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Abstract

This paper proposes a new Sequential Monte Carlo algorithm to perform online estimation in the con-
text of state space models when either the transition density of the latent state or the conditional likelihood
of an observation given a state is intractable. In this setting, obtaining low variance estimators of expecta-
tions under the posterior distributions of the unobserved states given the observations is a challenging task.
Following recent theoretical results for pseudo-marginal sequential Monte Carlo smoothers, a pseudo-
marginal backward importance sampling step is introduced to estimate such expectations. This new step
allows to reduce very significantly the computational time of the existing numerical solutions based on an
acceptance-rejection procedure for similar performance, and to broaden the class of eligible models for
such methods. For instance, in the context of multivariate stochastic differential equations, the proposed
algorithm makes use of unbiased estimates of the unknown transition densities under much weaker as-
sumptions than standard alternatives. The performance of this estimator is assessed for high-dimensional
discrete-time latent data models, for recursive maximum likelihood estimation in the context of partially
observed diffusion process, and in the case of a bidimensional partially observed stochastic Lotka-Volterra
model.

1 Introduction

Latent data models are widely used in time series and sequential data analysis across a wide range of applied
science and engineering domains such as movement ecology [Michelot et al., 2016], energy consumptions
modelling [Candanedo et al., 2017], genomics [Yau et al., 2011, Gassiat et al., 2016, Wang et al., 2017],
target tracking [Sarkkd et al., 2007], enhancement and segmentation of speech and audio signals [Rabiner,
1989], see also [Sirkkd, 2013, Douc et al., 2014, Zucchini et al., 2017] and the numerous references therein.

*This action benefited from the support of the Chair < New Gen RetAll > led by I’X — Ecole polytechnique and the Fondation de
I’Ecole polytechnique, sponsored by CARREFOUR
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Performing maximum likehood estimation (MLE) for instance with the Expectation Maximization (EM)
algorithm [Dempster et al., 1977] or a stochastic gradient ascent ([Cappé et al., 2005] in the case of HMMs)
is a challenging task. Both approaches involve conditional distributions of sequences of hidden states given
the observation record (the smoothing distribution), which are not available explicitly.

Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods (also known as par-
ticle filters or smoothers) are widespread solutions to propose consistent estimators of such distributions.
Among SMC methods, algorithms have been designed in the last decades to solve the smoothing prob-
lem, such as the Forward Filtering Backward Simulation algorithm [Douc et al., 2011] or two-filter based
approaches [Briers et al., 2010, Fearnhead et al., 2010b, Nguyen et al., 2017]. These approaches, which
come with strong theoretical guarantees ([Del Moral et al., 2010, Douc et al., 2011, Dubarry and Le Corff,
2013, Gerber and Chopin, 2017]), require the time horizon and all observations to be available to initial-
ize a backward information filter, and, thus, perform the smoothing. The particle-based rapid incremental
smoother [Olsson et al., 2017] is an online version of forward-backward procedures, specifically designed to
approximate conditional expectations of additive functionals. This algorithm relies on a backward sampling
step performed on the fly thanks to the well known acceptance rejection sampling. This online smoother was
proven to be strongly consistent, asymptotically normal, and with a control of the asymptotic variance, when
it is performed together with the vanilla bootstrap filter [Gordon et al., 1993]. In [Olsson and Alenl6v, 2020],
the authors show how this algorithm can be used to performed recursive maximum likelihood in state space
models. This approach relies on the necessity to upper bound the transition density of the hidden signal, as
it is required to perform acceptance rejection sampling.

Moreover, a pivotal step of all SMC approaches is the evaluation of this transition density and of the
density of the conditional distribution of an observation given the corresponding latent state (the marginal
conditional likelihood). In many practical settings, though, no closed-form expressions of these distribu-
tions are available: for instance, in the case of partially observed diffusions [Andersson and Kohatsu-Higa,
2017, Fearnhead et al., 2017] or in the context of approximate Bayesian computation smoothing [Martin
et al., 2014]. A first step to bypass this shortcoming was proposed in [Fearnhead et al., 2010a]. The au-
thors proposed an important contribution by showing that it is possible to implement importance sampling
and filtering recursions, when the unavailable importance weights are replaced by random estimators. Stan-
dard data augmentation schemes were then used to extend this random-weight particle filter to provide new
inference procedures for instance for partially observed diffusion models [ Yonekura and Beskos, 2020].

More recently, the online algorithm of [Olsson et al., 2017] was extended to this setting for partially
observed diffusion processes by [Gloaguen et al., 2018]. Then, [Gloaguen et al., 2021] introduced a pseudo-
marginal online smoother to approximate conditional expectations of additive functionals of the hidden
states in a very general setting: the user can only evaluate (possibly biased) approximations of the transition
density and of the marginal conditional likelihood. The online algorithm of [Gloaguen et al., 2021] may be
used to approximate expectations of additive functionals under the smoothing distributions by processing the
data stream online. However, as with the PaRIS algorihm, when using this pseudo-marginal approach where
transition densities are intractable, the user needs to sample exactly from the associated pseudo-marginal
backward kernel. This step is again done by rejection sampling, and therefore requires that the estimate of the
transition density and of the marginal conditional likelihood are almost surely positive and upper bounded.
In practice, these assumptions are very restrictive. For instance, in the context of diffusion processes, they
narrow the possible models to the class of diffusions satisfying the Exact algorithm conditions of [Beskos
et al., 2006a], for which General Poisson Estimators (GPEs) [Fearnhead et al., 2008] already lead to eligible
unbiased estimators.

In this paper, a new procedure is introduced to replace the backward acceptance-rejection step of the
PaRIS and the pseudo marginal PaRIS algorithms by a backward importance sampling estimate. It leads to
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a smoothing algorithm that only requires an almost surely positive estimator of the unknown transition or
observation density, and therefore extends widely the class of models for which these online smoothers can
be designed. In the general case where only signed estimates can be obtained, we propose to use Wald’s trick,
ensuring positiveness. In the context of partially observed diffusion processes, for instance, we show that
combining Wald’s trick to the parametrix estimators of [Andersson and Kohatsu-Higa, 2017] and [Fearnhead
et al., 2017] leads to a highly generic algorithm that can be applied to a wide class of models, for which no
low variance smoother existed so far.

The paper is organized as follows. Section 2 displays the latent data models and the main objectives
considered in this paper. Then, Section 3 details online pseudo marginal sequential Monte Carlo algorithms
and Section 4 our proposed algorithm. Section 5 provides extensive numerical experiments to illustrate the
performance of our approach. The empirical results of this section can be summarised as follows.

* The proposed approach can be used for any latent data models such as hidden Markov models, or re-
current neural networks with unobserved latent states. Even when the transition densities are available,
we show empirically that our backward importance sampling is a computationally efficient solution to
solve the online smoothing problem (Section 5.1).

* We show that the proposed approach outperforms the existing acceptance rejection method in terms
of computational efficiency (Section 5.2).

* We show how the proposed method allows for efficient online recursive maximum likelihood in the
context of partially observed diffusion processes (Section 5.3).

* When considering the pseudo-marginal approach, we extend the use of Wald’s trick to the backward
kernel, and therefore show that our approach can be used in cases where the estimators of the unknown
densities are not positive by construction.

* We perform sequential Monte Carlo smoothing in models for which no solutions were proposed in
the literature to the best of our knowledge, such as multivariate partially observed diffusion processes
(Section 5.4).

2 Model and objectives

Let 0 be a parameter lying in a © C R? and consider a state space model where the hidden Markov chain
in R? is denoted by (X},) k>0- The distribution of X has density x with respect to the Lebesgue measure
and for all 0 < k& < n — 1, the conditional distribution of X1 given X. has density gx41,0 (X4, -), where
@y, 18 @ short-hand notation for (ay, . ..,a,). It is assumed that this state is partially observed through an
observation process (Y% )o<k<n taking values in R™. For all 0 < k < n, the distribution of Y}, given Xo.,
depends on X}, only and has density gx.9(Xk, -) with respect to the Lebesgue measure. In this context, for
any pair of indexes 0 << k1 < ko < n, we define the joint smoothing distribution as the conditional law
of Xy, .k, given Yy.,. In this framework, the likelihood of the observations ng(Yo:n), which is in general

intractable, is
n—1

Ly,o(Yon) = /X(xo)go;e(wo,yo) H lrso(Th, Toy1)dzoum,
k=0

where, forall0 < k < nandalld € O,

lo (@, Tht1) = Q1,0 (Thoy Thot1, Yir1) 9+1:0 (Tht1, Yir1) - (1)
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In a large variety of situations, (1) cannot be evaluated pointwise (see models of sections 5.2 and 5.4), and
we assume in this paper that we have an estimate of this quantity (see assumption H1 in Section 3). Note
that to avoid future cumbersome expressions, the dependency of the key quantity 4.4 (-) on the observations
is implicit, as we always work conditionnaly to the observations. In this paper, we propose an algorithm to
compute smoothing expectations of additive functionals. Namely, we aim at computing:

E [hO:n (XO:n) |Y0:n] 5

where ho.,, is an additive functional, i.e. a function from R4 ("+1) to R satisfying:

n—1

hO:n P XToim Z ﬁk(xk>$k+l) ) (2)
k=0

where hy, : RY x R — RY. Such expectations are the keystones of many common inference problems in
state space models.

Example 1: State estimation. Suppose that the model parameter 6 is known, a common objective is to
recover the underlying signal X~ for some index 0 < k* < n given the observations Yj.,. A standard
estimator is E[X}+|Y0.,], which is a particular instance of our problem with ﬁk(azk, Tpy1) = xp if k = k*
and 0 otherwise.

Example 2: EM algorithm. In the usual case when 6 is unknown, the maximum likelihood estimator is =
argmaxgce Ln,o(Yo:n). Expectation Maximization based algorithms [Dempster et al., 1977] are appealing
solutions to obtain an estimator of . The pivotal concept of the EM algorithm is that the intermediate
quantity defined by

n—1

9 — Q(@,H’) = EQ/ Zlogﬁk;g(Xk,XkH)
k=0

YO:n

may be used as a surrogate for L,,(#) in the maximization procedure, where Ey is the expectation under the
joint distribution of the latent states and the observations when the model is parameterized by ¢’. Again, this
inference setting is a special case of our framework where hy(zx, Tx+1) = log lr.0(Tk, Tht1)-

Example 3: Fisher’s identity and online gradient ascent. An alternative to the EM algorithm is to maximize
the loglikelihood through gradient based methods. Indeed, in state space models, under some regularity
conditions (see [Cappé et al., 2005], Chapter 10), the gradient of the log likelihood can be obtained thanks
to Fisher’s identity:

n—1

VologL,(0) =Eg | Y Vologluo(Xe, Xip1)
k=0

YO:n

)

which relies on the expectation of a smoothing additive functional. It has been noted (see [Cappé et al.,
2005], chapter 10, or [Olsson and Alenl6v, 2020] how this identity, coupled with the smoothing recursions of
Section 3.3, can lead to an online gradient ascent, that provides an online estimate of the MLE. An extension
of this method will be illustrated in Section 5.3 in a challenging setting where the transition density cannot
be evaluated.
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3 Online sequential Monte Carlo smoothing

3.1 Backward statistic for online smoothing

In this section, the parameter 6 is dropped from notation for a better clarity. For all pair of integers 0 < k <
k' < n, and all measurable function h on R (¥ =k+1) the expectation with respect to the joint smoothing
distribution is denoted by:

d)k:k’\n [h] =E [h(Xk:k’)|Y0:n] :

The special case where & = k' = n refers to filtering distribution and we write ¢, = G| A pivotal
quantity to estimate .|, [h0.n] is the backward statistic:

Ty [ho:](Xk) = E [hor(Xo:k) | Xk, Your], 1 <E<n, Tg=0. 3)

Note that for each k this statistic is a function of X}, and is defined relatively to the functional of interest
ho.n,- For additive functionals, this statistic satisfies the two following key identities, for all 1 < k& < n:

¢O:n|n[h():n] - ¢n [Tn [h():nH 5 (4)
Tk [hox] (Xz) = E [Tk—1 [ho:e—1y] (Xk—1) + hie—1 (Xk—lan)‘ Xks YO:k—l} ; )

where hj_q is the function defined in (2). Property (4) essentialy tells us that the target is the filtering
expectation of a well chosen statistic, while property (4) provides a recursion to compute these statistics.
These two properties suggest an online procedure to solve the online smoothing problem. Starting at time
0, at each step k, this procedure aims at (i) computing the filtering distribution and (ii) computing the
backward statistics. Following [Fearnhead et al., 2008, Olsson et al., 2011, Gloaguen et al., 2018, Gloaguen
etal., 2021], we do not assume that (1) can be evaluated pointwise. We assume that there exists an estimator,
relying on some random variable on a general state space (U, B(U)) such that the following assumption
holds.

H1 For all § € © and k > 0, there exists a Markov kernel on (R? x R%, B(U)) with density Ry.g with
respect to a reference measure g on a general state space (U, B(U)), and a positive mapping £j.(-) on
R? x R? x U such that, for all (z,2") € R? x RY,

/Rk;g(:z:,x’;z)ﬁk;g@)(w,x')u(dz) =lro(z,2') .

This setup, known as pseudo marginalisation is based on the plug-in principle, as a pointwise estimate of
li.9(x, x") can be obtained by generating ¢ from Ry.o(z, 2'; dz) and computing the statistic £j.0(()(z, z').
Its use in Monte Carlo methods, and the related theoretical guarantees, have been studied in the context of
MCMC [Andrieu and Roberts, 2009], and more recently, of SMC [Gloaguen et al., 2021].

Recursive maximum likelihood

An appealing application for online smoothing is the context of recursive maximum likelihood, i.e., where
new observations are used only once to update the estimator of the unknown parameter 6. Following
[Le Gland and Mevel, 1997], the idea is the build a sequence {6} x>0 as follows. First, set the initial
value of the parameter estimate: &y. Then, for each new observation Y}, k > 1, define

O = O0k—1 + 7 Volo(Ye | Yik—1) ,
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where £y(Yy | Y1.x—1) is the log likelihood for the new observation given all the past, and {v;} p> are

positive step sizes such that > k>17e = 00 and > k>1 y2 < oo. The practical implementation of such an
update relies on the following identity:

k01 Vogr;0] + Mk:0(gr;6]

Volo(Yi | Yik—1) = (6)
T30 [9h;6]
where 7.0 = @p,0)1—1 is the predictive distribution and
M;0[9k:0] = P0:k:301k—1[10:k:09%:6] — Th:0[9K;0] X Poues06—1[Po:k] 5
with
k-1
ho:ix (To:k) = Z Vologl;g(xj, xjt1) - 7
j=0

The signed measure 7.9 is known as the tangent filter, see [Cappé et al., 2005, Chapter 10], [Del Moral
et al., 2015] or [Olsson and Alenlov, 2020]. Using the tower property and the backward decomposition (5)
yields

;6 (90 = Tz [(Trlho:k] — Thio[Trlho:r]]) grio] - ®)
It is worth noting that, in the context of this paper where ¢}, cannot be evaluated pointwise, one cannot expect
to know the functional (7), which involves the gradient of this quantity. In Section 5.3, we illustrate that we
can plug-in an estimate of this functionnal instead. The rationale motivating this algorithm relies on the
following expression of the normalized loglikelihood:

1 1 —
ﬁvee(?(yl:n) = I;Veﬁa (Yi | Yig—1) -

Moreover, under strong mixing assumptions, for all § € 6, the extended process {(X,,, Yy, 7n, n) fn>0 18
an ergodic Markov chain and for all # € 6, the normalized score Vly(Y1.,,)/n converges almost surely
to a limiting quantity A(0, 6,) such that, under identifiability constraints, A(6y,6,) = 0. A gradient ascent
algorithm cannot be designed as the limiting function 8 — \(6, 6,) is not available explicitly. However,
solving the equation \(fy,6,) = 0 may be cast into the framework of stochastic approximation to produce
parameter estimates using the Robbins-Monro algorithm

Op = O0p—1 +7%C, n=0, 9

where (}, is a noisy observation of A(6_1, 0, ), equal to (6). In the case of a finite state space X the algorithm
was studied in [Le Gland and Mevel, 1997], which also provides assumptions under which the sequence
{05} n>0 converges towards the parameter 6, (see also [Tadi¢, 2010] for refinements).

3.2 Approximation of the filtering distribution

Let (&5) V| be independent and identically distributed according to an instrumental proposal density po on
R? and define the importance weights w := x(£5)/po(£6), where ¥ is the density of the distribution of X
as defined in Section 2. For any bounded and measurable function h defined on R?, the importance sampling
estimator defined as

N N
¢ [h] == Q5" > wlh(&f), where Qg = wf.
(=1 (=1
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is a consistent estimator of ¢g[f]. Then, for all k& > 1, once the observation Y}, is available, particle
filtering transforms the weighted particle sample {(wf _,,&5 )}, into a new weighted particle sample
approximating ¢. This update step is carried through in two steps, selection and mutation, using sequen-
tial importance sampling and resampling steps. New indices and particles {(If, &5, ¢f)}2, are simulated
independently from the instrumental distribution with density on {1,..., N} x R? x U:

/Uk:(€7 x, Z) X wiflpk—l(gﬁfh x)Rk(gll;fl) T Z) B
where py_1 is a Markovian transition density. In practice, this step is performed as follows:
1. Sample I{ in {1, ..., N} with probabilities proportional to {w! _, }1<j<n-
£ £
2. Sample &£ with distribution pj_1 (€,* ., -) and sample ¢Z. with distribution Ry (£1% |, €4 -).

Forany ¢ € {1,...,N}, ff; is associated with the importance weight defined by:

b (CH(ER €D
wy, 1= 7
pk—l(fk’ilv gﬁ)

to produce the following approximation of ¢[f]:

(10)

N N
ON[f) = wif(ER) . where Q=) wh

{=1 {=1

The choice of the proposal distribution py_; is a pivotal tuning step to obtain efficient estimations of the
filtering distributions. This point will be discussed in each example considered in Section 5.

3.3 Approximation of the backward statistics

Approximation of the backward statistics, as defined in (3), are computed recursively, for each simulated
particle. The computations starts with initializing a set ¢ = 0, ... 7" = 0, corresponding to the values of
To(fé)7 o ,To(fév ). Then, using (5), for each k£ > 0, 1 < i < N, the approximated statistics are updated

with: R
N i, .
. 1 gD gD
Tyt == (rk + b, <£k’““ @m)) : (11)
N
where N > 1isa sample size which is typically small compared to N and where (J, ,E” ), ¢ 1&?1) ), 1< < N,

+1
areii.d.in {1,..., N} x U with distribution

T (4, 2) o Wil (2) (&6 by )R (€0, 6013 2) -

As explained in [Gloaguen et al., 2021], this recursive update requires to produce samples .J, ,g:’_jl) distributed
according to the marginal distribution of ¥}, referred to as the backward kernel. In practice, this requires
computationally intensive sampling procedures and the only proposed practical solution can be used in
very restrictive situations. In [Gloaguen et al., 2018], the authors assumed that almost surely, for all z, z’,
£;(C)(x,2") > 0, and that, for all 0 < k < nand 0 < 7 < N, there exists an upper bound 5; such that

supy ¢ £ (Q) (& Epy) < & - (12)
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Then, if the positiveness assumption of ¢, (C)(x, 2’) is satistified, the sampling from the distribution Ty, is
possible thanks to condition (12), as, for all (¢,z) € {1,..., N} x U,

W££k<z>(fﬁvfli+1)Rk(flivfli+1§ z) < EkwiRk(giagliH»l; z) .
Therefore, the following accept-reject mechanism algorithm may be used to sample from ¥,
1. A candidate (J*, (*) is sampled in {1, ..., N} x U as follows:

(a) J* is sampled with probabilities proportional to (wf ), ;
(b) ¢* is sampled independently with distribution Ry, (£, €% 415 ¢%).

2. (J*,¢*) is then accepted with probability £ (C*) (¢, & 1)/&, and, upon acceptance, J,gfl) J*,

This algorithm is the only online SMC smoother proposed in the literature with theoretical guarantees when
no closed-form expressions of the transition densities and the conditional likelihood of the observations are
available, assuming that the user can only evaluate approximations of these densities. This pseudo-marginal
particle smoothing algorithm requires that the backward sampling step generates samples exactly according
to vi . However, it relies on the key assumptions of the positiveness of ¢4 (C)(z, ") and (12) which are rather
restrictive (especially the second one), and would not be satisfied in practice for a lot of problems (see for
instance in Section 5.4). In Section 4, we propose an alternative to this step to obtain a computationally
efficient pseudo-marginal smoother in a much wider range of applications for which such assumptions do
not hold.

Approximations for recursive MLE

In the case of recursive MLE, one needs to approximate the key quantity (6). A particle filter, can be used to
compute the following sequential Monte Carlo approximations:

e [9x:0] nge &) T [Vogro) = Zvegke (&) -

In addition, the tangent filter can be approximated using a backward sampling procedure, based on the
backward statistic associated with the functional (7):

N
ilgke] = NZTere &) - (NZ ) <;[ng;0(§§)> . 13)
=1

{=1

Plugging these estimates in equation (6) allows to perform the online recursive algorithm.

4 Pseudo-marginal backward importance sampling

4.1 Positive estimates

In this section, we propose to use Wald’s identity for martingales to obtain an estimator which is guaranteed
to be positive. This step is not required if ¢ (z)(z, z") is positive by construction but this is not necessarily
true. Wald’s trick was for instance applied in [Fearnhead et al., 2010a] to solve the filtering problem in
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the context of Poisson based estimators for partially observed diffusions. Our estimator is defined up to
an unknown constant of proportionality, which is removed when the importance weights are normalized
in equation (14). This approach, rather than setting negative weights to 0, which would lead to a biased
estimate, uses extra simulation to obtain positiveness. This is done while ensuring that the weights remain
unbiased up to a common constant of proportionality.

Particle filtering weights. For all £ > 0, the Wald-based random weight particle filtering proceeds as
follows.
1. For all 1 < ¢ < N, sample a new particle as described in Section 3.2.
(a) Sample I/, in {1,..., N'} with probabilities proportional to {w/_,}1<j<n-
(b) Sample &, with distribution pj,_1 (€% ).
2. Forall1 <i < N, setw} =0.

3. While there exists i. € {1,..., N} such that w}* < 0, forall 1 < i < N, sample ¢} with distribution

Rk(gé’“_ 1 f;i; -) (i.e. compute an estimator of the transition density) and set

” Ek—l@zi)(fl?i—l’ 3) .

Wy, = wy, T
Pe—1(&5156)

We aim at updating the backward statistics 7} 11» 1 <7 < N using an importance sampling step as ex-

act accept-reject sampling of the J, ,g:_jl) 1<5< N, with distribution U}, requires restrictive assumptions.
Therefore, we introduce the following extension of Wald’s trick importance sampling to the online smooth-
ing setting of this paper.

Backward simulation weights. Forall 1 < ¢ < N, the backward importance sampling step proceeds then
as follows.

N
1=1"

1. Forall 1 < j < N, sample .J l£1+31) in {1,..., N} with probabilities proportional to (w},)

2. Forall 1 <j < N,setw!?) =0.
3. While there exist 7. € {1,... ,N} such that w,(f’j) <0, foralll < 5 < N, sample Cki’j) with
(4,9)
distribution Ry (¢, , &1, ;) and set
i i i JEi=J'1) i
o = o 4 0N ) -
4.2 AR-free online smoothing

Without any additional assumption, the statistics are then updated recursively as follows: forall 1 < i < N,

g(d) g9

N (1,9)
) w 1 T : i
Th1 = Z Vk\:/}g <7'k M+ by, <§kh+1 a§k+1)) ) (14)
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where w,(f’j ), 1 <5< N are computed using the pseudo-marginal smoothing technique combined with
Wald’s identity and Wi = Z;V:l wlg”). Then, the estimator of the conditional expectation of the additive
functional ¢, ,, [ho:n] 1s set as

%
Ty -

M-
=Ii

1 S

(2

5 Application to smoothing expectations and score estimation

5.1 Recurrent neural networks

Recurrent Neural Networks (RNNs) were first introduced in [Mozer, 1989] to model time series using a
hidden context state. Such deep learning models are appealing to describe short time dependencies, and RNN
extensions [Hochreiter and Schmidhuber, 1997, Cho et al., 2014] are since then widely used in practice, see
for instance [Mikolov et al., 2010, Sutskever et al., 2011, Sutskever et al., 2014]. In this section, we propose
a general state space model based on a vanilla RNN architecture, as follows. The hidden state is initialized
as Xo ~N(0,%) and for all k > 1,

Xp = tanh(WlYk_l + WoXp_1+b+ nk) and Y, =Ws3Xp+c+eg,

where W7, Ws, W3 and b and c¢ are the weight matrices and bias, 3 is an unknown covariance matrix and
(Mk)k>1 and (ex)k>1 are independent Gaussian random variables with covariance matrices @ and R. In
this experiment, we show that the proposed algorithm can be used in this setting which does not fit the usual
assumptions of hidden Markov models. While we here focus on a simple vanilla one-layer recurrent network,
such general state space model could be extended to multi-layer RNN architectures by considering noisy
state dynamics in each hidden layer, and to RNN variants such as Long Short Term Memory [Hochreiter and
Schmidhuber, 1997] and Gated Recurrent Unit (GRU) [Cho et al., 2014].

To generate a synthetic sequence of states and observations (Xj.,, Yy.,,) from this stochastic RNN, we
considered diagonal covariance matrices X, () and R, with the same variance along all dimensions equal to
0.1. To obtain weights and biases values corresponding to realistic data, we trained a deterministic one-layer
RNN on 20,000 samples of a weather time-series dataset available online!. In such setting, the observations
Yo.n consist in a sequence of 4D vectors (originally temperature, air pressure, air humidity, air density).
Following the classical RNN framework, the sequence of hidden states Xj.,, is usually made of higher-
dimensional vectors; the experiments were performed for two RNNs of respective hidden dimension 32
and 64. After this training part, we sampled (Xo.,, Yo.,,) according to the model. For each RNN, a single
sequence of hidden states and observations was simulated with a total length of 200 time steps.

From this general state space model based on a stochastic RNN, in the context of the state estimation
problem, we are interested in using particle smoothing algorithms to estimate two smoothing expectations,
respectively E[Xo|Yy.,,], and E[>"}_; Xk |Yo.n]. In our context of online estimation, the evaluation was
made for n = 49 (sequence truncated at 50 observations), n = 99 (sequence truncated at 100 observations),
and n = 199 (full sequence). The Monte Carlo estimate of these quantities is referred to with the hat symbol:

In the following, the performances of our algorithm was compared to the classical Poor Man’s smoother.
The Poor Man’s smoother (also known as the path-space smoother) estimates the joint smoothing distribution
using the ancestral lines of each particle at time n; see for instance [Douc et al., 2014] for discussions on the

Uhttps://www.bgc-jena.mpg.de/wetter/
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Table 1: Empirical estimation of E[|| Xo — E[Xo|Yo.n]||2] and E[S-7_, || X — E[Xg|Youn]||2/(n +1)] for the
Poor man’s smoother (PMS) and the Backward IS smoother, for states Xy.,, and observations Yj.,, generated
with stochastic RNNs of dimension 32 and 64. We consider an online estimation of a sequence of 200
observations, truncated at timestep 7 = 49 (50 timesteps), n = 99 (100 timesteps) and the full sequence
(n = 199).

| RNNdim=32 RNN dim = 64

PMS  BackwardIS | PMS  Backward IS
X0 — E[Xo|Yo:190] |2 02147  0.1997 | 0.1969  0.1649
9 11 X5 — E[X5|Yo.100][|2/200 | 0.2551 0.2056 0.1822 0.1427
[ X0 — E[Xo|Yo:00] 12 0.2135 0.1997 0.1914 0.1649
S0 o I1X ke — B[Xk|Yo.00][|2/100 | 0.2531 0.2189 0.1775 0.1519
[ X0 — E[Xo|Yo.40] 12 0.2018 0.1997 0.1707 0.1650
S0 o I1Xk — E[Xk|Yo.a0][12/50 | 0.2307 0.2147 0.1633 0.1589

path degeneracy issue. For the backward IS smoother, we use N = 1000 particles for the bootstrap filter and
N = 32 backward samples (see Section 5.2 and Figure 3 for the choice of N from the number of particles
N). For the Poor Man’s smoother N = 3000 particles were used, which yields a similar computational
cost than the backward IS smoother. One interesting aspect of applying the backward IS smoother (BIS) on
neural network architectures is the parallelization abilities of such algorithm: the loop over the backward
samples in the backward step of the BIS is easily parallelizable, while the Poor Man’s smoother requires to
store the full past trajectories of the particles.

Table 1 displays the result when performing 100 runs for each smoothing algorithm. The performance
metric is the classical mean squared error (MSE), which is approximated with the empirical mean over the
100 runs. The backward IS smoother outperforms the Poor Man’s smoother when estimating both quantities.
This is also illustrated in Figure 1, displaying for the stochastic RNN of dimension 64 the MSE over 100 runs
of E[X|Yo.109], for & € {0, ...,199}: the backward IS smoother has a significantly smaller MSE than the
Poor Man’s smoother for all observations that are recorded far in the past (in our example, for all £ < 150).
Moreover, the table also shows that while the backward IS’s MSE tends to stay stable for all given n (49,99,
and 199), as expected the Poor Man’s estimation is less accurate for a longer sequence of observations, with
a MSE increasing as n increases.

5.2 One dimensional diffusion processe: the Sine model

This section investigates the performance of the proposed algorithm to compute expectations under the
smoothing distributions in a context where alternatives are available for comparison. Consider the Sine
model where (X;);>¢ is assumed to be a weak solution to

dXt = SiH(Xt — G)dt + th s X() = X0 -

This simple model has no explicit transition density, however, a General Poisson estimator which satisfies
(12) can be computed by simulating Brownian bridges, (see [Beskos et al., 2006b]). Therefore, the backward
importance sampling technique proposed in this paper can be compared to the usual acceptance-rejection
algorithm described in Section 3.3. For this simple comparison, observations are received at evenly spaced
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Figure 1: Plot of the empirical estimate of E[|| X}, — ]E[Xk |Yo.190]||] for k € {0, ..., 199} for 100 runs of the
Backward IS and Poor Man smoothers.

times tg = 0,...,t10 = 5 from the model
Yi=Xi, +er, 0<k<n=10, (15)

where (ex)o<k<io are i.i.d. Gaussian random variables with mean 0 and variance 1. In this experiment
6 = w/4. The proposal distribution py, for the particle filtering approximation is chosen as the following
approximation of the optimal filter:

P (ks Trr1) X Qi (Th, Thog 1) Gt (Trg1, Yier1) (16)

where q,Ei'l is the probability density function of Gaussian distibution with mean A sin(x;, — 6) and variance

A where A = 1/2, i.e. the Euler approximation of the Sine SDE, and gy, is the probability density function
of the law of Y} given X;, i.e. of a Gaussian random variable with mean X;, and variance 1. As the
observation model is linear and Gaussian, the proposal distribution is therefore Gaussian with explicit mean
and variance.

In this first experiment, particles are used to solve the state estimation problem for the first observation i.e.
to compute an estimate of E[X|Yy.,,]. Figure 2 displays the computational complexity and the estimation of
the posterior mean with the acceptance-rejection algorithm and the proposed backward sampling technique
as a function of N. In this setting, N = 100, and each unbiased estimate of ¢ is computed using 30 Monte
Carlo replicates.

For N = 2 (which is the recommended value for the PaRIS algorithm, see [Olsson et al., 2017]), our
estimate shows a bias, which is no surprise, as it is based on a biased normalized importance sampling step.
However, this bias quickly vanishes for N > 10. Interestingly, our method comes with a drastic (a factor
10) reduction of computational time. The vanishing of the bias might induce more backward sampling, but
this remains much faster than the acceptance rejection method with N = 2.

Then, the same estimation was performed (on the same data set) for NV varying from 50 to 2000. In this
context, NV was set to 2 for the AR method. To have an empirical intuition of how N must vary with N for
our algorithm, the backward importance sampling is applied with N = N%° N6 and N/10 (as this last
value was sufficient in the first experiment to avoid any bias). The results are shown in Figure 3. A small
bias might appear for N = 2000 and N = 45 (= 2000%), but no bias is visible for N6 and N/10. As
expected, the gain in time, compared to the state of the art algorithm, remains important (even if it decreases
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as N increases). It is worth noting that the variance of the computational time is greatly reduced compared
to the AR technique.
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Figure 2: Computational complexity and estimation of a posterior mean as a function of the number of
backward samples. Results are shown for the state of the art acceptance-rejection algorithm and the proposed
backward importance sampling technique.

5.3 Recursive maximum likelihood estimation in the Sine model

Online recursive maximum likelihood using pseudo marginal SMC is illustrated for the same Sine model.
As mentionned, a GPE estimator of the transition density can be computed. Following the idea of this
computation, it is possible to obtain an unbiased estimate of the gradient of the log-transition density and
thus compute and unbiased estimate of the key quantity given in (7). To the best of our knowledge, this
estimator is new, and given in appendix A. Using the Exact algorithm of [Beskos et al., 2006a] a data
set of 5000 points (displayed in Figure 4), was simulated whith the true parameter 6, = 7/4. As in the
previous section, particle smoothing was performed, using the same particle filter, with N' = 100 particles
and N = 10 backward samples in our backward importance sampling procedure. In this setup, we explore
three key features of our estimator.

Sensitivity to the starting point 6. The inference procedure was performed on the same data set from 50
different starting points uniformly chosen in (0, 27). The gradient step size ~; of equation (9) was chosen
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Figure 3: Computational complexity and estimation of a posterior mean as a function of the number of
particles. Results are shown for the state of the art acceptance-rejection algorithm and the proposed backward
importance sampling technique. The number of backward samples is set to 2 for the AR, and N/10 for the
IS.

constant (and equal to 0.5) for the first 300 time steps, and then decreasing with a rate proportional to k6.
Results are given Figure 5. There is no sensitivity to the starting point of the algorithm, and after a couple of
hundred observations, the estimates all concentrate around the true value. As the gradient step size decreases,
the estimates stay around the true value following autocorrelated patterns that are common to all trajectories.

Asymptotic normality. The inference procedure was performed on 50 different data sets simulated with
the same 6. The 50 estimates were obtained starting from the same starting point (fixed to 6, as Figure 5
shows no sensitivity to the starting point). Figure 6 shows the results for the raw and the averaged estimates.
The averaged estimates (0 ),>0 consist in averaging the values produced by the estimation procedure after
a burning phase of ng time steps (here ng = 300 time steps). This procedure allows to obtain an estimator
whose convergence rate does not depend on the step sizes chosen by the user, see [Polyak and Juditsky,
1992, Kushner and Yin, 1997]. For all 0 < k < ng, 64 = 0, and for all k > n,

1 oo
k*nojzz 0 .

no+1

G, —
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Figure 4: Data set simulated according to the SINE process, observed with noise at discrete time steps.

The estimated distribution of the final estimates seems to be Gaussian, centered around the true value. This
conjecture, which would extend the asymptotic normality obtained in [Gloaguen et al., 2021] for the original
pseudo-marginal PaRIS, should be proven in future works.

Step size influence. To illustrate the influence of the gradient step sizes, different settings are considered.
In each scenario, the sequence (7x)r>0 is given by

o
Ve = Y0l k<ne} + mn{k>no} :

where 79 = 0.5. In this experiment x € {0.5,0.6,0.7,0.8,0.9,1}. The results are shown in Figure 7.
As expected, the raw estimator shows different rates of convergence depending on «, whereas the averaged
estimator has the same behavior in all cases.

5.4 Multidimensional diffusion processes: Stochastic Lotka-Volterra model

This section sets the focus on a stochastic model describing in continuous time the population dynamics in
a predator-prey system, as fully discussed in [Hening and Nguyen, 2018]. The bivariate process (X;)¢>o of
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Figure 5: (Left) online estimation of 6 for the data set presented in Figure 4. The algorithm is performed
from 50 starting points. (Right) The gradient step sizes (defined in equation (9)).
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Figure 6: (Left) online estimation of # for 50 different simulated data sets as presented in Figure 4. The
algorithm is performed from 1 starting point with the gradient step size shown in Figure 5. (Center) Averaged
estimator, where 6 is averaged after a burning phase of 300 time steps. (Right) Empirical distribution of 6.
The red line is the value of 6*.

16



Backward importance sampling

6 6
K K

~ 05 05

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

4- 1 4- 1
[ [
o) o)
5] 5]
E E
el B
wn wn
<) <)
2 2

L
=
0 1000 2000 . 3000 1000 500( 0 1000 2000 . 3000 1000 500(
Time Time

Figure 7: (Left) online estimation of ¢ for the data set presented in Figure 4, with different decreasing rates
values . (Right) Averaged estimator, where € is averaged after a burning phase of 300 time steps.

predators and preys abundances is assumed to follow the stochastic Lotka-Volterra model:

Xi(t) 0

0 XQ(t)) TdW, , (17)

dXt = Olg(Xt)dt + (

where W, is a vector of independent standard Wiener processes, I" a 2 x 2 matrix, and for z = (z1, xg)T :

r1(a10 — aA11T1 — G127
CYQ(CE)( 1( 10 1141 12 2)) )

xo(—ag0 + a2121 — a2222)

In this context, the unknow parameter to be estimated is § = (a10, a11, @12, G20, a21, a22,1'). The obser-
vation model follows a widespread framework in ecology where the abundance of preys and predators are

observed through some abundance index at discrete times g, . .., t,:
X (te)es
c etk
Y, = 141 (K o (18)
CoXo(ty)e tn

where ¢ = (cy,c2)T is known (the observed fraction of the population) and {¢;, = (eg), eii))}lékén are

i.i.d. random variables distributed as a N3 (—diag /2, %) where X is an unknown 2 X 2 covariance matrix.
It is straightforward to show that for a generic 6, in the SDE defined by (17), the drift function cannot be
written (even after the Lamperti transform) as the gradient of a potential. Therefore, the General Poisson
estimator cannot be used as an unbiased estimator of the transition density. Following Section 4.1, an almost
surely positive unbiased estimate of the transition density is obtained by combining the Wald’s trick to the
parametrix estimators of [Fearnhead et al., 2017]. The proposal distribution for the particle filter is again a
trade off between model dynamics and the observation model (full details are given in the appendix). The
simulated set of particles is used to obtain estimates of the true abundances given the observations, both on
synthetic and real data.
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Figure 8: Estimated Hares-Lynx abundances using the Hudson bay company data set. Both our IS-PaRIS
smoother and the poor man smoother are performed to approximate the MLE and solve the tracking problem.
Blue crosses show the observations.
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Figure 9: Estimated predator-prey abundances (center) in a stochastic Lotka Volterra model using our back-
ward sampling estimate on simulated abundance indexes (left). Right panel shows the ground truth.

Synthetic data

In a first approach, simulated data are obtained from the model given by (17) and (18) for a known set of
parameters. Chosen values of 6, 3, ¢; and co for the experiment are given in the appendix. The model is
used to simulate abundances indexes Yy, ... Y3qg at times tg = 0,...,t300 = 3. The associated time series
(after a division by the known constant c) is shown in Figure 9 (left panel). In this experiment, the goal is to
obtain an estimate of the actual predator-prey abundances given all the observed abundances indexes Y.,,.
Our estimate is given by the set of conditional expectations {E[X|Yy.n]}k=0,... n. approximated using our
backward importance sampling PaRIS smoother, which is run using the true parameters. Figure 9 shows
the estimated abundance trajectory over time. The proposed backward importance sampling smoother man-
ages to estimate efficiently the actual abundance from noisy data and a model with an intractable transition

density.

Hares and lynx data

In this section, the model defined by equations (17) and (18) is applied to the Hudson Bay company data,
giving the number of hares and lynx trapped in Canada during the first 20 years of the 20th century (available
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in [Odum and Barrett, 1971]). As parameters are unknown in this case, maximum likelihood inference is
performed using an EM [Dempster et al., 1977] algorithm to obtain an estimate 6. The E step is performed
using the BIS smoother. At each iteration, the estimator 6y, is updated by finding a parameter 6y, for
which Q(Ok_H, 0r) > Q(Gk, 1), with a gradient free evolution strategy [Hansen, 2006]. The last estimate
0 obtained with this EM algorithm is used to estimate the actual abundances in the model (similarly to the
synthetic data case). Figure 8 shows estimates of [ [X%|Yo.n,] obtained with 30 independent runs of our
algorithm. The particle smoother is implemented using N = 200 particles and N = 20. The replicates
show that the variance of our estimator (for a given set of observations) is much smaller than the one of the
Poor Man’s smoother.
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A Application to partially observed SDE
Let (X;)¢>0 be defined as a weak solution to the following Stochastic Differential Equation (SDE) in R4
XO = X0 and dXt = Oéa(Xt)dt + th s (19)

where (W;);>0 is a standard Brownian motion, g : R% — R is the drift function . The inference procedure
presented in this paper is applied in the case where the solution to (19) is supposed to be partially observed
attimes to = 0,...,ty, for a given n > 1, through an observation process (Y )o<k<n taking values in R™.
For all 0 < k < n, the distribution of Y}, given (X¢);>0 depends on Xj, = X, only and has density Gk:0
with respect to v. The distribution of X has density x with respect to ;¢ and for all 0 < k£ < n — 1, the
conditional distribution of X1 given (X;)o<t<k has density gx+1.0(Xy, -) with respect to p.

A.1 Unbiased estimators of the transition densities

The algorithm described above strongly relies on assumption H1. In the context of SDEs, when gy 1.0
is available explicitly, this boils down to finding an unbiased estimate gi41.0(¢)(x,y) of gr+1.0(x,y) and
defining

L0 (C)(,Y) = Q1,0 () (T, Y) Gh+1,0(Thot 1, Yit1) -

A.2 General Poisson Estimators

In [Olsson et al., 2011] and [Gloaguen et al., 2018], General Poisson Estimators (GPEs) are used to obtain
an unbiased estimate of the transition density. However, designing such estimators requires three strong
assumptions [Beskos et al., 2006a].
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1. The diffusion defined by (19) can be transformed into a unit diffusion through the Lamperti transform,
with drift function &y ().

2. The drift of this unit diffusion can be expressed as the gradient of a potential function, i.e., there exists
a twice differentiable function Ay : R — R such dy = V., Ay.

3. The function = — (||&g(z)||? + AAgy(x))/2 (where A denotes the Laplacian) is lower bounded.

Assumption (1) is used to define a proposal distribution absolutely continuous with respect to the target
which is easy to sample from. Assumption (2) is necessary to obtain a tractable Radon-Nikodym derivative
between the proposal and the target distributions using the Girsanov transformation. While these assump-
tions can be proved under mild assumptions for scalar diffusions, much stronger conditions are required in
the multidimensional case [Ait-Shalia, 2008].

Let w = (ws)o<s<t be the realization of a Brownian Bridge starting at = at time O and ending in y
at time A. The distribution of w is denoted by W2+¥. Moreover, suppose that for all § € ©, ag is of a
gradient form ay = V, Ay where Ay : R? — Ris a twice continuously differentiable function. Denoting,
Yo i x> Py(z) = (||ag(z)]|® + AAg(x))/2, by Girsanov theorem, for all z,y € R? x R?

Ay
G+1:0(2,y) = Oa, (€ — y)exp (Ag(y) — Ap(2)) Eyyar.s [exp (— ; wa(ws)dsﬂ ;o (20

where Ay, = ty41 — tg, for all @ > 0, ¢, is the probability density function of a centered Gaussian random
variable with variance a. The transition density then cannot be computed as it involves an integration over
the whole path between x and y. To perform the algorithm proposed in this paper, we therefore have to
design a positive an unbiased estimator of gj41,0(, y).

Unbiased GPE estimator for ¢;1.9(x,y; (). Assume that there exist random variables m, and 7y such
that for all 0 < s < Ay, my < Yp(ws) < Ty. Let x be a random variable taking values in N with
distribution p, w = (ws)o<s<a, be the realization of a Brownian Bridge, and (U;)1<; < be independent
uniform random variables on (0, Ay) and {( = (k,w,Uy,...,U). As shown in [Fearnhead et al., 2008],
equation (20) leads to a positive unbiased estimator given by

K —

Git1:0(2, 43 C) = da, (@ — y)exp (Ag(y) — Ap(x) — meAi) [| o —Yolow,).

mg —m
j=1 0=

Unbiased GPE estimator of Vg log g;,+1.0(x,y). Let’s denote g : x +— 1p(z) — my. By (20),
Volog qit1,0(x,y) = VoAg(y) — VoAg(x) — VemyAy
A A
Eyans [(fo r Vgapg(ws)ds) exp (— It wg(ws)dsﬂ
- A
Eans [exp (— " @g(ws)ds)}
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On the other hand, the diffusion bridge SQA;’Z’ associated with the SDE (19) is absolutely continuous with
respect to W2#¥ with Radon-Nikodym derivative given by
sy

dWAk Y

Ap
(w) = [gr+10(z, )]~ da, (z — y)exp (Ae(y) — Ag(z) — moAy, */0 @e(ws)d8> ;

Ak Ay
=Eyarw lexp (—/0 wg(ws)ds> exp (—/0 gpg(ws)ds> .

Ag

This yields

Volog grrio(z,y) = (VoAe(y) — Vodg(z) — VomgAr) — Egar

Voo (ws)ds]

and an unbiased estimator of Vy log gi11,¢(x, y) is given by
lkv1:0(2, y,sUm Y Ak) = (VoAg(y) — VgAg(z) — VomyAy) — Akvowo( 2y, Ak) 7

where U is uniform on (0, 1) and independent of s?>®¥:2% ~ Sﬁ;’y. In the context of GPE, s?**¥A* can be
simulated exactly using exact algorithms for diffusion processes proposed in [Beskos et al., 2006a].

A.3 Parametrix estimators

More recently, [Andersson and Kohatsu-Higa, 2017] and [Fearnhead et al., 2017] proposed an algorithm
which can be used under weaker assumptions. This parametrix algorithm draws weighted skeletons using an
importance sampling mechanism for diffusion processes. In this case, the sampled paths are not distributed
as the target process but the weighted samples produce unbiased estimates of expectations of functionals
of this process. To obtain an unbiased estimator gj11(¢)(x,y), the parametrix algorithm draws weighted
skeletons at random times s9 = 0 < s; < --- < s;, denoted by {(a:sj,wsj)}j>o, where xyg = x and
wo = 1. The update times (s;) ;>0 are instances of an inhomogeneous Poisson process of intensity A(t). Let
(zs,,ws,) be the last weighted sample and s ;; be the next update time of the trajectory. While s; 1 < Aty,
the new state is sampled using a simple Euler scheme, namely:

Ty, = Ts, + Asjag(zs,) + (ASj)1/2O'9(1'Sj)€j+1 )

where As; 1= sj41— 8, Aty = tp41 —tpand g ~ Na(0, Id). The proposal density associated with this
procedure is denoted by m.¢ (xs]., Y AT]) Let KC? (resp. ICprop) denote the Kolmogorov forward operator
of the diffusion (resp. the Kolmogorov forward operator of the proposal distribution 72;.¢ (a:sj N Asj)).
The forward operators write, for any function & : R — R,

s L8

where vy = agag. Then, following [Fearnhead et al., 2017], the weight is updated by

2

{’Ye,i,z(y)h W)},

- A .
Wsjp1 = Ws; 05 (@s;5 Tsy00, A85)
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where

(’C - ’C{;’rgop) mj.e (:U, 2 u)|z:y
Aw)mig (2, y, u) '

It is worth noting that (21) can be computed using only first derivatives of aig and second derivatives of oy.

If Ny is the number of Poisson events between 0 and Aty, the parametrix unbiased estimate is then given by

py (@, y,u) =1+ @1

a\k+1<<k><x7 y) = Wst mE;6 (:L‘st Y, tk+1 - SNk) 5

where (j, stands for all the randomness required to produce the parametrix estimator (Poisson process and
Gaussian random variables).

The stability of this estimator is studied in [Fearnhead et al., 2017] which provides L,, controls for the
weight w,, . The parametrix algorithm mentioned above is a highly flexible procedure to obtain such
an unbiased estimate for a much broader class of diffusions than Poisson based estimations which require
strong assumptions. However, as the update (21) involves the difference of two Kolmogorov operators, the
parametrix estimator of the transition density may be negative, and has no reason to satisfy (12).
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