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?Institut de recherche mathématique de Rennes, IRMAR, UMR 6625.
*AgroParisTech, UMR MIA 518.
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Abstract

This paper proposes a new Sequential Monte Carlo algorithm to perform maximum likelihood estima-
tion in partially observed diffusion processes. Training such generative models and obtaining low variance
estimators of the posterior distributions of the latent states given the observations is challenging as the
transition densities of the latent states cannot be evaluated pointwise. In this paper, a backward impor-
tance sampling step is introduced to estimate such posterior distributions instead of the usual acceptance-
rejection approach. This allows to use unbiased estimates of the unknown transition densities available
under mild assumptions for multivariate stochastic differential equations while acceptance-rejection based
methods require strong conditions to obtain upper-bounded estimators. The performance of this estimator
is assessed in the case of a partially observed stochastic Lotka-Volterra model.

1 Introduction
Latent data models are all-pervasive in time series and sequential data analysis across a wide range of applied
science and engineering domains such as movement ecology [Michelot et al., 2016], energy consumptions
modelling [Candanedo et al., 2017], genomics [Yau et al., 2011, Gassiat et al., 2016, Wang et al., 2017], tar-
get tracking [Särkkä et al., 2007], enhancement and segmentation of speech and audio signals [Rabiner, 1989],
see also [Särkkä, 2013, Douc et al., 2014, Zucchini et al., 2017] and the numerous references therein. The
data considered in this paper originate from partially observed diffusion (POD) processes. The observations
are assumed to be defined as random functions of a continuous-time diffusion process. This diffusion pro-
cess (Xt)t>0 is the solution to a Stochastic Differential Equation (SDE) driven by a Brownian motion so that
any discrete sub-sample (Xk)06k6n is a Markov chain. From this perspective, a POD is a general Hidden
Markov Model (HMM).

In this setting, performing maximum likehood estimation (MLE) for instance with the Expectation Max-
imization (EM) algorithm [Dempster et al., 1977] or a stochastic gradient ascent ([Cappé et al., 2005] in the
case of HMMs) is a challenging task. Both approaches involve conditional distributions of sequences of
hidden states given the observation record (the smoothing distribution), which are not available explicitly.
Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods (also known as particle
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filters or smoothers) are widespread solutions to propose consistent estimators of such distributions. How-
ever, a pivotal tool of both MCMC and SMC approaches is the evaluation of the density of the conditional
distribution of Xk given Xk−1 for all 1 6 k 6 n. Except in very few SDE cases, this transition density has
no analytical expression and the key conditonal expectations cannot be computed explicitly so that MLE can-
not be achieved. The objective of this paper is to propose an efficient consistent and asymptotically Gaussian
SMC algorithm which can be applied to general POD processes to approximate conditional expectations of
functionals of the hidden states.

Following [Fearnhead et al., 2008] and [Gloaguen et al., 2018, Gloaguen et al., 2019], this paper con-
centrates on SMC methods to approximate smoothing distributions with a random set of states, the par-
ticles, associated with importance weights by combining importance sampling and resampling steps. The
online algorithm of [Gloaguen et al., 2018] may be used to approximate expectations of additive function-
als under the smoothing distributions by processing the data stream online. This algorithm extends the
particle-based rapid incremental smoother (PaRIS) of [Olsson et al., 2017] when the unknown transition
densities are replaced by unbiased estimates. This approach is an online version of the Forward Filtering
Backward Simulation algorithm [Douc et al., 2011] specifically designed to approximate conditional ex-
pectations of additive functionals. The crucial feature which makes the PaRIS algorithm appealing is the
acceptance-rejection step which benefits from the unbiased estimation. The extension of the usual alterna-
tive, named the Forward Filtering Backward Smoothing algorithm [Doucet et al., 2000], is more sensitive
as it involves ratios of these unknown quantities. Other smoothing algorithms such as two-filter based ap-
proaches [Briers et al., 2010, Fearnhead et al., 2010b, Nguyen et al., 2017] could be extended similarly but
they are intrisically not online procedures as they require the time horizon and all observations to be available
to initialize a backward information filter. In [Gloaguen et al., 2018, Gloaguen et al., 2019], the consistency
of this algorithm as long as a central limit theorem (CLT) are established. This makes this pseudo marginal
smoother the first algorithm to approximate such expectations in the general setting of this paper with the-
oretical guarantees and an explicit expression of the asymptotic variance. This work extended the result
of [Olsson et al., 2017], written only in the case of the bootstrap filter [Gordon et al., 1993], and the theo-
retical guarantees obtained for online sequential Monte Carlo smoothers given in [Del Moral et al., 2010,
Douc et al., 2011, Dubarry and Le Corff, 2013, Gerber and Chopin, 2017].

However, a requirement to use this algorithm is that the unbiased estimate of the transition is almost
surely positive and upper bounded. This condition is required to perform a pivotal backward acceptance-
rejection sampling procedure. In the context of diffusion processes, this assumption is very restrictive
and narrows the possible models to the class of diffusions satisfying the Exact algorithm conditions of
[Beskos et al., 2006a], for which General Poisson Estimators (GPEs) [Fearnhead et al., 2008] lead to eligi-
ble unbiased estimators.

In this paper, a new procedure is introduced to replace the backward acceptance-rejection step by an
importance sampling estimate which leads to a smoothing algorithm that only requires an almost surely
positive estimator of the transition density. Moreover, it is shown that such an estimator can be obtained
for a wide range of diffusion processes, using the parametrix estimators of [Andersson et al., 2017] and
[Fearnhead et al., 2017]. The overall method therefore provides a consistent estimator of expectations under
the smoothing distributions in the context of generic POD, where the hidden diffusion process can belong
to a wide range of multivariate models. Moreover, this method does not rely on any acceptance rejection
procedure which reduces very significantly the computational time and its variance, as illustrated in the
numerical experiments.
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2 Model and objectives
Let Θ ⊂ Rq be a compact parameter space and (Xt)t>0 be defined as a weak solution to the following SDE
in Rd:

dXt = αθ(Xt)dt+ σθ(Xt)dWt , (1)

where θ ∈ Θ, (Wt)t>0 is a standard Brownian motion in Rd, αθ∗ : Rd → Rd is the drift function and
σθ∗ : Rd → Rd×d is the diffusion. It is assumed that the solution to (1) is partially observed at times
t0 = 0, . . . , tn, for a given n > 1, through an observation process (Yk)06k6n taking values in Rm. For all
0 6 k 6 n, the distribution of Yk given (Xt)t>0 depends on Xk = Xtk only and has density gk;θ∗ with
respect to the Lebesgue measure. The distribution ofX0 has density χ with respect to the Lebesgue measure
and for all 0 6 k 6 n−1, the conditional distribution ofXk+1 given (Xt)06t6tk has density qk+1;θ∗(Xk, ·).

In this setting, common learning objectives are the state estimation problem, which aims at recovering
the underlying signal Xk at time tk given the observations Y0:n, where au:v is a short-hand notation for
(au, . . . , av), and the parameter inference problem which aims at approximating

θ̂n = argmaxθ∈Θ Ln(θ) ,

where Ln(θ) is the likelihood of the observations. When θ is known, the state estimation problem is usually
solved by approximating the posterior mean of Xk given the observations Y0:n when the model is driven by
the parameter θ. In the context of parameter estimation, note that

Ln(θ) =

∫
χ(x0)g0;θ(x0, Y0)

n−1∏
k=0

rk;θ(xk, xk+1)dx0:n,

where, for all 0 6 k 6 n and all θ ∈ Θ,

rk;θ(xk, xk+1) = qk+1;θ(xk, xk+1)gk+1;θ(xk+1, Yk+1) .

Expectation Maximization based algorithms are appealing solutions to obtain an estimator of θ̂n. The pivotal
concept of the EM algorithm is that the intermediate quantity defined by

θ 7→ Q(θ, θ′) = Eθ′
[
n−1∑
k=0

log rk;θ(Xk, Xk+1)

∣∣∣∣∣Y0:n

]
(2)

may be used as a surrogate for Ln(θ) in the maximization procedure, where Eθ′ is the expectation un-
der the joint distribution of the latent states and the observations when the model is parameterized by θ.
Therefore, the EM algorithm iteratively builds a sequence (θp)p>0 of parameter estimates following the two
steps: (i) compute θ 7→ Q(θ, θp) and (ii) choose θp+1 as a maximizer of θ 7→ Q(θ, θp). Gradient ascent
algorithms are compelling alternatives to the EM algorithm. In the context of HMMs, the gradient of the
log-likelihood can also be expressed as an expectation of an additive functional of the hidden states given
Y0:n ([Cappé et al., 2005], Chapter 10, or [Gloaguen et al., 2019] in the context of SDEs). A key feature
here is that all the relevant estimators rely on computing, for some parameters θ and θ′:

Eθ′ [h0:n,θ(X0:n)|Y0:n] ,

where h0:n,θ is an additive functional, i.e. satisfying:

h0:n,θ : x0:n 7→
n−1∑
k=0

h̃k;θ(xk, xk+1),
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where h̃k;θ is a functional depending on the estimator. For any θ ∈ Θ, 0 6 k1 6 k2 6 n and any bounded
and measurable function h on (Rd)k2−k1+1, define the joint smoothing distributions as:

φk1:k2|n;θ[h] := Eθ [h(Xk1:k2)|Y0:n] . (3)

For all 0 6 k 6 n, φk;θ = φk:k|k;θ are the filtering distributions.
In the following, θ is dropped from the notations for better clarity when there is no possible confusion.

As noted for instance in [Cappé et al., 2005], although the objective is to obtain approximation of smoothing
distributions, the filtering distribution is crucial as, for additive functionals,

φ0:n|n[h0:n] = φn [Tn[h0:n]] ,

where

Tn[h0:n](Xn) = E [hn(X0:n)|Xn, Y0:n] . (4)

As a key consequence of the additive property, for all 1 6 k 6 n

Tk[h0:k](Xk) = E
[
Tk−1[h0:(k−1)](Xk−1) + h̃k−1(Xk−1, Xk)

∣∣∣Xk, Y0:k−1

]
. (5)

However, the exact computation of all these key expectations is not possible in general state spaces. The next
section describes a Sequential Monte Carlo algorithm [Doucet et al., 2013] to approximate φn by weighted
samples {(ω`n, ξ`n)}N`=1 and the algorithm of [Gloaguen et al., 2018] to compute recursively, for each 1 6
` 6 N an approximation τ `n of Tn[h0:n](ξ`n) so that the estimator of φ0:n|n[h0:n] is defined as

φN0:n|n[h0:n] :=

N∑
`=1

ω`n∑N
j=1 ω

j
n

τ `n . (6)

3 Online sequential Monte Carlo smoothing
In the case of POD processes, SMC methods cannot be used straightforwardly as the transition densi-
ties qk, 0 6 k 6 n − 1, are unknown. To overcome these issues, following [Fearnhead et al., 2008,
Olsson et al., 2011, Gloaguen et al., 2018], consider the following assumption. Let (U,B(U)) be a general
state space.

H1 For all θ ∈ Θ and k > 0, there exists a Markov kernel on (Rd × Rd,B(U)) with density Kk;θ with
respect to a reference measure µ on (U,B(U)) and a positive mapping rk;θ on Rd×Rd×U such that,
for all (x, x′) ∈ Rd × Rd,∫

Kk;θ(x, x
′; z)rk;θ(x, x

′; z)µ(dz) = rk;θ(x, x
′) .

3.1 Filtering
Let (ξ`0)N`=1 be independent and identically distributed according to an instrumental proposal density ρ0 on
Rd and define the importance weights ω`0 := χ(ξ`0)/ρ0(ξ`0), where χ is the density of the distribution of X0,
see Section 2. For any bounded and measurable function f defined on Rd,

φN0 [f ] := Ω−1
0

N∑
`=1

ω`0f(ξ`0) , where Ω0 :=

N∑
`=1

ω`0 .
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is a consistent estimator of φ0[f ]. Then, for all k > 1, once the observation Yk is available, the weighted par-
ticle sample {(ω`k−1, ξ

`
k−1)}N`=1 is transformed into a new weighted particle sample approximating φk. This

update step is carried through in two steps, selection and mutation, using the auxiliary sampler introduced
in [Pitt and Shephard, 1999]. New indices and particles {(I`k, ξ`k, ζ`k)}N`=1 are simulated independently from
the instrumental distribution with density on {1, . . . , N} × Rd × U:

υk(`, x, z) ∝ ω`k−1ϑk−1(ξ`k−1)pk−1(ξ`k−1, x)Kk(ξ`k−1, x; z) ,

where ϑk−1 is an adjustment multiplier weight function and pk−1 a Markovian transition density. In practice,
this step is performed as follows.

1. Sample I`k in {1, . . . , N} with probabilities proportional to {ωjk−1ϑk−1(ξjk−1)}16j6N .

2. Sample ξ`k with distribution pk−1(ξ
I`k
k−1, ·).

3. Sample ζ`k with distribution Kk(ξ
I`k
k−1, ξ

`
k; ·).

The choice of the proposal distribution pk−1 is a pivotal tuning step to obtain efficient estimations of the
filtering distributions. In the context of this paper, a natural choice for pk could be to use an approximation
of the bootstrap filter, i.e. an approximation of qk−1 based for instance on a Euler discretization scheme. In
the numerical section of this paper, we propose to use an approximation of the optimal filter which accounts
for the newly obtained observation to propose new particles, see (12). For any ` ∈ {1, . . . , N}, ξ`k is
associated with the importance weight defined by:

ω`k :=
rk−1(ξ

I`k
k−1, ξ

`
k; ζ`k)

ϑk−1(ξ
I`k
k−1)pk−1(ξ

I`k
k−1, ξ

`
k)

(7)

to produce the following approximation of φk[f ]:

φNk [f ] := Ω−1
k

N∑
`=1

ω`kf(ξ`k) , where Ωk :=

N∑
`=1

ω`k .

3.2 Smoothing
In the context of additive functionals, the forward-only smoothing algorithm introduced in [Del Moral et al., 2010]
proposes a particle approximation of (4) that can be computed online using the recursion (5). This algo-
rithm has a computational complexity which grows quadratically with the number of particles N . This
computational cost can be reduced when the transition density of the hidden states is upper bounded follow-
ing [Olsson et al., 2017] by applying the accept-reject sampling approach proposed in [Douc et al., 2011]
and illustrated in [Dubarry and Le Corff, 2011]. Following [Gloaguen et al., 2019], the backward statistics
Tk+1[h0:k+1](ξik+1), where Tk+1 is defined in (4), are estimated, for all 1 6 i 6 N , as follows,

τ ik+1 =
1

Ñ

Ñ∑
j=1

(
τ
J

(i,j)
k+1

k + h̃k

(
ξ
J

(i,j)
k+1

k , ξik+1

))
,

where Ñ > 1 is a sample size which is typically small compared toN and where (J
(i,j)
k+1 , ζ

(i,j)
k+1 ), 1 6 j 6 Ñ ,

are i.i.d. in {1, . . . , N} × U with distribution

υik(`, z) ∝ ω`krk(ξ`k, ξ
i
k+1; z)Kk(ξ`k, ξ

i
k+1; z) .
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In [Gloaguen et al., 2018], it is assumed that, for all 0 6 k 6 n and 0 6 i 6 N , there exists an upper bound
ε̄ik such that

sup`,ζ rk(ξ`k, ξ
i
k+1; ζ) 6 ε̄ik . (8)

Then, for all (i, z) ∈ {1, . . . , N} × U,

ω`krk(ξ`k, ξ
i
k+1; z)Kk(ξ`k, ξ

i
k+1; z) 6 ε̄kω

`
kKk(ξ`k, ξ

i
k+1; z) .

Therefore, the following accept-reject mechanism algorithm may be used to sample from υik.

1. A candidate (J∗, ζ∗) is sampled in {1, . . . , N} × U as follows:

(a) J∗ is sampled with probabilities proportional to (ω`k)N`=1 ;

(b) ζ∗ is sampled independently with distribution Kk(ξJ
∗

k , ξik+1; ζ∗).

2. (J∗, ζ∗) is then accepted with probability rk(ξJ
∗

k , ξik+1; ζ∗)/ε̄k and, upon acceptance,

J
(i,j)
k+1 = J∗ .

3.3 Unbiased estimators of the transition densities
The algorithm described above strongly relies on assumption H1. In the context of SDEs, when gk+1;θ

is available explicitly, this boils down to finding an unbiased estimate q̂k+1;θ(x, y; ζ) of qk+1;θ(x, y) and
defining

rk;θ(x, y; ζ) = q̂k+1;θ(x, y; ζ)gk+1;θ(xk+1, Yk+1) .

3.3.1 General Poisson Estimators

In [Olsson et al., 2011], [Gloaguen et al., 2018] and [Gloaguen et al., 2019], General Poisson Estimators
(GPEs) are used to obtain an unbiased estimate of the transition density. However, designing such esti-
mators requires three strong assumptions [Beskos et al., 2006a]:

1. the diffusion defined by (1) can be transformed into a unit diffusion through the Lamperti transform,
with drift function α̃θ(x);

2. the drift of this unit diffusion can be expressed as the gradient of a potential function, i.e., there exists
a twice differentiable function Aθ : Rd → R such α̃θ = ∇xAθ

3. The function x 7→ (‖α̃θ(x)‖2 + ∆Aθ(x))/2 (where ∆ denotes the Laplacian) is lower bounded.

Assumption (1) is used to define a proposal distribution absolutely continuous with respect to the target
which is easy to sample from. Assumption (2) is necessary to obtain a tractable Radon-Nikodym derivative
between the proposal and the target distributions using the Girsanov transformation. While these assump-
tions can be proved under mild assumptions for scalar diffusions, much stronger conditions are required in
the multidimensional case [Aı̈t-Shalia, 2008].
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3.3.2 Parametrix estimators

More recently, [Andersson et al., 2017] and [Fearnhead et al., 2017] proposed an algorithm which can be
used under weaker assumptions. This parametrix algorithm draws weighted skeletons using an importance
sampling mechanism for diffusion processes. In this case, the sampled paths are not distributed as the target
process but the weighted samples produce unbiased estimates of expectations of functionals of this process.
To obtain an unbiased estimator q̂k+1(x, y; ζ), the parametrix algorithm draws weighted skeletons at random
times s0 = 0 < s1 < · · · < sj , denoted by

{
(xsj ,wsj )

}
j>0

, where x0 = x and w0 = 1. The update times
(sj)j>0 are instances of an inhomogeneous Poisson process of intensity λ(t). Let (xsj ,wsj ) be the last
weighted sample and sj+1 be the next update time of the trajectory. While sj+1 < ∆tk, the new state is
sampled using a simple Euler scheme, namely:

xsj+1 := xsj + ∆sjαθ(xsj ) + (∆sj)
1/2σθ(xsj )εj+1 ,

where ∆sj := sj+1−sj , ∆tk = tk+1− tk and εj+1 ∼ Nd(0, Id). The proposal density associated with this
procedure is denoted by mj;θ

(
xsj , ·,∆τj

)
. Let Kθ (resp. Kj,θprop) denote the Kolmogorov forward operator

of the diffusion (resp. the Kolmogorov forward operator of the proposal distribution mj;θ

(
xsj , ·,∆sj

)
).

The forward operators write, for any function h : Rd → R,

Kθh (y) := −
d∑
i=1

∂

∂yi
{αθ,i(y)h (y)}+

d∑
i,`=1

1

2

∂2

∂yi∂y`
{γθ,i,`(y)h (y)} ,

where γθ = σθσ
T
θ . Then, following [Fearnhead et al., 2017], the weight is updated by

wsj+1
:= wsjρ

λ
j

(
xsj , xsj+1

,∆sj
)
,

where

ρλj (x, y, u) := 1 +

(
K −Kj,θprop

)
mj;θ (x, z, u)|z=y

λ(u)mj;θ (x, y, u)
. (9)

It is worth noting that (9) can be computed using only first derivatives of αθ and second derivatives of σθ. If
Nk is the number of Poisson events between 0 and ∆tk, the parametrix unbiased estimate is then given by

q̂k+1(x, y; ζk) = wsNk
mk;θ

(
xsNk

, y, tk+1 − sNk

)
,

where ζk stands for all the randomness required to produce the parametrix estimator (Poisson process and
Gaussian random variables).

The stability of this estimator is studied in [Fearnhead et al., 2017] which provides Lp controls for the
weight wsNk

. The parametrix algorithm mentionned above is a highly flexible procedure to obtain such
an unbiased estimate for a much broader class of diffusions than Poisson based estimations which require
strong assumptions. However, as the update (9) involves the difference of two Kolmogorov operators, the
parametrix estimator of the transition density may be negative, and has no reason to satisfy (8). Thus, the
SMC algorithms described above cannot be implemented.

4 Backward importance sampling for PODs

4.1 Positive parametrix estimates
Following [Fearnhead et al., 2010a], Wald’s identity for martingales may be used to obtain a new estimator
from the parametrix approach, which is guaranteed to be positive. This estimator is defined up to an unknown

7
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constant of proportionality, which is removed when the importance weights are normalized in equation (10).
This approach, rather than setting negative weights to 0, which would lead to a biased estimate, uses extra
simulation to obtain positiveness. This is done while ensuring that the weights remain unbiased up to a
common constant of proportionality. Assume that the distribution Kk of the additional random variables ζk
and the estimator rk are obtained with the parametrix estimator.

Particle filtering. For all k > 0, the Wald-based random weight particle filtering proceeds as follows.

1. For all 1 6 i 6 N , sample a new particle as described in Section 3.1.

(a) Sample Iik in {1, . . . , N} with probabilities proportional to {ωjk−1ϑk−1(ξjk−1)}16j6N .

(b) Sample ξik with distribution pk−1(ξ
Iik
k−1, ·).

2. For all 1 6 i 6 N , set ωik = 0.

3. While there exists i∗ ∈ {1, . . . , N} such that ωi∗k 6 0, for all 1 6 i 6 N , sample ζik with distribution

Kk(ξ
Iik
k−1, ξ

i
k; ·) (i.e. compute a parametrix estimator of the transition density) and set

ωik = ωik +
rk−1(ξ

Iik
k−1, ξ

i
k; ζik)

ϑk−1(ξ
Iik
k−1)pk−1(ξ

Iik
k−1, ξ

i
k)
.

Backward simulation. For all 1 6 i 6 N , the backward importance sampling step proceeds then as
follows.

1. For all 1 6 j 6 Ñ , sample J (i,j)
k+1 in {1, . . . , N} with probabilities proportional to (ωik)Ni=1.

2. For all 1 6 j 6 Ñ , set $(i,j)
k = 0.

3. While there exist j∗ ∈ {1, . . . , Ñ} such that $(i,j)
k 6 0, for all 1 6 j 6 Ñ , sample ζ(i,j)

k with

distribution Kk(ξ
J

(i,j)
k+1

k , ξik+1; ·) and set

$
(i,j)
k = $

(i,j)
k + rk(ξ

J
(i,j)
k+1

k , ξik+1; ζ
(i,j)
k ) .

4.2 AR-free online smoothing
As the positive parametrix-based estimate does not satisfy the upper bound condition of (8), the statistics are
updated recursively with an importance sampling step: for all 1 6 i 6 N ,

τ ik+1 =

Ñ∑
j=1

$
(i,j)
k

Wi
k

(
τ
J

(i,j)
k+1

k + h̃k

(
ξ
J

(i,j)
k+1

k , ξik+1

))
, (10)

where $(i,j)
k , 1 6 j 6 Ñ are computed using the parametrix estimate combined with Wald’s identity. Then,

the estimator of the conditional expectation of the additive functional is set as

φN,IS0:n|n[h0:n] :=

N∑
i=1

ωin
Ωn

τ in .
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This estimator does not rely on an accept reject mechanism and is therefore less computationally intensive
and can be used under reasonable assumptions for many SDEs. In addition, as shown in Section 6, this does
not affect the statistical efficiency of the algorithm.

5 Discussion
This paper proposes a solution to overcome the two main challenges when it comes to perform online
smoothing for generic SDEs i.e. obtaining a positive and almost surely bounded estimate of the transition
density to run the backward acceptance rejection mechanism.

1. Note that the proposed backward importance sampling may be used to approximate expectations under
the smoothing distributions for general state space hidden Markov models and is not restricted to POD
processes. As illustrated in Section 6 this approach may lead to significant gains in computational time
for similar performance as the acceptance rejection approach.

2. The proposed estimator, unlike the existing methods such as GPE-based algorithms, applies to a large
range of multivariate diffusion processes (see [Andersson et al., 2017] and [Fearnhead et al., 2017]).

3. Theoretical guarantees, such as consistency and asymptotic normality of (6), remain to be proved.
This should be an extension of [Gloaguen et al., 2019], however this would imply few technicalities
which are out of the scope of this paper.

4. The bias of the PaRIS algorithm may be shown to be or order O((1 + 1/Ñ)/N) and vanishes as
N goes to infitnity for any choice of Ñ > 2. The exact sampling being replaced by an importance
sampling step, the conjecture is that the bias of the proposed algorithm involves a O(1/Ñ) term
which does not vanish as N goes to infinity. However, the empirical study illustrates that Ñ may be
chosen to increase with N sufficiently slowly to remove the additional bias term while simultaneously
ensuring better computational performance. This empirical analysis could be supported by theoretical
guarantees and motivates future developments.

6 Numerical experiments

6.1 Sine model
This section investigates the performance of the proposed algorithm to compute expectations under the
smoothing distributions in a context where alternatives are available for comparison. Consider the Sine
model where (Xt)t>0 is assumed to be a weak solution to

dXt = sin(Xt − θ)dt+ dWt , X0 = x0 .

This simple model has no explicit transition density, however, a General Poisson estimator which satisfies
(8) can be computed by simulating Brownian bridges, (see [Beskos et al., 2006b]). Therefore, the backward
importance sampling technique proposed in this paper can be compared to the usual acceptance-rejection
algorithm described in Section 3.2. For this simple comparison, observations are received at evenly spaced
times t0 = 0, . . . , t10 = 5 from the model

Yk = Xtk + εk, 0 6 k 6 n = 10 , (11)

9
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where (εk)06k610 are i.i.d. Gaussian random variables with mean 0 and variance 1. In this experiment
θ = π/4. The proposal distribution pk for the particle filtering approximation is chosen as the following
approximation of the optimal filter:

pk(xk, xk+1)∝qEulk+1(xk, xk+1)gk+1(xk+1, Yk+1) , (12)

where qEulk+1 is the probability density function of Gaussian distibution with mean ∆ sin(xk−θ) and variance
∆ where ∆ = 1/2, i.e. the Euler approximation of the Sine SDE, and gk is the probability density function
of the law of Yk given Xtk i.e. of a Gaussian random variable with mean Xtk and variance 1. As the
observation model is linear and Gaussian, the proposal distribution is therefore Gaussian with explicit mean
and variance.

In this first experiment, particles are used to solve the state estimation problem for the first observation i.e.
to compute an estimate of E[X0|Y0:n]. Figure 1 displays the computational complexity and the estimation of
the posterior mean with the acceptance-rejection algorithm and the proposed backward sampling technique
as a function of Ñ . In this setting, N = 100, and each unbiased estimate of q̂ is computed using 30 Monte
Carlo replicates.

For Ñ = 2 (which is the recommended value for the PaRIS algorithm, see [Olsson et al., 2017]), our
estimate shows a bias, which is no suprise, as it is based on a biased normalized importance sampling step.
However, this bias quickly vanishes for Ñ > 10. Interestingly, our method comes with a drastic (a factor
10) reduction of computational time. The vanishing of the bias might induce more backward sampling, but
this remains much faster than the acceptance rejection method with Ñ = 2.

Then, the same estimation was perfomed (on the same data set) for N varying from 50 to 2000. In this
context, Ñ was set to 2 for the AR method. To have an empirical intuition of how Ñ must vary with N , the
importance sampling algorithm is applied with Ñ = N0.5, N0.6 and N/10 (as this last value was sufficient
in the first experiment to avoid any bias).

The results are shown in Figure 2. A small bias might appear for N = 2000 and Ñ = 45 (≈ 20000.5),
but no bias is visible for N0.6 and N/10. As expected, the gain in time, compared to the state of the art
algorithm, remains important (even if it decreases as Ñ increases). It is worth noting that the variance of the
computational time is greatly reduced compared to the AR technique.

6.2 Stochastic Lotka-Volterra model
This section sets the focus on a stochastic model describing in continuous time the population dynamics in
a predator-prey system, as fully discussed in [Hening and Nguyen, 2018]. The bivariate process (Xt)t>0

of predators and preys abundances is assumed to follow the stochastic Lotka-Volterra model, i.e. it is the
solution to:

dXt = αθ(Xt)dt+

(
X1(t) 0

0 X2(t)

)
ΓdWt , (13)

where Wt is a vector of independent standard Wiener processes, Γ a 2× 2 matrix, and for x = (x1, x2)T :

αθ(x) =

(
x1(a10 − a11x1 − a12x2)
x2(−a20 + a21x1 − a22x2)

)
.

In this context, the unknow parameter to be estimated is

θ = (a10, a11, a12, a20, a21, a22,Γ) .

10



Étienne, M.-P., Gloaguen, P., Le Corff, S. and Olsson, J. Backward importance sampling

0.1

1.0

10.0

100.0

2 5 10 20 30

N
~

C
o

m
p

u
t.

 t
im

e 
(s

ec
o

n
d

s)

Method
AR
IS

9.2

9.6

10.0

10.4

2 5 10 20 30

N
~

𝔼
 [ 

X
0
 | 

Y
0

:n
 ]

Method
AR
IS

Figure 1: Computational complexity and estimation of a posterior mean as a function of the number of
backward samples. Results are shown for the state of the art acceptance-rejection algorithm and the proposed
backward importance sampling technique.
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importance sampling technique. The number of backward samples is set to 2 for the AR, and N/10 for the
IS.
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The observation model follows a widespread framework in ecology where the abundance of preys and preda-
tors are observed through some abundance index at discrete times t0, . . . , tn such that:

Ytk =

(
c1X1(tk)eε

(1)
tk

c2X2(tk)eε
(2)
tk

)
, (14)

where c = (c1, c2)T is a known parameter (the observed fraction of the population) and {εtk = (ε
(1)
tk
, ε

(2)
tk

)}16k6n
are i.i.d. random variables distributed as a N2(− 1

2 diag Σ,Σ) where Σ is an unknown 2 × 2 covariance ma-
trix.

It is straightforward to show that for a generic θ, in the SDE defined by (13), the drift function cannot
be written (even after the Lamperti transform) as the gradient of a potential. Therefore, the General Poisson
estimator cannot be used as an unbiased estimator of the transition density, and the method proposed in this
paper is the only solution to obtain a consistent estimate of the target expectations.

The proposal distribution for the particle filter is again a trade off between model dynamics and the
observation model (full details are given in the appendix). The simulated set of particles is used to obtain
estimates of the true abundances given the observations, both on synthetic and real data.

Synthetic data

In a first approach, simulated data are obtained from the model given by (13) and (14) for a known set of
parameters. Chosen values of θ, Σ, c1 and c2 for the experiment are given in the appendix. The model is
used to simulate abundances indexes Y0, . . . Y300 at times t0 = 0, . . . , t300 = 3. The associated time series
(after a division by c) is shown in Figure 3 (left panel).

In this experiment, the goal is to obtain an estimate of the actual predator-prey abundances given all the
observed abundances indexes Y0:n. Our estimate is given by the set of conditional expectations {E[Xk|Y0:n]}k=0,...,n,
approximated using our backward importance sampling PaRIS smoother, which is run using the true param-
eters. Figure 3 shows the estimated abundance trajectory over time. The proposed algorithm manages to
estimate efficiently the actual abundance from noisy data and a model with an intractable transition density.

Hares and lynx data

In this section, the model defined by equations (13) and (14) is applied to the Hudson Bay company data,
giving the number of hares and lynx trapped in Canada during the first 20 years of the 20th century (available
in [Odum and Barrett, 1971]).

As parameters are unknown in this case, maximum likelihood inference is performed using an EM
[Dempster et al., 1977] algorithm to obtain an estimate θ̂. As explained in the introduction, it is then required
to estimate iteratively, from an initial guess θ0, the conditional expectation given in equation (2). This E step
is performed using the particle smoother introduced in this paper. At each iteration, the estimator θk is
updated by finding a parameter θk+1 for which Q̂(θk+1, θk) > Q̂(θk, θk), with a gradient free evolution
strategy [Hansen, 2006].

The last estimate θ̂ obtained with this EM algorithm is used to estimate the actual abundances in the
model (similarly to the synthetic data case). Figure 4 shows estimates of Eθ̂ [Xk|Y0:n] obtained with 30
independent runs of our algorithm. The particle smoother is implemented using N = 200 particles and
Ñ = 20. The replicates show that the variance of our estimator (for a given set of observations) is much
smaller than the one of the poor man smoother. This algorithm approximates the smoothing distributions at
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Figure 3: Estimated predator-prey abundances (center) in a stochastic Lotka Volterra model using our back-
ward sampling estimate on simulated abundance indexes (left). Right panel shows the ground truth.
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Figure 4: Estimated Hares-Lynx abundances using the Hudson bay company data set together with a stochas-
tic Lotka Volterra model. Both our IS-PaRIS smoother and the poor man smoother are performed to approx-
imate the MLE and solve the tracking problem. Blue crosses show the observations.

time n by the weighted samples {(ξ`0:n, ω
`
n)}`=1...N where the particle trajectories ξ`0:n are obtained using

the ancestral line of each last sample: for all 1 6 k 6 n,

ξ`0:k = (ξ
I`k
0:k−1, ξ

`
k) .

The variance of the estimates based on this ancestor tree is doomed to failure due to the degeneracy caused
by the successive resampling steps.
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Étienne, M.-P., Gloaguen, P., Le Corff, S. and Olsson, J. Backward importance sampling

[Fearnhead et al., 2008] Fearnhead, P., Papaspiliopoulos, O., and Roberts, G. O. (2008). Particle filters for
partially observed diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(4):755–777.

[Fearnhead et al., 2010b] Fearnhead, P., Wyncoll, D., and Tawn, J. (2010b). A sequential smoothing algo-
rithm with linear computational cost. Biometrika, 97(2):447–464.
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