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Abstract

This paper investigates the use of a data-driven method to model the dynamics of the chaotic Lorenz
system. An architecture based on a recurrent neural network with long and short term dependencies
predicts multi-step ahead the position and velocity of a particle using a sequence of past states as input.
To account for modeling errors and make a continuous forecast, an artificial neural network assimilate
online data to detect and reconstruct wrong predictions such as non-relevant switchings between lobes.
The data-driven strategy leads to good prediction scores and does not require statistics of errors to be
known, thus proving significant benefits compared to a simple Kalman filter update.
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1. Introduction

Chaotic dynamical systems exhibit character-
istics (nonlinearities, boundedness, initial condi-
tion sensitivity) [1] encountered in real-world prob-
lems such as meteorology [2] and oceanography
[3]. The multi-step prediction of such a system is
challenging because governing equations may be
unknown or too costly to evaluate. For instance,
Navier Stokes equations require prohibitive com-
putational resources to predict with great accu-
racy the velocity field of a turbulent flow [4].

Data-driven modeling of dynamical systems is
an active research field whose objective is to in-
fer dynamics from data [5]. Regressive methods
in machine learning [6] are particularly suitable
for such tasks and have proven to reliably recon-
struct the state of a given system [7]. Provid-
ing the interpolative model is not overfitted to
training examples, the data-driven model can also
be used to predict i.e. extrapolate the future
state of the system. Main techniques in the lit-
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erature include autoregressive techniques [8], dy-
namical mode decomposition (DMD) [9], Hankel
alternative view of Koopman (HAVOK) [10] or
unsupervised methods (CROM) [11]. Neural net-
works are also of increasing interest since they
can perform nonlinear regressions that are fast to
evaluate. Architectures with recurrent units are
recommended for time-series predictions because
memory is incorporated in the prediction process.
Neural networks can then learn chaotic dynamics
[12], predict multi-step ahead [13] or approximate
Koopman eigenfunctions [14].

However, errors in modeling can lead to bad
multi-step predictions of chaotic dynamical sys-
tems: a tiny change in the initial condition results
in a big change in the output [12]. To overcome
the propagation of uncertainties from the dynam-
ical model (bad regression choice in a data-driven
approach or bad turbulence modeling in CFD for
instance) data assimilation (DA) techniques have
been developed [15]. They combine the predicted
state of a system with online measurements to get
an updated state. Such methods have success-
fully been applied in fluid mechanics to obtain
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a better description of initial or boundary con-
ditions by finding the best compromise between
experimental measurements and CFD predictions
[16]. Nevertheless, the dynamical model can be
slow to evaluate (limiting the use to offline assim-
ilations) and errors (initial condition, dynamical
model, measurements and uncertainties) can be
hard to estimate in real-world applications.

In this paper, a data-driven approach is used
to discover a dynamical model for the Lorenz sys-
tem. To handle the chaotic nature of the system,
a recurrent neural network (RNN) dealing with
long and short term dependencies (LSTM) is con-
sidered [17]. To correct modeling errors, an artifi-
cial neural network (ANN) whose design is based
on Kalman filtering techniques is developed. Re-
sults are promising for predicting multi-step the
position and velocity of a particle on the Lorenz
attractor, using only the initial sequence and real-
time measurements of the complete acceleration,
the complete velocity or a single component of the
velocity.

It is important to note that the strategy pre-
sented in this paper will be used and adapted in
future works for use in CFD. The final application
involve the continuous prediction of a flow field
via a data-driven model, using only an initial se-
quence of the state (the flow field) and real-time
punctual measurements (pressure at some points
for instance).

The paper is organized as follows. In section 2,
the overall strategy is presented with a quick un-
derstanding of how neural networks work. In sec-
tion 3, results about the low dimensional Lorenz
system are shown, with a particular interest in the
impact of forecast horizon and noise. The last sec-
tion gives concluding remarks and presents future
investigations.

2. Strategy

2.1. Proposed methodology

This paper investigates the use of neural net-
works to continuously predict a chaotic system

using a data-driven dynamical model and online
measurements. The method is summarized in fig-
ure 1 and contains the following steps:

. Consider the first m states of the system.
This sequence is denoted [s]m−1

0 where s is
the state of the system.

. Predict n future states using a RNN with
long and short-term memory (LSTM). This
gives a predicted sequence [sb]m+n−1

m where
superscript b indicates a prediction.

. Measure the predicted sequence. This gives
a sequence [yb]m+n−1

m where y is a measure-
ment of the state. The mapping between
the state space and the measurement space
is performed by an ANN called the shallow
encoder (SE).

. Assimilate the exact sequence of measure-
ments [y]m+n−1

m to update the predicted se-
quence of states. This work is performed by
an ANN which gives an updated sequence
[sa]m+n−1

m where superscript a stands for ”an-
alyzed”. The network is called the data as-
similation network (DAN).

. Use the updated sequence as a new input
and repeat the procedure.

In this section, we give a quick overview of
neural networks and explain architectures behind
the dynamical model (RNN-LSTM), the measure-
ment operator (SE) and the data assimilation pro-
cess (DAN).

2.2. Quick overview of neural networks

A neuron is a unit passing a sum of weighted
inputs through an activation function introduc-
ing nonlinearities. These functions are classically

a sigmoid σ(x) =
1

1 + e−x
, a hyperbolic tangent

tanh(x) or a rectified linear unit relu(x) = max(0, x).
When neurons are organized in fully connected
layers, the resulting network is called an artifi-
cial neural network (ANN). The universal approx-
imation theorem [18] states that any function can
be approximated by a sufficiently large and deep
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Figure 1: Summary of the data-driven method to make predictions of a chaotic system. A data-driven dynamical model
(RNN-LSTM) predicts n future states of the system and the predict sequence is updated according to a real sequence
of measurements.

network: numerous neurons in each layer increase
nonlinearities (by positioning more s-shapes in the
output) and several hidden layers create a better
hierarchical representation of features. Just like
a linear regression y = ax + b aims at learning
the best a and b parameters, a neural network
regression y = NN(x) aims at learning the best
weights and biases in the network by optimizing
a loss function evaluated on a training set of data.

Although they are universal approximators,
artificial neural networks face some limitations:
they may suffer from vanishing or exploding gra-
dient (derivatives of activation functions are non
zero in a small range [19]), are prone to over-
fitting (weights and biases too representative of
training data) and all inputs are taken at the
same time (no time dependencies). Other archi-
tectures have then been developed, including con-
volutional networks (CNN, for image recognition)
or recurrent neural networks (RNN, inputs are
taken sequentially). Recurrent networks use their
internal state (denoted h) to process sequences of
inputs. In its simplest form, h is computed using
a tanh function thus leading to the same limita-
tions as artificial neural networks. The renewed
interest in recurrent networks is largely attributed
to the development of Long Short-Term Memory
(LSTM) cells [20] which deploy cell states (long
memory) and gating mechanisms to store or for-
get information about past inputs (see figure 2).

Several techniques exist to learn parameters in
neural networks. The most common is the gradi-
ent descent, which iteratively update parameters
according to the gradient of the cost function with
respect to weights and biases. The computation
of gradients is made by backwarding errors in the
network, using backpropagation for ANN or back-
propagation through time for RNN [6]. Equations
of ANN, RNN and backpropagation can be found
in [21] for the curious reader. In this paper, all
neural networks are implemented using Keras li-
brary [22].

2.3. Dynamical model

The first step is to establish a dynamical model
mapping m previous states s(t) to n future states.
The chosen architecture is summarized in figure 3
and is composed of two networks. First, a recur-
rent neural network with 2m LSTM cells in the
recurrent unit (making the cell state a 2m dimen-
sional vector) treats each time step in the input
sequence [s]tt−m+1. The number of cells have been
chosen to echo results of [1] where best scores were
obtained by considering twice as many neurons
than the history window. This results in a final
output o(t) = h(t) summarizing all relevant in-
formations from the input sequence. Second, an
artificial neural network with two hidden layers
predict n future states [sb]t+nt+1 using the final out-
put of the RNN. The procedure for learning the
model is as follows:
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(c) LSTM cell. The recurrent unit is composed of a cell state and
gating mechanisms. The cell state C is modified when fed with a
new time step from the input sequence, forgetting past information
(via Forget Gate FG), storing new information (via Input Gate IG)
and creating a short-memory (via Output Gate OG). Mathematical
details are given in the appendix.

Figure 2: Two types of recurrent neural networks: simple RNN handling short-term depedencies via a hidden state h
(subfigure a) and RNN-LSTM handling short and long-term depedencies via a hidden state h, a cell state C and gating
mechanisms (subfigures b and c). Each time step s(j) from the input sequence is combined with h(j − 1) (and C(j − 1)
for LSTM-RNN) which was (were) computed at previous time step.

1. Simulate the system to get data t→ s(t).

2. Split data into training and testing sets. In
this work, two-thirds of the data are used to
form the training set.

3. Form supervised problems by writing data
as [s]tt−m+1 → [s]t+nt+1 . The number of train-
ing examples is increased by considering a
sliding window of one-time step i.e. train-
ing set is composed of [s]m−1

0 → [s]m+n−1
m ,

[s]m1 → [s]m+n
m+1 , etc. For the testing set, a

sliding window of n time steps is used.

4. Find optimal weights and biases in the net-
work by minimizing the mean square error
evaluated on batches of training data. The
chosen optimization algorithm is ADAM [23].
They are numerous parameters to find, in-
cluding all weights and biases for each LSTM
cells in the RNN and all parameters in the
ANN. During the optimization process, the
mean square error is also computed on the
testing set. Errors evaluated on training
and testing sets should be close to avoid
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overfitting and ensure that weights and bi-
ases learned during training are relevant for
extrapolative tasks.

5. Evaluate the performance of the final model
using test data. Test 1 uses exact input se-
quences [s]tt−m+1 to compute [sb]t+nt+1 . Test 2
uses the first exact sequence [s]m−1

0 to com-
pute [sb]m+n−1

m which is used as a new input
and so on. The metric to quantify errors
is the normalized mean square error which
indicates how far predictions are from ex-
pectations on average. It is computed using
all predicted and real states by:

NMSE =

[ ||s− sb||2
||s||2

]
Where .̄ is the mean over all states operator
and ||.|| is the l2 operator.

2.4. Data assimilation

To make a continuous forecast of the state us-
ing a data-driven dynamical model, it is almost al-
ways required to sequentially update predictions
and limit the accumulation of errors [24]. Con-
sider y(t) an exact measurement of the state at
t. The mapping between the state space and
the measurement space is done using the mea-
surement operator H. In Kalman filtering tech-
niques, a predicted state sb(t) is updated accord-
ing to sa(t) = sb(t)+Kt[y(t)−H(sb(t))] where the
Kalman gain Kt blends errors from the prediction
and the measurement. Such a method is based
on the Bayes theorem which helps to compute the
density probability of the state conditioned by the
measurement. However, these techniques require
statistics of errors to explicitly be known and work
on a sequence of states only when considering the
sequence as a state. The objective here is to adapt
the strategy to update a sequence of states using
a sequence of measurements.

The first stage is to establish a relationship be-
tween the state and its measurement i.e. find an
approximation of H operator. This task is per-
formed by a shallow encoder which nonlinearly
explains a measurement by its state. The figure 4

summarizes the retained architecture, with nf de-
scribing the number of features in the state and p
being the number of observed variables. Note that
this architecture largely depends on the problem
but for the Lorenz system, it is reasonable to ex-
plain the complete acceleration or complete veloc-
ity or a component in the velocity (p = 3 or p = 1)
by the complete state (nf = 6) with a shallow
network. The training and testing of this H ap-
proximation is performed using data s(t)→ y(t).
The determination coefficient R2 is used as a met-
ric to quantify how good the regression is.

The second stage is to blend a predicted se-
quence [sb]t+nt+1 with its associated sequence of mea-
surements [yb]t+nt+1 and the real sequence of mea-
surements [y]t+nt+1 to produce the updated sequence
[sa]t+nt+1 . This job is done by an artificial neural net-
work whose architecture is summarized in figure
5. The process can be summarized as:

1. Simulate the system to get t → s(t),y(t).
Measurements are exact.

2. Split into training and testing sets.
3. Form supervised problems for training and

testing sets. The architecture being com-
posed of dense layers, a sliding window of n
is enough for both training and testing se-
quences. Training and testing sets are then
composed of [s]t+nt+1 and [y]t+nt+1 .

4. Perform test 1 (subsection 2.3) using train-
ing sequences and apply shallow encoder to
get associated measurements. This leads to
a set composed of [sb]t+nt+1 and [yb]t+nt+1 . This
set represents all possible predictions when
using exact training inputs.

5. This step aims at learning the statistics of
prediction and measurement errors. To do
so, each training sequence [y]t+nt+1 is associ-
ated to 20% random sequences from step 4.
The objective is to blend a real sequence of
measurement with randomly selected 20%
of all possible predictions to produce the
real sequence [s]t+nt+1 . This gives the final
training set. Ideally, 100% of all possible
predictions should be use but this would
drastically increase the computational time
to prepare the training set.
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Step 1: get h(t)

s(t− j)
with j = m− 1 to j = 0

LSTM1 ... LSTM2m

2m LSTM cells

h(t− j)
C(t− j)

Step 2: get [sb]t+nt+1

h(t)

σ ... σ

2m neurons

σ ... σ

m neurons

[sb]t+nt+1

Figure 3: Architecture of the dynamical model, composed of a recurrent neural network and an artificial neural network.
Idea behind the design: 2m cells are used to echo the results obtained in [1] where best prediction scores were obtained
when considering two times the history window.

s(t) 2nf neurons

tanh layer

nf neurons

tanh layer

y(t)

linear layer

Figure 4: Shallow artificial neural network to map a state to its measurement i.e. approximation of H operator. Idea
behind the design: flatten the state by a factor of 2 and make nonlinear combinations (hidden layer 1), get back to the
dimension of the state (hidden layer 2), encode to the measure.

6. Perform gradient descent to optimize weights
and biases.

7. Evaluate the performance of the final model
using test data. Test 3 is summarized in
figure 6. The metric is still the normalized
mean square error.

The assimilation technique proposed here is
a nonlinear regression learned on training data.
It is a completely data-driven procedure whose
success is tailored by the quality of the training
set. This is different from Kalman filtering tech-
niques where the Kalman gain only rely on statis-
tics of errors and whose formula does not depend
on training data.

3. Results

3.1. Lorenz system

The Lorenz system of equations is a simplified
model for atmospheric convection [2] [25]. Close
initial conditions lead to very different trajecto-
ries, making the Lorenz system a choatic dynam-
ical system. The system is defined by:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

Parameters σ, ρ and β are respectively set to
10, 28 and 8/3. The trajectory of a particle lies
in an attractor whose shape resembles a butter-
fly. In [10], Brunton proposed a method to write
a chaotic system as a forced linear system. Fol-
lowing this method, forcing statistics appear non-

6



[sb]t+nt+1

nf × n neurons

[yb]t+nt+1

p× n neurons

[y]t+nt+1
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[sa]t+nt+1
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Hidden 1
tanh

Hidden 2
relu

Output
linear

Input
linear

0.1m× (nf + 2p) neurons

0.1m× (nf + p) neurons

Figure 5: Data assimilation network. The nonlinear regression correct predicted sequences of states by assimilating
sequences of real measurements. Idea behind the design: reduce all input information by a factor of 0.1m (hidden layer
1), find a kind of a residual by passing from 2p to p (hidden layer 2), flatten to get the updated sequence.

Input Output
RNN

Prior

New inputDAN

Figure 6: Procedure to test the data assimilation network.
The dynamical model is used to predict n future states
of the system using a history of m states. The predicted
sequence is updated using the data assimilation network
and the reconstructed input is used as a new input. All
predicted sequences are then compared to all expected se-
quences using the normalized mean square error as a met-
ric.

gaussian, with long tails corresponding to rare in-
termitting forcing preceding switching events (see
figures 7a and 7c). The system is simulated using
a runge kutta 4 method, a random initial condi-
tion and a time step of 0.005s, for a total of 15000
samples. The data is normalized i.e. with zero
mean and unit standard deviation for convenience
and to ease future learning of neural networks.
The chosen state is s = (x, y, z, ẋ, ẏ, ż) which is
the position and velocity of the particle on the
attractor. The time-series of x feature, plot in
figure 7b, clearly shows the lobe switching pro-

cess (positive values when the particle travels on
the right ear and negative values when it trav-
els on the left ear). The objective is to extract
from the simulated data a dynamical model map-
ping m past states to n future states. To account
for modeling error, predictions are enforced using
sequences of measurements. Observed variables
can be y = (ẍ, ÿ, z̈) or y = (ẋ, ẏ, ż) or y = ẋ.
Measurements are directly linked to the state and
data-driven models should automatically detect
these relations.

Before training models and specify m and n,
a first investigation concerns the impact of dis-
cretizing the attractor on the global error. Con-
sidering that wrong prediction are more likely to
appear when predicting lobe switchings, two sources
of errors can be found:

. Source 1→ the ratio between the mean po-
sition of switching in a switching sequence
and the prediction horizon. The smaller the
ratio, the bigger the impact on the global
error.

. Source 2→ the ratio between the number of
sequences with switchings and the number
of training sequences. The bigger the ratio,
the bigger the impact on the global error.
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Figure 7: Analysis of training data. The attractor (figure a) can be seen as a forced linear system with a non-gaussian
distribution for the forcing signal (figure c, method from [10]). Lobe switchings are visible in time-series of x feature
(figure b) where the blue signal corresponds to training data and the orange signal corresponds to testing data. The
forecast horizon n has an impact on the global score as shown in subfigure d.

Figure 7d shows the impact of discretizing the
training attractor for n ∈ [10, 90]. As expected,
increasing the forecast window leads to a bigger
impact on the global score (s2/s1 increasing) be-
cause prediction errors accumulate on longer and
less numerous sequences. However, the impact is
not strictly monotonous, indicating a dependance
on the initial position of the particle. For the con-
sidered starting point, a discretization n = 80 has
a bigger impact on NMSE than for n = 90, in-
dicating that lobe switchings (so possibly wrong
predictions) are more likely to appear at the be-
ginning of a new sequence to predict for n = 80
and in the middle of the sequence for n = 90. In
next sections, a history window m = 100 is chosen

to capture at least a lobe switching or not.

3.2. Testing the dynamical model

Nine dynamical models are established with
m = 100 and n ∈ [10, 90]. In each case, learning
is stopped when the mean square error no longer
evolves for 3 epochs in a row. All learning curves
show converged and close training and testing er-
rors. The use of dropout layers or regularization
techniques is not necessary since no overfitting is
noted. The NMSE is less than 1% for Test 1 but
always exceeds 100% for Test 2 (see step 5 in sec-
tion 2.3 for the definition of tests). It means that
the dynamical model has great performance when
fed with an exact input sequence but fails to con-
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tinuously predict the state of the system. The
figure 8 shows predictions of x feature for both
tests with a forecast horizon of 50-time steps. It is
worth noting that despite the global score for test
2, the predicted dynamics resembles the expected
one with a good prediction of the attractor.

3.3. Testing the data assimilation network

Concerning the shallow encoder (to map a state
to its measurement), training is extremely fast
and accurate with a determination coefficient close
to 1. It means that the nonlinear regression per-
formed by the neural network recovers nearly all
the variance observed in training and testing data.
This is not a surprise since the relationship is sim-
ple (derivation for the acceleration or selecting
features for velocity). Concerning the data as-
similation network, quantitative results of test 3
are shown in figure 9. Qualitative results for x
and vx predictions using acceleration are showed
in figure 10. Several comments can be made:

1. Qualitatively, most of bad predictions are
followed by good predictions: wrong pre-
dictions are correctly reconstructed by the
DAN given online measurements.

2. Using the complete velocity leads to slightly
better results than using the complete accel-
eration which seems reasonable because giv-
ing the velocity means giving three features
out of six in the sequence to reconstruct.

3. Using only vx leads to bad reconstruction
results for small sequences. To understand
this behavior, the mean linear correlation
coefficient between sequences of vx and se-
quences of the state has been studied. It
appears that small sequences of vx are lin-
early correlated to all features in the state
(r close to 1), which is no longer the case for
medium and large sequences where nonlin-
earities arise (r between 0.6 and 0.7). There-
fore, the data assimilation network has a too
complex architecture for updating small se-
quences: lots of neurons are troublemakers
during learning because the state can en-
tirely be recovered by a linear regression on
online vx.

4. Bad reconstruction results are obtained for
n = 80 which is directly linked to the dis-
cretization process and the dependance of
the initial state to generate training data.

We now suppose that the initial sequence is
noisy (gaussian noise with σ0 = 0.3) just like on-
line measurements (gaussian noise with σy = 0.2).
The objective is to compare the proposed strat-
egy with a simple Kalman filter update. Tests are
restricted:

1. The simplest Kalman filtering technique re-
quires the mapping between the state and
its measurement to be linear (i.e. the H op-
erator is simply a matrix). Tests will then
concern vx or complete velocity as online
measurements.

2. The seed for generating random numbers is
the same for DAN and Kalman filter tests.
This helps reducing testing time by not con-
sidering ensemble techniques.

3. A Kalman filter requires the covariance of
the prediction error to be advanced in time.
This normally uses the jacobian of the dy-
namical model but in this work, the dy-
namical model is a neural network mapping
sequences to sequences. The nonlinearity
makes it hard to compute the gradient of the
output with respect to the input and the
mapping between sequences makes it diffi-
cult to use standard Kalman filtering meth-
ods working with t→ t+ dt models. To ad-
dress these problems, the covariance of the
prediction error is supposed to be known at
each new prediction and the predicted se-
quences are updated as a whole instead of
treating each time step in the sequence in-
dividually. Note that some strategies to ad-
dress the mapping between sequences exist
([26], [24]) but they are out of the scope of
this paper.

Quantitative results are shown in figure 11.
We can observe that the DAN performs better for
medium and large sequences but has poor perfor-
mance on small sequences compared to the Kalman
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(a) Predictions of x feature when performing test 1.
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Figure 8: Test of the dynamical model for n = 50. Dots indicate the start of a new prediction, using m past exact states
(test 1) or m past predicted states (test 2) as input.

filter. This result was expected: for small se-
quences, the DAN gives high weights to online
measurements so that if noise is applied to small
sequences, the input to the DAN does not have
the regularity detected and learned by the neu-
ral network, resulting in bad behavior. This ef-
fect is not noticeable for large sequences because
a pattern can still be detected in the noisy se-
quence. It is also worth noting that the noise in

the initial sequence has no influence when using
small sequences since no weights are attributed
to predicted sequences in the DAN architecture.
When considering the complete velocity, results
obtained from the DAN are slightly better than
those obtained by Kalman filter (which requires
the error to be known while the DAN does not).
The influence of noise on small sequences is not as
important as when using vx alone since the cor-
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Figure 9: Results from test 3 using the complete acceler-
ation, the complete velocity or vx alone to update predic-
tions.

rection does not rely on a single neuron.

4. Conclusion

In this paper, we investigated the use of neu-
ral networks to predict multi-steps the state of
the Lorenz system. The first stage consisted in
establishing a dynamical model mapping previ-
ous states to future states. A recurrent neural
network handling long and short-term dependen-
cies was used for this purpose. Supposing the
input sequence was exact, the output proved to
be accurate with less than 1% of errors. How-
ever, when running the dynamical model with
predicted states as new inputs, errors accumu-
lated at each new prediction, leading to a good
prediction of the dynamics but not of the time-
series: the system being chaotic with extreme events,
a small error in the initial condition leads to a rad-
ically different output. To overcome this accumu-
lation of errors and make a continuous forecast of
the Lorenz system, a data assimilation strategy
based on sequential techniques was developed. It
consisted in establishing a network mapping in a
nonlinear manner a predicted sequence of states
with a real sequence of online measurements. This
strategy proved to be efficient when starting with

the exact initial sequence and feeding the system
with exact online measurements, notably when
using the complete acceleration or the complete
velocity. A deeper analysis of the DAN structure
showed that this strategy was less relevant when
using a single measurement or when working with
small forecast windows. Besides, the DAN proved
to be sensible (at least for small forecast windows)
to noise in measurements but not to noise in the
initial condition. The DAN remains a good alter-
native to a simple Kalman filter where the esti-
mation of errors may be a difficult task, especially
when updating sequences. It nonetheless must be
noted that the success of the DAN is mainly due
to the quality of training data and extra-care must
be taken when learning regression parameters. All
in all, the global strategy developed here seems
promising to continuously forecast other chaotic
systems and future works could include the tuning
of hyperparameters (to have an optimal design for
each neural networks; a genetic algorithm would
be suitable for this task) and the application on
a high dimensional attractor where, similarly to
Lorenz system, extreme events could be encoun-
tered.
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Appendix A. LSTM cell

Long-Short Term Memory cells are recurrent
units deploying a cell state and gating mecha-
nisms. Equations of forget (ft), input (it), output
(ot) and activation (at) gates are as follows:


ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

at = tanh(Waxt + Uaht−1 + ba)
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Where W are weights associated to the input
xt, U are weights associated to the hidden input
ht−1 and b are biases. Outputs are the cell state
ct and the hidden state ht, computed according
to: {

ct = ct−1 � ft + at � it
ht = ot � tanh(ct)

Where � is the pointwise product. Given a
new information [xt, ht−1], the long-term memory
ct forgets information (via ft � ct−1) and stores a
part of new information (via at � it). The short-
term memory ht depends on the long-term mem-
ory (via tanh(ct)) and the activation of the cell
(via ot) given new information.
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