since s : (A ( A) → . . . → (A ( A) → A ( A is non-affine in
its |Σ| first arguments, the dependency on this non-affine variable would contradict the
elimination rule for ‘→’ (cf. Figure 1) which requires the emptiness of the affine context
for the argument – this is analogous to the condition for the promotion rule of linear logic.
This ensures that one can take gci

= ti for i ∈ {1, . . . , |Σ|}. To conclude, observe that
h = λ◦f. λ◦x. λ◦y. f t|Σ|+1 . . . tn works (s t1 . . . tn already uses the affine variable s once, so
the tj for j ∈ {|Σ|+ 1, . . . , n} can only have x and y as free variables).
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B.4 Proof of Lemma 4.2

Since L is star-free, L = ϕ−1(P ) for some ϕ ∈ Hom(Σ∗,M) and P ⊆ M , where M is an
aperiodic monoid. Here is a sequential transducer computing χL: Q = M , qI = e (the
identity element of M), δ(m, c) = (mϕ(c), ε), F (m) = 1 if m ∈ P and F (m) = ε otherwise.
Its transition monoid is isomorphic to ϕ(Σ∗) ⊆M , which is aperiodic.

B.5 Proof of Lemma 4.3

The λ℘-term in question is nonempty = λ◦s. s (λ◦x. true) false.

C Typing derivations for the proof of Lemma 4.10

We set Γ = {fa : S | a ∈ Π}. Recall that S = o( o, T = S ( S and A = T ( T ( S.

C.1 cat = λ◦w. λ◦w′. λ◦x.w (w′ x)

Γ | w : S ` w : S = o( o

Γ | w′ : S ` w′ : S = o( o Γ | x : o ` x : o
Γ | w′ : S, x : o ` w′ x : o

Γ | w : S, w′ : S, x : o ` w (w′ x) : o
Γ | w : S, w′ : S ` λ◦x.w (w′ x) : o( o

Γ | w : S ` λ◦w′. λ◦x.w (w′ x) : S ( o( o

Γ | ∅ ` λ◦w. λ◦w′. λ◦x.w (w′ x) : S ( S ( o( o

C.2 zeta = λ◦w′. λ◦x. x

Γ | x : o ` x : o
Γ | w′ : S, x : o ` x : o

Γ | w′ : S ` λ◦x. x : o( o

Γ | ∅ ` λ◦w′. λ◦x. x : S ( o( o

C.3 transc for c ∈ Σ
We only treat the case δst(q, c) = q (the other ones involve rather similar computations):

transc = λ◦k. λ◦h. λ◦g. k (λ◦y. h (catu1 y)) (λ◦z. g (catu2 z))

First of all, for q ∈ Q = {1, 2}, since uq = δout(q, c)†(~fΠ) and (fa : o( o) ∈ Γ for all a ∈ Π,
by Proposition 2.5 we have Γ | ∅ ` uq : o( o.

We start by typing a subterm:

Γ | h : T ` h : T

[see Appendix C.1]
Γ | ∅ ` cat : S ( S ( S

[see above]
Γ | ∅ ` u1 : S

Γ | y : S ` catu1 y : S ( S Γ | y : S ` y : S
Γ | y : S ` catu1 y : S

Γ | h : T = S ( S, y : S ` h (catu1 y) : S
Γ | h : T ` λ◦y. h (catu1 y) : S ( S = T
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Similarly, Γ | g : T ` λ◦z. g (catu2 z) : T .
We can now type the full term, using A = T ( S ( S, so that k : T ( S ( S. For

the same reason, the conclusion of the following derivation tree is indeed what we want:
transc : A( T ( T ( S = A( A.

Γ | k : A ` k : A
[see above]

Γ | h : T ` λ◦y. h (catu1 y)) : T
Γ | k : A, h : T ` k (λ◦y. h (catu1 y)) : T ( S

[see above]
Γ | g : T ` λ◦z. g (catu2 z) : T

Γ | k : A, h : T, g : T ` k (λ◦y. h (catu1 y)) (λ◦z. g (catu2 z)) : S
Γ | ∅ ` λ◦k. λ◦h. λ◦g. k (λ◦y. h (catu1 y)) (λ◦z. g (catu2 z)) : A( T ( T ( S

Aperiodicity vs non-commutativity, concretely Let us substantiate the claim made in the
main text that if the transition monoid on our two states were not aperiodic – that is, if for
some c ∈ Σ we had δ(q, c) = 3− q – we would encounter a problem with non-commutative
typing. The corresponding λ℘-term that we would want to write is very similar the the one
we just successfully typed above:

λ◦k. λ◦h. λ◦g. k (λ◦y. g (catu2 y)) (λ◦z. h (catu1 z))

Its typing derivation must end with

...
Γ | k : A, h : T, g : T ` k (λ◦y. g (catu1 y)) (λ◦z. h (catu2 z)) : S

Γ | ∅ ` λ◦k. λ◦h. λ◦g. k (λ◦y. g (catu2 y)) (λ◦z. h (catu1 z)) : A( T ( T ( S

The next rule cannot be a weakening since k, h, g all occur as affine free variables in the
λ℘-term k (λ◦y. g (catu2 y)) (λ◦z. h (catu1 z)). Therefore, we must have, for some type R
and some affine contexts ∆,∆′ such that ∆ ·∆′ = (k : A, h : T, g : T ),

...
Γ | ∆ ` k (λ◦y. g (catu2 y)) : R( S

...
Γ | ∆′ ` λ◦z. h (catu1 z) : R

Γ | ∆ ·∆′ ` k (λ◦y. g (catu2 y)) (λ◦z. h (catu1 z)) : S

But this would lead to a contradiction: g ∈ (FV(k (λ◦y. g (catu2 y))) \ Γ) ⊆ ∆ and h ∈ ∆′
so (g, h) would be an ordered subsequence of (k, h, g).
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