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Abstract. Many theorems in mathematics require a real function to
be continuous over the domain under consideration. In particular the
Brouwer fixed point theorem and the mean value theorem underlie many
interval methods like Newton operators for solving numerical constraint
satisfaction problems or global optimization problems. Since the conti-
nuity property collapses when the function is not defined at some point
it is then important to check whether the function is defined everywhere
in a given domain. We introduce here an interval branch-and-contract
algorithm that rigorously approximate the domain of definition of a fac-
torable function within a box. The proposed approach mainly relies on
interval contractors applied to the domain constraints and their nega-
tions stemming from the expression of the function.

Keywords: Interval methods · Branch-and-contract algorithm · Interval
contractor · Constraint satisfaction problem · Paving.

1 Introduction

A real function f : D → Rm with D ⊆ Rn is factorable if it can be defined as
a finite recursive composition of arithmetic operations and elementary functions
simply called operations thereafter. Given a box Ω ⊆ Rn we study the problem
of approximating the intersection Ω ∩ D with interval computations. Our goal
is to calculate a paving (X i,X o) where X i is a union of inner boxes and X o is a
union of outer boxes such that

X i ⊆ Ω ∩D ⊆ X i ∪ X o ⊆ Ω.

Fig. 1 shows such a paving computed at a given precision ε > 0. We see that the
outer boxes are accumulated on the frontier of the set Ω ∩D, the width of each
one defined componentwise being smaller than ε.

The problem described above can be defined as a numerical constraint sat-
isfaction problem (CSP) 〈C, Ω〉 where C is a set of constraints such that a point
x ∈ Ω belongs to D if and only if it satisfies all the constraints from C. It turns
out that every operation of f having a restricted domain entails a constraint
that must be inserted in C. For example, the function whose paving is depicted
in Fig. 1 leads to the set

C = {x1x2 + 1 ≥ 0, x21 − x22 6= 0, 16− x21 − x22 > 0}.
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Fig. 1. Let f(x1, x2) = (
√
x1x2 + 1/(x21 − x22), log(16 − x21 − x22)) be a real function.

Fig. (a) shows a paving of its domain of definition at precision ε = 0.1 given Ω = R2

composed of outer boxes depicted in Fig. (b) and inner boxes depicted in Fig. (c).

We see that the frontier of its domain of definition is delimited by an hyperbola,
a circle and lines represented by the domain constraints.

A paving of the solution set of a numerical CSP can be computed by an in-
terval branch-and-contract algorithm that recursively divides and contracts the
initial box until reaching the desired precision, following a contractor program-
ming approach [5]. In this framework, an interval contractor is associated with
one or many constraints to tighten a box by removing inconsistent values from
its bounds, using different techniques such as consistency techniques adapted to
numerical computations with intervals [11] or interval Newton operators [10].
Several contractors can be applied in a fixed-point loop known as constraint
propagation [12]. Finding inner boxes can be done by considering the negations
of the constraints [2] or by means of inflation techniques [6, 4].

In the following, we introduce an interval branch-and-contract algorithm that
calculates a paving of the domain of definition of a real function within a given
box. A set of rules is proposed to derive the system of domain constraints entailed
by the expression of the function. We adapt the HC4Revise contractor [3] in
order to process these specific constraints. Finally, a new heuristic for generating
maximal inner boxes is devised. A set of experiments permit to evaluate the
quality of computed pavings.

The rest of this paper is organized as follows. Interval arithmetic and the
notion of interval contractor will be introduced in Section 2. The new algorithms
will be described in Section 3. Section 4 is devoted to the experimental results,
followed by a conclusion.

2 Interval computations

2.1 Interval arithmetic

An interval is a closed and connected set of real numbers. The set of intervals
is denoted by I. The empty interval represents an empty set of real numbers.
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The width of an interval [a, b] is equal to (b − a). The interval hull of a set of
real numbers S is the interval [inf S, supS] denoted by hullS. Given an integer
n ≥ 1, an n-dimensional box X is a Cartesian product of intervals X1×· · ·×Xn.
A box is empty if one of its components is empty. The width of a box X is the
maximum width taken componentwise denoted by widX.

Interval arithmetic is a set extension of real arithmetic [13]. Let g : D → R
be a real function with D ⊆ Rn. An interval extension of g is an interval function
G : In → I such that

(∀X ∈ In) (∀x ∈ X ∩D) g(x) ∈ G(X).

This property called the fundamental theorem of interval arithmetic implies that
the interval G(X) encloses the range of g over X. When g corresponds to a
basic operation, it is possible to implement the interval operation in a way to
calculate the hull of the range by exploiting monotonicity properties, limits and
extrema. More complex functions can be extended in several ways. In particular,
the natural interval extension of a factorable function consists of evaluating the
function with interval operations given interval arguments.

2.2 Interval contractors

Given a vector of unknowns x ∈ Rn, an interval contractor associated with a
constraint c(x) is an operator Γ : In → In verifying the following properties:

(∀X ∈ In)

{
Γ (X) ⊇ {x ∈ X : c(x)} (consistency)
Γ (X) ⊆ X (contractance)

An interval contractor aims at removing inconsistent values at the bounds of the
variable domains. There are many kinds of contractors and we present here the
forward backward contraction algorithm called HC4Revise [3]. Given an equation
g(x) = 0 or an inequality constraint g(x) ≤ 0 and a box X, the first phase is
an evaluation of the natural extension of g from the leaves to the root. We then
consider the interval I associated with the relation symbol, namely [0, 0] for an
equation and [−∞, 0] for an inequality. There are three cases: if the intersection
G(X) ∩ I is empty then the constraint is inconsistent; if we have the inclusion
G(X) ⊆ I then the constraint is consistent and X is an inner box for this
constraint said to be inactive; otherwise the second phase calculates projections
from the root of g lying in G(X) ∩ I to the leaves, eventually contracting the
variable domains. An example is presented in Fig 2.

As previously shown, an HC4Revise contractor is able to detect that a box is
an inner box after the first phase. Now it is possible to apply it to the negation
of a constraint in order to generate inner boxes inside a box, as follows. Given
an inequality constraint g(x) ≤ 0, let Γ be an HC4Revise contractor associated
with its negation g(x) > 0. Given a box X, it comes by the consistency property
of Γ that every element of the region X \Γ (X) violates the constraint negation,
hence satisfying the constraint itself. When this region is non empty, it is possible
to generate inner boxes for the constraint, as shown in Fig. 3. Since the rounding
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+ [−4, 46][−4, 0]

u

× [0, 20][0, 4]

v

− [−4, 26][−4, 0]

w

2 x1 [0, 10][0, 2] x3 [−1, 4][0, 4]sqr [0, 25][0, 4]

x2 [−5, 5][−2, 2]

Fig. 2. Let g(x) ≤ 0 be an inequality constraint with g(x1, x2, x3) = 2x1 +x22−x3 and
let X be the box [0, 10]× [−5, 5]× [−1, 4]. The interval on the right at each node of g is
the result of the interval evaluation phase of the HC4Revise contractor. The interval at
the root node is intersected with the interval I = [−∞, 0] associated with the relation
symbol. The interval on the left at each node is the result of the projection phase
from the root to the leaves. For example, let u ∈ [−4, 0], v ∈ [0, 20] and w ∈ [−4, 26]
be three variables respectively labelling the + node, the × node and the − node. We
have to project the equation v + w = u over v and w, which propagates the new
domain at the root node to its children nodes. To this end the equation is inverted
and it is equivalently rewritten as v = u − w. The new domain for v is calculated as
[0, 20] ∩ ([−4, 0] − [−4, 26]), which leads to the new domain [0, 4] at the × node. The
new domain for w is derived similarly. At the end of this backward phase it comes the
new box [0, 2]× [−2, 2]× [0, 4].

errors of machine computations prevent in general to deal with open intervals,
the constraint negation is safely relaxed as g(x) ≥ 0.

3 Filtering Domains of Functions

3.1 Domain constraints

Several operations have restricted domains such as the division x 7→ x−1 defined
in R \ {0}, the square root defined in R+, the logarithm defined in (0,+∞),
the arccosine and arcsine functions defined in [−1, 1] and the tangent function
defined at every point that is not a multiple of π/2. A factorable function whose
definition involves one of these operations may not be defined everywhere in
a box, and, a fortiori, it may not be continuous. It naturally yields domain
constraints that must be verified, as illustrated by Fig. 4.

Every term op(u1, . . . , uk) occurring in a factorable real function f : D ⊆
Rn → Rm such that the domain of op is a strict subset of Rk entails a con-
straint. A constraint system C can then be generated from f using the following
(non exhaustive) set of rules. There are different kinds of constraints such as
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X

c

Fig. 3. Let c be the inequality constraint x21 + x22 ≤ 4 that defines a disk in the
Euclidean plane and let X be the box [0, 4]× [−1, 1]. The hatched surface is returned
by an HC4Revise contractor Γ associated with the negation of c. The gray region
X \ Γ (X) is thus an inner region for c (every point satisfies c) and it is a box here.

(strict and non-strict) inequality constraints and disequations. The algorithms
introduced thereafter will also consider their negations.



√
u |= u ≥ 0

log u |= u > 0
1/u |= u 6= 0
acosu |= −1 ≤ u ≤ 1
asinu |= −1 ≤ u ≤ 1
tanu |= u 6= π/2 + kπ (k ∈ Z)

Given a box Ω ⊆ Rn, every x ∈ Ω satisfying all the constraints from C must
belong to D. Finding the set Ω ∩ D is then equivalent to solve the numerical
CSP 〈C, Ω〉. It is worth noting that the set C may be separable. For example,
the function f(x1, x2) = log(x1)+x−12 entails two constraints x1 > 0 and x2 6= 0
sharing no variable and thus handable separately.

x

f

b b

Fig. 4. The function f(x) =
√
x2 − x is undefined in the open interval (0, 1) since the

square root is defined in R+ and g(x) = x2−x is negative for all x such that 0 < x < 1.
The restricted domain of the square root entails the constraint x2 − x ≥ 0.
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3.2 Branch-and-contract-algorithm

Algorithm 1 implements a classical interval branch-and-contract algorithm that
calculates a paving of the domain of definition of a function f within a given box
Ω. It maintains a list L from which a CSP 〈C,X〉 is extracted at each iteration.
This CSP is reduced and divided by two algorithms contract and branch that
are specific to our problem. If the set C becomes empty then X is inserted in
the set of inner boxes X i. A tolerance ε > 0 permits to stop processing too small
boxes that are inserted in the set of outer boxes X o.

Algorithm 1 Branch-and-contract algorithm.

Input: – a function f : D → Rm with D ⊆ Rn

– a box Ω ⊆ Rn

– a tolerance ε > 0
Output: – a paving (X i,X o) of Ω ∩D at tolerance ε
Algorithm:

generate the set of domain constraints C from f
initialize L with the CSP 〈C, Ω〉
assign (X i,X o) to the empty paving
while L is not empty do

extract an element 〈C,X〉 from L
contract 〈C,X〉
if X 6= ∅ then

if C = ∅ then insert X in X i

elif widX ≤ ε then insert X in X o

else branch 〈C,X〉
endif

endif
endwhile

Given a CSP 〈C,X〉 a contractor is associated with each constraint from
the set C. The contract component classically implements a constraint prop-
agation algorithm that applies the contractors to reduce X until reaching a
fixed-point. Moreover, every constraint detected as inactive is removed from C.
The HC4Revise contractor has been designed to handle non-strict inequality
constraints and equations since it is not possible to manage open intervals in
general due to the rounding errors. The more specific domain constraints are
handled as follows. Let g(x) be a real function, let G be the natural interval
extension of g and let X be a box.

– A strict inequality constraint g(x) > 0 is safely relaxed as g(x) ≥ 0 since
every point that violates the relaxation also violates the constraint.

– A disequation g(x) 6= 0 is violated if the interval G(X) is reduced to 0, it is
inactive if we have maxG(X) < 0 or minG(X) > 0, and nothing happens
in the backward phase otherwise.
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– A double inequality constraint a ≤ g(x) ≤ b is simply handled by setting the
interval G(X) ∩ [a, b] at the root node after the first phase.

– The periodic domain constraint g(x) 6= π/2 +kπ for some integer k does not
permit to contract X. The constraint is simply detected as inactive if G(X)
does not contain π/2 + kπ for every k, and nothing happens otherwise.

The branch algorithm divides a CSP 〈C,X〉 into sub-problems. Let C be the
set of constraints {c1, . . . , cp}. A contractor Γi is associated with the negation of
ci for i = 1, . . . , p. Each contractor is applied to X and it follows that the region

X \
p⋃

i=1

Γi(X)

is an inner region for the CSP, which means that every point of this region
satisfies all the constraints from C, as illustrated in Fig 5.

Γ1(X)

Γ2(X)

Γ3(X)

X X
1

X
2

(a) (b)

Fig. 5. A box X is contracted by three contractors Γ1, Γ2, Γ3 associated with constraint
negations, leading to the hatched boxes in Fig. (a). The complementary gray region is
an inner region for the original constraints. Fig. (b) shows that X can be split as two
boxes X1 ∪X2 where X1 is the largest inner slice at one bound of X.

We then define the branching heuristic as follows. Let the box

H = hull

(
p⋃

i=1

Γi(X)

)
be the interval hull of the contracted boxes with respect to the constraint nega-
tions. If H is empty then X is an inner box and it is inserted in X i. Now suppose
that H is not empty. Let d−i = minHi −minXi and d+i = maxXi −maxHi be
the inter-bound distances between X and H for i = 1, . . . , n. Let

d = max{d−1 , . . . , d−n , d
+
1 , . . . , d

+
n }

be the maximum inter-bound distance. If d is greater than the tolerance ε then
there exists an inner box at one bound of X that is large enough. Assuming for
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instance that d = d−j for some j, X is split in two sub-boxes Xi∪Xo at xj = d−j .

The maximal inner box Xi is directly inserted in the set of inner boxes X i and
the CSP 〈C,Xo〉 is inserted in L. Otherwise, a bisection of the largest component
of X generates two sub-boxes X ′ ∪ X ′′ and the CSPs 〈C,X ′〉 and 〈C,X ′′〉 are
added to L, which ensures the convergence of the branch-and-contract algorithm.

4 Experimental results

The interval branch-and-contract algorithm has been developed in the interval
solver Realpaver [9]. The interval operations are safely implemented with an out-
ward rounding mode, the MPFR library [7] providing the elementary functions
with correct rounding. As a consequence, the interval computations in Realpaver
are rigorous. All experiments were conducted on a 64 bits Intel Core i7 4910MQ
2.90GHz processor.

Three strategies will be compared in the following: S3 corresponds to Al-
gorithm 1, S2 mimics S3 but the split component always bisects the largest
component (no inner box is computed) and S1 corresponds to S2 except that
the backward phase of the HC4Revise contractors is disabled in the contract
component (only a satisfaction test is done). The quality of a paving can be
measured by its cardinality (#X i,#X o) and the volume of X i.

The introductory problem has been processed by S3, S2 and S1 given ε = 0.1
and we respectively obtain pavings with cardinalities (330, 646), (738, 736) and
(570, 696). There are about the same number of outer boxes which are required
to enclose the frontier of the domain of definition at tolerance ε. However, the
sets of inner boxes depicted in Fig. 6 are much different. S3 is able to calculate
a small number of maximal inner boxes as compared to S2 and S1. S1 generates
a regular paving (a quadtree of boxes here). S2 is able to contract every box,
which leads here to increase the number of inner boxes.

(S3) (S2) (S1)

Fig. 6. The sets of inner boxes X i computed by the three strategies for the introductory
problem at tolerance ε = 0.1: 330 boxes for S1, 738 for S2 and 570 for S3. Their total
areas are respectively equal to 30.38, 29.95 and 29.74.
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Another function involving an arccosine, a square root and a division has
been handled and the pavings computed by the three strategies at precision
ε = 0.01 are depicted in Fig. 7. Their cardinalities are respectively equal to
(1147, 3374), (3187, 3558) and (1896, 2871). The surfaces of the sets of inner
boxes are respectively equal to 6.962, 6.933 and 6.918. Once again, S3 generates
the best paving with only 1147 inner boxes covering a total area equal to 6.962.
S2 derives a paving with too many boxes as compared to the other strategies
but the area covered by the inner boxes 6.933 is slightly better than the one
obtained from S1 equal to 6.918.

(S3) (S2) (S1)

Fig. 7. Given the real function f(x1, x2) = acos(x2 − x21) + 1/
√
x1 + x2 and the box

Ω = [−5, 5]2 the figures above depict the pavings obtained from S3, S2 and S1 using
the interval branch-and-contract algorithm applied to the CSP 〈C, Ω〉 given the set of
domain constraints C = {−1 ≤ x2 − x21 ≤ 1, x1 + x2 > 0} generated from f .

These experiments suggest that combining the detection of maximal inner
boxes with branching is efficient. On the one hand, this strategy leads to max-
imize the volume of the set of inner boxes. On the other hand, no more than
two sub-boxes are generated at each branching step, which tends to minimize
the number of boxes explored during the search.

5 Discussion and perspectives

We have presented an interval branch-and-contract algorithm that rigorously
calculates a paving of the domain of definition of a factorable real function. An
inner box is a guarantee for interval tests and interval operators that require
the continuity property, as motivated in [8] in the context of bound-constrained
global optimization. For an inclusion in other methods, it could be interesting
to extract from our work a domain contractor that returns a union of an inner
box included in the domain of definition of the function and an outer box.

The problem studied in this paper has been taken into account by the re-
cent IEEE 1788 standard for interval arithmetic [1]. This standard proposes to
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decorate the intervals with different flags including a dac flag ensuring that an
operation is defined and continuous on the given domain. Implementing a solver
on top of an IEEE 1788 compliant interval arithmetic library could then be useful
to assert that the result of an interval evaluation has the required property.

In the future, we plan to experiment several inflation techniques [6, 4] and to
compare them with the currently implemented method based on the constraint
negations. It could be interesting to investigate other branching heuristics and to
associate suitable interval contractors with the domain constraints, for instance
contractors enforcing strong consistency techniques when those constraints are
complex with many occurrences of variables.
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