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Abstract

Despite the recent development of methods dealing with partially observed epidemics (unob-
served model coordinates, discrete and noisy outbreak data), some limitations remain in practice,
mainly related to the amount of augmented data and the adjustment of numerous tuning param-
eters. In particular, coordinates of dynamic epidemic models being coupled, the presence of
unobserved ones leads to a statistically difficult problem. Our aim is to propose a generic infer-
ence method easily practicable and able to tackle these issues. Using the properties of epidemics
in large populations, we first build a two-layer model. Through a diffusion based approach, we
obtain a Gaussian approximation of the epidemic density-dependent Markovian jump process,
which represents the state model. The observational model consists in noisy observations of the
observed coordinates and is approximated by Gaussian distributions. Then, we develop an in-
ference method based on an approximate likelihood using Kalman filter recursions to estimate
parameters of both state and observational models. Performances of estimators of key model
parameters are assessed on simulated data of SIR epidemic dynamics for different scenarios with
respect to the population size and the number of observations, and compared with those obtained
by the currently largely used method of maximum iterated filtering (MIF). Finally, we apply our
method on a real data set of influenza outbreak in a North England boarding school in 1978.

Keywords: Approximated maximum likelihood; Diffusion approach; Kalman filter;
Measurement errors; Partially observed Markov process; Epidemic dynamics.

1. Introduction

The interest and impact of mathematical modeling and inference methods for infectious dis-
eases have considerably grown in recent years in the context of increasing complexity of models
and of abundant data with varying quality. Estimating the parameters governing epidemic dy-
namics from available data has become a major challenge, in particular from the perspective of
subsequently providing reliable predictions of these dynamics. Many authors have addressed the
problem of key epidemic parameters estimation based on likelihood approaches (e.g. Cauchemez
and Ferguson (2008)). While estimation is quite straighforward for complete observations, this is
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no longer true for incomplete observations set-up that occurs in practice, regardless of the mathe-
matical formalism. Indeed, the available data are most often partially observed (e.g. some health
statuses, such as asymptomatic infected stages, cannot be observed at all; infectious and recovery
dates are not observed for all individuals during the outbreak, not all the infectious individuals
are reported) and also temporally and/or spatially aggregated. Various approaches were devel-
oped to deal with such patterns of data (e.g. see O’Neill (2010), Britton and Giardina (2016) for
reviews). In the general framework of the partially observed Markov processes, some of these
methods have been implemented in the R package POMP (King et al. (2017)). Among these
methods, we can mention the maximum iterated filtering (MIF: Ionides et al. (2006), Ionides
et al. (2015)), for which the parameter space is explored by considering that parameters follow
a random walk in time, with variance decreasing over the filtering iterations and the likelihood
is stochastically estimated. Theoretical justification for convergence to the maximum likelihood
estimates in the parameter space was provided for this method. (Ionides et al. (2011)). Besides,
likelihood-free methods, such as the Approximate Bayesian Computation based on sequential
Monte Carlo (ABC-SMC, Sisson et al. (2007), Toni et al. (2009)) or the Particle Markov chain
Monte Carlo (PMCMC, Andrieu et al. (2010)), opened some of the most promising pathways for
improvement. Nevertheless, these algorithms do not provide a definitive solution to the statistical
inference from incomplete epidemic data. Indeed, there are some limitations in practice due to
the amount of augmented data and to the adjustment of the numerous tuning parameters. That
can lead to substantial computational effort.
In this paper, we propose a different approach to deal with the presence of missing coordinates,
discrete observations, reporting and measurement errors.
Using the large population framework, we first build an approximation of the epidemic dynam-
ics represented by Markovian jump processes by an autoregressive Gaussian process through a
diffusion approach (see e.g. Ethier and Kurtz (2005), Guy et al. (2015)). Then we account si-
multaneously for the lack of one coordinate and for the systematic noise present in observations
by applying a projection operator to the process and by adding heteroscedastic Gaussian errors.
This yields an approximate likelihood which contains the unobserved coordinate. We propose
a method based on Kalman filtering in order to compute the approximated log-likelihood of the
available observations and, consequently, to estimate model parameters. An first innovative as-
pect with respect to other inference methods are the use of Kalman filter to recursively compute
the approximate likelihood in the non standard case of small noise framework rather than the
classical recurrent case coupled with large observation time-window. Also, the explicit integra-
tion in the algorithm of the data sampling interval and an alternative view point in the prediction
of the successive model states given the observations, involving a small parameter as the inverse
of the square root of the population size (instead of the number of observations going to ∞), are
two additional innovative points.
The derivation and accuracy assessment of Gaussian process approximations for stochastic epi-
demic models were already described in Buckingham-Jeffery et al. (2018) along with maximum
likelihood inference for parameters underlying epidemic dynamics. However, this study does
not rely on Kalman filtering nor considers noise in outbreak data. The computation of the ap-
proximate likelihood of the associated statistical model and parameter estimation, performed via
Kalman filter recursions, was proposed in Favetto and Samson (2010), but for simpler models
without nonlinear terms in the drift and with no parameter to estimate in the diffusion term.
For sake of simplicity, we consider here an epidemic with homogeneous mixing in a closed pop-
ulation, whose dynamics is described by a compartmental model, each compartment containing
individuals with indentical health states. We focus on the simple SIR (susceptible - infectious -
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recovered) epidemic model, described by a two-dimensional jump process, partially observed at
regularly spaced discrete times with measurement errors. The approach can be easily extended
to broader epidemic models observed with various sampling intervals.
The paper is organized as follows. In section 2 we introduce the general framework and the
related inference issues, and propose the model approximation. Section 3 contains the main
methodological improvements of our paper: the construction of the approximate log-likelihood,
its computation based on Kalman filter recursions and the associated parameter estimation. In
sections 4 and 5, we assess the performances of our estimators, respectively on simulated data
and on the real data of the influenza in a Britain boarding school in 1978, and compare our
results with those obtained with the MIF method. Section 6 contains a discussion and concluding
remarks.

2. Gaussian model approximations for large population epidemics

2.1. Preliminary comments on inference in epidemic models

Epidemic dynamics can be naturally described through compartmental models which are by
essence mechanistic and include parameters in their description. In such models, the population
is partitioned in compartments corresponding to different stages of the infection process whose
temporal evolution is described. As an illustrative example all along the article, we will use the
simple SIR epidemic model. At any time, each individual is either susceptible (S), infectious (I)
or recovered (R). In this model, there are two mechanistic parameters of interest that govern the
transitions of individuals between the states S, I and R: the transmission rate of the pathogen λ
and the recovery rate γ. More precisely, individuals can move from state S to state I according to
λ or move from state I to state R according to γ (Figure 1).

Figure 1: SIR compartmental model with three blocks corresponding respectively to susceptible (S), infectious (I) and
recovered (R) individuals. Transitions of individuals from state S to state I are governed by the transmission rate λ and
transitions of individuals from state I to state R are governed by the recovery rate γ of the epidemics.

One of the main objectives of epidemic studies is to estimate the related mechanistic parameters
from the available data. One of the most natural probabilistic representations of compartmental
epidemic models is the continuous-time Markov jump process (see Section 2.2). Inference for
Markov jump processes is straightforward when the sample paths are completely observed. In the
context of epidemics, this is equivalent with the observation of all infection and recovery times
for all the individuals in the population. This rarely occurs in practice because very often, one or
more coordinates (i.e. S (t), I(t)) are not observed and because the available observations are only
collected at discrete time points tk with 0 = t0 < t1 < t2 < · · · < tn = T on a finite time interval
[0,T ]. More specifically, the data often consist in the counting of the newly infected individuals
NI(tk) on successive time intervals [tk−1, tk]. Alternatively, the successive numbers of infectious
individuals I(tk) are sometimes available, especially for low population sizes. Moreover, it is
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common that the available data are affected by several sources of noise, such as under-reporting
of infection events or, when reported, imperfect diagnostic tests. In a nutshell, the nature of
the data makes it difficult to infer key epidemic parameters: (i) the observations are available at
discrete time points, (ii) not all the coordinates of the dynamical model are observed and (iii)
systematic reporting and measurement errors have to be taken into account. Our objective is
to propose a convenient latent variable model formulation allowing for the estimation of key
epidemic parameters from imperfect observations of outbreaks.

2.2. Approximation of large population epidemic models and an autoregressive view
Consider an epidemic in a closed population with homogeneous mixing modeled by a d-

dimensional Markov jump process Z(t) where d is the number of compartments corresponding
to the successive health status within the population. If N is the population size, the state space
of (Z(t), t ≥ 0) is E = {0, . . . ,N}d. LetW = (Wi, j, 0 ≤ i, j ≤ N) denote its generator. For j , i,
let ` = j − i be the jumps of Z(t), E− = {−N, . . . ,N}d the set of jumps, and define the jump
functions α`(.) as

α`(i) = Wi,i+` for i, i + ` ∈ E, ` , (0, . . . , 0)t, (1)

where for any vector V or any matrix M, V t and Mt are the notations for the associated transpose
vector or matrix.
Assume that the process (Z(t)) is density-dependent i.e.,

H1 : ∀` ∈ E−, ∀x ∈ [0, 1]d,
1
N
α`([Nx]) →

N→+∞
β`(x),

H2 : ∀` ∈ E−, β` ∈ C2([0, 1]d).

Let (ZN(t))t≥0 be the normalized density-dependent Markov jump process,

ZN(t) =
Z(t)

N
∈ [0, 1]d. (2)

Define, for x ∈ [0, 1]d, the function b(.) and the d × d symmetric non negative matrix Σ(.):

b(x) =
∑
`∈E−

` β`(x) ; Σ(x) =
∑
`∈E−

β`(x) ` `t. (3)

We have the following Lemma.

Lemma 1. Assume that (Z(t)) satisfies (H1), (H2) and ZN(0) → x0 , (0, · · · , 0)t as N →
+∞. Then, (ZN(t)) converges uniformly on [0,T ] to the solution x(t) of the ordinary differential
equation

dx
dt

= b(x(t)); x(0) = x0. (4)

In Guy et al. (2015), by extending results of Ethier and Kurtz (2005), another approximation
of the epidemic model is proposed leading to a diffusion process (ZN(t))t≥0 with small diffusion
matrix 1

√
N

Σ(x) where Σ is the matrix defined in (3),dZN(t) = b(ZN(t)) + 1
√

N
σ(ZN(t)) dB(t),

ZN(0) = x0,
(5)
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where (B(t))t≥0 is a d- dimensional Brownian motion and σ a d × d matrix such that

σ(x)σt(x) = Σ(x). (6)

For stochastic differential equations with small noise, an approximation of ZN(t) is obtained,
using (3)-(6), based on the theory of perturbations of dynamical systems (see e.g. Azencott
(1982), Freidlin and Wentzell (1978)):

ZN(t) = x(t) + 1
√

N
g(t) + 1

√
N

RN(t),

dg(t) = ∇xb(x(t)) g(t) dt + σ(x(t)) dB(t) ; g(0) = 0,
with supt‖RN(t)‖ → 0 in probability as N → +∞,

(7)

where ∇xb(x) denotes the matrix ( ∂bi
∂x j

(x))1≤i, j≤d. The stochastic differential equation for g(.) de-
fined in (7) can be solved explicitly, and its solution is the time inhomogeneous Gaussian process

g(t) =

∫ t

0
Φ(t, s)σ(x(s)) dB(s), (8)

where Φ(t, s) satisfies
∂Φ

∂t
(t, s) = ∇xb(x(t))Φ(t, s),Φ(s, s) = Id. Hence, Φ(t, s) is the d × d matrix

Φ(t, s) = exp
(∫ t

s
∇xb(x(u)) du

)
. (9)

Using (4) and (8), let us define the Gaussian process GN(t) ,

GN(t) = x(t) +
1
√

N
g(t). (10)

According to Britton and Pardoux (2019), the following holds.

Proposition 1. The L1-Wasserstein distances on [0,T ] between the three processes (ZN(.)),
(ZN(.)) and (GN(.)) defined in (2),(5),(10) satisfy, as N → +∞,

√
N ‖ZN − ZN‖T → 0,

√
N ‖ZN −GN‖T → 0 and

√
N ‖ZN −GN‖ → 0. (11)

From a statistical point of view, this proposition has important consequences: using that these
distances are oP(N−1/2), we can base our inference method from the observations of the original
normalized jump process (ZN) as if they followed the diffusion process (ZN) or the Gaussian
process (GN).
From now on, we will use the approximation of (ZN) by the Gaussian process (GN). Les us con-
sider now a parametric model for the epidemic dynamics. This yields a parametric continuous-
time approximate model for the epidemic dynamics, with parameter η containing the parameters
entering in the transition rates of the jump process, and therefore in the functions β`(x) defined in
H1, and the initial point x0 of the ordinary differential equation (ODE) defined in Lemma 1. As
mentioned in Section 2.1, the process is however observed at discrete times tk, where (tk) is an
increasing sequence on [0,T ] with t0 = 0 < t1, · · · , < tn = T . We therefore deduce from above a
discrete-time representation of the epidemic evolution.
Denote by Ft = σ(B(s), s ≤ t). Then the following holds.
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Proposition 2. There exists a sequence of independent Gaussian random variables (Uk) such
that

(i) For all k , Uk is Ftk - measurable and Uk independent of Ftk−1

(ii) The process GN defined in (10) is an AR(1) process and satisfies, using (4), (9), GN(0) = x0
and for k ≥ 1,

GN(tk) = Fk(η) + Ak−1(η) GN(tk−1) + Uk, (12)

where

Ak−1(η) = A(η, tk−1) = Φ(η, tk, tk−1),
Fk(η) = F(η, tk) = x(η, tk) − Φ(η, tk, tk−1)x(η, tk−1),

and (Uk) are independent random variables such that

Uk ∼ Nd(0,Tk(η))

with

Tk(η) =
1
N

∫ tk

tk−1

Φ(η, tk, s)Σ(η, x(η, s)) Φt(η, tk, s)ds. (13)

The proof of Proposition 2 is relegated in Appendix. Using now that supt ||ZN(t) − GN(t)|| =
1
√

N
oP(1), Proposition 1 becomes, setting Xk := X(tk) = ZN(tk), X0 = x0 and for k ≥ 1,

Xk = Fk(η) + Ak−1(η)Xk−1 + Uk. (14)

2.3. Approximation of the observation model

Assume now that there are noisy observations O(tk) of the original jump process Z(t) (with
state space E = {0, . . . ,N}d at discrete times tk). As mentioned in section 2.1, it often occurs in
practice that not all epidemiological health states are observed. We account for this by introduc-
ing a projection operator B : Rd → Rq with q ≤ d, where BX(.) contains only the coordinates
that can be observed. Therefore B is a d× q matrix whose elements are 0 and 1. For k = 0, . . . , n,
define

C(tk) = (C1(tk), . . . ,Cq(tk))t = BZ(tk) ∈ {0, . . . ,N}q. (15)

In a first approach, assume that each component of C is observed with independent reporting
rate pi and measurement errors. Thus, we propose a rather general model for the observations
conditionally onZ(t), for 1 ≤ i ≤ q:

Oi(tk) = Oi,1(tk) + Oi,2(tk), with Oi,1(tk) ∼ B(Ci(tk), pi), Oi,2(tk) ∼ N
(
0, τ2

i Ci(tk)
)
. (16)

This yields a new parameter of larger dimension, including parameters of both epidemic and
observation processes:

θ = (η, (p1, . . . , pq), (τ2
1, . . . , τ

2
q)).

Consider now the normalized processZN(t). Then we can define CN(t) = BZN(t) and associated
normalized observations ON(tk) = 1

N O(tk). A Gaussian approximation of the observation process
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has its first and second moments that satisfy

E(ON,i(tk)|Z(tk)) = piCN,i(tk),

Var(ON,i(tk)|Z(tk)) =
1
N

(pi(1 − pi) + τ2
i )CN,i(tk).

Using now (7) and Proposition 1, we get that

CN(t) = BZN(t) = Bx(η, t) +
1
√

N
Bg(η, t) +

1
√

N
oP(1).

The Gaussian process g(η, t) is uniformly bounded in probability on [0,T ] so that

Var(ON,i(tk)|Z(tk)) =
1
N

(pi(1 − pi) + τ2
i )(Bx(η, tk))i + OP(N−3/2).

Let us define the two q- dimensional matrices

P(θ) = diag(pi)1≤i≤q, Qk(θ) =
1
N

diag
(
(pi(1 − pi) + τ2

i )(Bx(η, tk))i

)
, (17)

and the q × d matrix
B(θ) = P(θ)B. (18)

The Gaussian approximations (Yk) of the observations ON(tk) satisfy that, conditionally onZ(tk),

Yk = B(θ)Xk + Vk with Vk ∼ Nq(0,Qk(θ)), (19)

where (Vk) are independent random variables such that, for all k, Vk are independent ofZN(tk).

2.4. Application to the SIR epidemic model

Let us now illustrate the model approximations derived in sections 2.2 and 2.3 on the simple
SIR model introduced in section 2.1.

Markov jump process. For SIR epidemics, the corresponding continuous-time Markov jump
process is given by

Z(t) = (S (t), I(t)), t ≥ 0, (20)

where S (t) and I(t) respectively denote the numbers of susceptible and infectious individuals at
time t, with state space E = {0, . . . ,N}2. Given that R(t) = N−S (t)− I(t) for all time t, parameters
introduced in 2.1 and the process genarator defined in (1), the transitions rates are defined as:W(S ,I),(S−1,I+1) = λ S I

N

W(S ,I),(S ,I−1) = γI.
(21)

The normalized jump process is ZN(t) = (S N(t), IN(t))t, t ≥ 0, where S N(t) = S (t)/N and
IN(t) = I(t)/N for any t. The parameters ruling the dynamics of the system are

η = (λ, γ, x0) = (λ, γ, s0, i0), (22)

which include the starting points s0 = S (0)/N and i0 = I(0)/N.
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Dynamical state model. Let us define the key quantities to derive the appropriate Gaussian pro-
cess (GN(t)) as defined in (10), including the dependence on η:

GN(t) = x(η, t) +
1
√

N
g(η, t). (23)

The first important element is x(η, t) = (s(η, t), i(η, t))t, solution of the following ordinary differ-
ential equation 

ds
dt (η, s, i) = −λsi,
di
dt (η, s, i) = λsi − γi,
x0 = (s0, i0).

(24)

Then, to get g(η, ·), we need to derive the functions b(η, ·) and Σ(η, ·) from (3)

b(η, s, i) =

(
−λsi

λsi − γi

)
; Σ(η, s, i) =

(
λsi −λsi
−λsi λsi + γi

)
, (25)

and the Cholesky decomposition of Σ(η, .):

σ(η, s, i) =

( √
λsi 0

−
√
λsi

√
γi

)
. (26)

From (25), we deduce the gradient of b

∇xb(η, s, i) =

(
−λi −λs
λi λs − γ

)
, (27)

and the resolvent matrix (9)

Φ(η, t, s) = exp
(∫ t

s
∇xb(η, x(η, u))du

)
. (28)

Finally, we get

g(η, t) =

∫ t

0
Φ(η, t, u)σ(η, x(η, u))dB(u),

where (B(u))u≥0 is a bi-dimensionnal Brownian motion.

Discrete-time system. For simplicity, we assume a regular sampling: tk = k∆, k = 0, . . . , n,
T = n∆. The dependence with respect to ∆ is explicitly shown in the equations. The approximate
autoregressive model writes, setting Xk = ZN(tk) = (S N(k∆), IN(k∆))t:

Xk = Fk(η,∆) + Ak−1(η,∆)Xk−1 + Uk, where
Fk(η,∆) = x(η, tk) − Φ(η, tk, tk−1)x(η, tk−1), Ak−1(η,∆) = Φ(η, tk, tk−1),
Uk ∼ N2(0,Tk(η,∆)) with Tk(η,∆) = 1

N

∫ tk
tk−1

Φ(η, tk, s)Σ(η, x(η, s))Φt(η, tk, s)ds.
(29)
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Observation model. Consider for example that only the infected individuals are observed with
reporting and measurement errors. This corresponds to consider in (16):

O1(tk) = B(I(tk), p), O2(tk) = N(0, τ2I(tk)), (30)

hence, the full parameter vector is θ = (λ, γ, s0, i0, p, τ2). To derive (19) from this example, we
define the operator B(θ) = pB, where B : (x1, x2)t → x2 is the projection operator on the infected
compartment, and Qk(θ) = 1

N (p(1 − p) + τ2)i(η, tk).
By joining (29) with the Gaussian approximate observation model defined above, we get the
following discrete-time state-space modelXk = Fk(η,∆) + Ak−1(η,∆)Xk−1 + Uk, with Uk ∼ N2

(
0, 1

N Tk(η,∆)
)

Yk = p
(
0 1

)
Xk + Vk, with Vk ∼ N

(
0, 1

N (p(1 − p) + τ2)i(η, tk)
)
.

(31)

3. Parameter estimation by Kalman filtering techniques

3.1. Approximate likelihood inference

Recall that the parameters of interest in the generic case are denoted by θ = (η, (p1, . . . , pq), (τ2
1, . . . , τ

2
q)),

where η contains the parameters ruling the dynamics and x0, whereas (p1, . . . , pq), (τ2
1, . . . , τ

2
q)

derive from the reporting and measurements errors in the observations. Our aim is to estimate
the unknown parameters θ from observations yn:0 = (y0, . . . , yn) obtained at some discrete time
points t0 < t1 < . . . < tn. Joining (14) and (19), we get the following discrete-time Gaussian
state-space setting that is more convenient for inference:Xk = Fk(η) + Ak−1(η)Xk−1 + Uk

Yk = B(θ)Xk + Vk,
(32)

where all quantities are explicitly defined in Sections 2.2 and 2.3. Using (32), we propose to
estimate θ by maximizing the associated likelihood L(·; Y0, . . . ,Yn):

θ̂ = argmax
θ

L(θ; Y0, . . . ,Yn). (33)

The log-likelihood of the observations y0, . . . , yn writes as

L(θ; y0, . . . , yn) = log f (θ, y0) +

n∑
k=1

log fk(θ; yk |yk−1:0). (34)

Computing L(θ; y0, . . . , yn) requires the computation of the two first moments of the Gaussian
conditional distributions corresponding to each term log fk(θ; . . .). It relies on the computation
of the predictive distributions νk|k−1:0(θ; dx) = L(Xk |yk−1:0), k ≥ 1, from which we derive the
conditional densities

fk(θ; yk |yk−1:0) =

∫
f (yk |x)νk|k−1:0(θ; dx). (35)

Usually, these conditional distributions are obtained by means of filtering methods, based on the
iterative computations of the conditional distributions:
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• The predictive distribution: L(Xk |yk−1, · · · , y0) = νk|k−1:0(dx), k ≥ 1, with the convention
ν0,0(dx) = L(X0)

• The updating distribution: L(Xk |yk, · · · , y0) = νk|k:0(dx), k ≥ 0

• The marginal distribution: L(Yk |yk−1, · · · , y0) = µk|k−1:0, k ≥ 1, with the convention
µ0|0:0(dx) = L(Y0).

In the special case of Gaussian state space model and Gaussian noise, all these distributions
are Gaussian and therefore characterized by their mean and covariance matrix. Using notations
specific to Kalman filtering, let us set

L(Xk |yk−1, · · · , y0) = νk|k−1:0(dx) = Nd(X̂k, Ξ̂k) (predictive distribution)
L(Xk |yk, · · · , y0) = νk|k:0(dx) = Nd(X̄k, T̄k) (updating distribution)
L(Yk |yk−1, · · · , y0) = µk|k−1:0 = Nq(M̂k, Ω̂k) (marginal distribution).

The Gaussian approximations defined in (14), (19) and (32) enable relying on some specific
properties of Gaussian distributions that we recall below.

3.1.1. Preliminary results in the general framework of Kalman filtering
Let (Xi, i ≥ 0) be a non centered d-dimensional Gaussian AR(1) process and assume that only

q coordinates of (Xi) are observed with Gaussian noise. The computations of the conditional
distributions rely on a Kalman filter approach, which derives from the preliminary lemma.

Lemma 2. Assume that X is a random variable with distributionNd(ξ,T ) and that, conditionally
on X, Y has distribution Nq(BX,Q). Then, L(X|Y) is Gaussian Nd(ξ̄(y), T̄ ) with

ξ̄(y) = ξ + T Bt(BT Bt + Q)−1(y − Bξ); T̄ = T − T Bt(BT Bt + Q)−1BT. (36)

Remark 1. Let us stress that Lemma 2 holds even if Q is singular. In particular, the formula
holds true when Q = 0 and B is a projection operator, i.e. the observations are Yk = BXk,
provided that T is non singular.

Let us go back to our general setting (Xk,Yk) defined in (31).

Proposition 3. Assume that (Xk,Yk) are defined in (31). Then, νk|k−1:0(dx), νk|k:0(dx) and µk|k−1:0)(dy)
satisfy, with the initialization X̂0 = ξ0, Ξ̂0 = T0, for k ≥ 0,

(i) Prediction : νk|k−1:0(dx) ∼ Nd(X̂k, Ξ̂k) with
X̂k = Fk + Ak−1X̄k−1 , Ξ̂k = Ak−1T̄k−1At

k−1 + Tk.

(ii) Updating : νk|k:0(dx) ∼ Nd(X̄k, T̄k) with
X̄k = X̂k + Ξ̂kBt(BΞ̂kBt + Qk)−1(Yk − BX̂k), T̄k = Ξ̂k − Ξ̂kBt(BΞ̂kBt + Qk)−1BΞ̂k.

(iii) Marginal distribution : µk+1|k:0(dy) ∼ Nq(M̂k+1, Ω̂k+1) with
M̂k+1 = BX̂k+1; Ω̂k+1 = BΞ̂k+1Bt + Qk+1.

Using some notations from Kalman filtering, we recover a modified version of the Kalman algo-
rithm. Assume that X0 ∼ Nd(ξ0,T0) and that, for all k ≥ 0, the matrices Γk defined below are non

10



singular. Then, setting X̂0 = ξ0, Ξ̂0 = T0, we have

εk−1 = Yk−1 − BX̂k−1 (innovation)
Γk−1 = BΞ̂k−1Bt + Qk−1 (innovation covariance)
Hk−1 = Ak−1Ξ̂k−1BtΓ−1

k−1 (Kalman Gain)
X̂k = Fk + Ak−1X̂k−1 + Hk−1εk−1 (predicted mean state estimation)
Ξ̂k = (Ak−1 − Hk−1B)Ξ̂k−1At

k−1 + Tk (predicted error covariance)

.

Therefore, the marginal distributions appearing in the computation of the log-likelihood (34) are
µk+1|k:0(dy) ∼ Nq(M̂k+1, Ω̂k+1) with

M̂k+1 = BX̂k+1; Ω̂k+1 = BΞ̂k+1Bt + Qk+1. (37)

3.1.2. Recursive computation of the approximate log-likelihood
An important consequence of the previous section is that we can compute (34) based on the
recursive computations of the two first moments of the Gaussian distributions corresponding to
each term of the log-likelihood. By explicitly accounting for the dependence on θ of moments
given in (37), we obtain:

L(θ; y0, . . . , yn) = C + log f (θ; y0) −
1
2

n∑
k=1

[
log

(
|Ω̂k(θ)|

)
+ (yi − M̂k(θ))t

(
Ω̂k(θ)

)−1
(yi − M̂k(θ))

]
,

with C a constant (independent of the parameters) and |A| denoting the determinant of the matrix
A.
Note that the sampling interval ∆ plays an important role in the various key quantities involved
in the Kalman recursions. See Appendix A for details.

3.2. Application to the SIR epidemic model

Let us take again the example of SIR epidemics, when only the infected individuals are
observed with reporting and measurement errors, considered in Section 2.4.
By assuming an initial distribution X0 ∼ N2(ξ0,T0), setting X̂0 = ξ0, Ξ̂0 = T0 and applying the
algorithm given in Proposition 3, we have, for k = 0, . . . , n − 1:

εk−1(θ) = Yk−1 − pÎk−1(θ), (scalar)
Γk−1(θ) = p2(Ξ̂k−1(θ))22 + 1

N (p(1 − p) + τ2)i(η, tk−1), (scalar)

Hk−1(θ) = pAk−1(η)Ξ̂k−1(θ)
(
0
1

)
Γ−1

k−1(θ), (vector)

X̂k(θ) = Fk(η) + Ak−1(η)X̂k−1(θ) + Hk−1(θ)εk−1(θ), (vector)
Ξ̂k(θ) =

(
Ak−1(η) − pHk−1(θ)

(
0 1

))
Ξ̂k−1(θ)Ak−1(η)t + Tk(η) (2 × 2 matrix).

This yields the marginal distributions:

M̂k+1(θ) = pÎk+1(θ); Ω̂k+1(θ) = p2
(
Ξ̂k+1(θ)

)
22

+
1
N

(p(1 − p) + τ2)i(η, tk+1)),
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used to compute the likelihood

L(θ, y1, . . . , yn) ' −
1
2

n∑
k=1

log Ω̂k(θ) −
1
2

n∑
k=1

(yk − M̂k(θ))2

Ω̂k(θ)
.

4. Simulation study

We assessed the performances of our method on simulated SIR epidemics of which only the
infectious compartment is observed at discrete time points (see Section 2.4 where the model is
fully described).

4.1. Simulation settings

Data simulation. We first simulated SIR dynamics according to the Markov jump process de-
fined by equations (20)-(21) using the Gillespie algorithm (Gillespie (1977)). Only trajectories
that did not exhibit early extinction were considered for inference. The theoretical proportion of
these trajectories is given by 1 − (γ/λ)I0 (Andersson and Britton (2000)), where I0 is the number
of infectious individuals at time 0. For the emergent trajectories, the observations were generated
by binomial draws from I(t) at n+1 discrete time points t0 < t1 < . . . < tn. In (30), this amounts to
considering τ = 0, simulated observations being finally obtained as O(tk) = O1(tk) ∼ B(I(tk), p).
Figure 2 illustrates epidemic trajectories corresponding to the different steps of data simulation.
On the left panel, the evolution of the number of infected individuals according to the stochastic
jump process is represented for 20 trajectories. The graph illustrates the variability between the
stochastic trajectories and the deterministic counterpart of the SIR model. On the right panel,
data points further used for inference are represented for one trajectory. The continuous line
represents the evolution of the true number of infected individuals and the points stand for the
observations (for two values of the observation probability p). This illustrates the loss of informa-
tion between the unobservable real dynamics and the partial discrete-time observations, available
for inference. The evolution of the number of susceptible individuals is not shown in Figure 2.
From the point of vue of inference, the S compartment is latent variable, the observations being
only made on the infected compartment.

Numerical scenarios. We used the following parameter values for the simulation of the epi-
demics: λ = 1, γ = 1/3, and initial starting points S (0)/N = s0 = 0.99, I(0)/N = i0 = 0.01,
R(0) = 0 (hence with s0 + i0 = 1). Observations were generated under two scenarios: i) high re-
porting rate p = 0.8 and ii) low reporting rate p = 0.3. Scenarios crossing three population sizes
(N ∈ {1000, 2000, 10000}) and three values for the number of observations (n) for each epidemic
trajectory were also investigated. For each value of N, conditionally on non extinction, 500 SIR
epidemic dynamics were simulated. Observations were generated at regularly spaced time points
tk = k∆ using, for a given scenario, the same value of ∆ for each of the 500 epidemics (obtained
by dividing the mean epidemic duration over 500 trajectories by a target number of observations,
n). As the epidemic duration is stochastic, we considered specific observation intervals [0,T ]
for each epidemic and set the value of T at the first time point when the number of infected in-
dividuals becomes zero. This generates slightly different numbers of observations per epidemic
trajectory. Three different target values for sample sizes were considered: n = 10, n = 30 and
n = 100.
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Figure 2: Left panel : ODE solution for I (black plain line) and 20 trajectories of the Markov jump process for I (purple
lines) when N = 2000. Right panel : n = 30 observations (blue points for p = 0.8 and red points for p = 0.3), obtained
from a particular trajectory of the jump process (in purple bold in the left panel), as a function of time.

4.2. Inference: settings, performance comparison and implementation

The unknown parameters to be estimated are θ = (λ, γ, p, i0). Here, we do not need to es-
timate s0 as s0 = 1 − i0. For each simulated dataset, θ is estimated with our Kalman based
estimation method (KM) and with the MIF (Maximum Iterated Filtering) algorithm (Ionides
et al. (2006), Ionides et al. (2011), Ionides et al. (2015)), which is widely used in practice for
statistical inference of epidemics. The simulation study was performed with the R software on
a processor Bi-pro Xeon E5-2680, with 2.8 Ghz, 96 Go RAM and 20 cores. MIF estimation is
performed with the mif2 function of the POMP-package (King et al. (2017)).

Let us make some remarks on the algorithms and their practical implementations.
Regardless of the method used for the estimation, the maximisation of the log-likelihood necessi-
tates considering several constraints: (i) strict positivity of λ, γ, i0, (ii) s0 + i0 = 1 (or s0 +i0 ≤ 1 in
the general case) and (iii) 0 < p ≤ 1. To facilitate the optimisation, a different parameterization
was implemented: λ = exp(µ1), γ = exp(µ2), p = (1 + exp(µ3))−1, i0 = (1 + exp(µ4))−1 where
µ1, µ2, µ3, µ4 ∈ R. With no constraint on the new set of parameters, the numerical optimization
was more stable in practice.
The approximated log-likelihood given by Kalman filtering techniques cannot be maximized
explicitly. We then use the Nelder-Mead method implemented in the optim function of the R
software, which requires to provide some initial values for the unknown parameters. According
to the amount of information available in the observations, the result of the optimization is more
or less sensitive to these initial points. The same problem can occur for the MIF algorithm.
The dependence on the initialization can be circumvented by trying different starting values
(10 in the present case) and choosing the maximum value for the log-likelihood among them.
The starting parameter values for the maximization algorithm were uniformly drawn from a
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hypercube encompassing the true values.
When n is small (for example n = 10), which means that the time intervals between observations
are large, we used the resolvent matrix defined in (A.1) in order to compute the approximated
log-likelihood with Kalman filtering techniques.
MIF, based on particle filtering, returns an estimate of the log-likelihood of the observations
by using re-sampling techniques. The parameter space is investigated by randomly perturbing
the parameters of interest at each iteration, the amplitude of the perturbation decreasing as the
iterations progress. The MIF algorithm has a complexity O(JM), where J and M are respectively
the number of particles and the number of iterations. Running MIF requires specifying several
tuning parameters. For the present study, the best results were obtained by using M = 100
iterations, J = 500 particles, standard deviations rw.sd equal to 0.2 for the random walk for
each parameter and a cooling of the perturbations of cooling.fraction.50=0.05 in the POMP-
package (we drew inspiration from Stocks (2017) for this choice of tuning parameters).

4.3. Point estimates and standard deviations for key model parameters θ

Tables 1 and 2 respectively display the results for the high reporting scenario (p = 0.8) and
the low reporting scenario (p = 0.3). Each table compares estimates obtained with KM and MIF.
For each parameter and each estimation method, the reported values are the mean of the 500
parameter estimates and their standard deviations (in brackets).
The results show that, irrespective to the reporting rate p, when the population size N and the
number of observations n per epidemic increase, the bias and the standard error of the estimates
obtained with the KM method decrease. For a given (N, n), the estimation bias is higher when
the reporting rate is low (p∗ = 0.3, where ∗ designates here the true value). This can be partly
related to the fact that the information contained in the data deteriorates as p∗ decreases. Both
methods provide estimates with comparable levels of accuracy.
Concerning implementation issues, from our experience, the tuning of the MIF algorithm (num-
ber of particles, number of iterations, etc.) can greatly affect the quality of the estimates. In
particular, it seems that there is an important interplay between the tuning parameters and the
initialization values of the model parameter to be inferred. In comparison, our method has only
one main practical calibration parameter. In the filtering step, it is necessary to initialize the co-
variance matrix (i.e. T0 in section 3.2) of the state variables conditionally to the observations but
it seems that this initialization does not have a noticeable influence on the estimates accuracy.
The computation times of both methods are sensitive to the number of observations n per epi-
demics: the computation time increases with n. Concerning the population size N, only the
computation time for MIF-based inference is increased when N increases, our method being in-
sensitive to it. As an example, for the scenario with N = 10000, n = 30 and p = 0.8, the average
computation time for a single estimation (i.e. a single trajectory) is 31 seconds with KM and 97
seconds with the MIF algorithm. When increasing n all things being equal (N = 10000, n = 100
and p = 0.8), the average computation times are 81 and 147 seconds for the KM and the MIF
algorithm respectively.
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Table 1: Estimation of θ = (λ, γ, p, i0, s0) under the constraint s0 + i0 = 1. Setting 1 with true parameter values
(λ∗, γ∗, p∗, i∗0)=(1, 1/3, 0.8, 0.01). For each combination of (N, n) and for each model parameter, point estimates and
standard deviation are calculated as the mean of the 500 individual estimates and their standard deviation (in brackets)
obtained by our Kalman-based method (KM) and Maximum Iterated Filtering (MIF). The reported values for the number
of observations n correspond to the average over the 500 trajectories, with the min and the max in brackets.

N = 1000 N = 2000 N = 10000

n = 11 n = 31 n = 101 n = 11 n = 31 n = 102 n = 10 n = 30 n = 100
(7, 18) (21, 51) (68, 168) (8, 19) (23, 55) (75, 179) (8, 15) (25, 44) (81, 143)

λ∗ = 1
KM 1.01 0.99 0.99 1.02 1.00 1.00 1.02 1.00 1.00

(0.09) (0.08) (0.07) (0.06) (0.06) (0.06) (0.03) (0.03) (0.03)
MIF 1.02 0.99 1.00 1.01 1.00 1.01 1.01 1.00 1.00

(0.07) (0.06) (0.06) (0.05) (0.05) (0.05) (0.02) (0.02) (0.02)
γ∗ = 1/3

KM 0.30 0.31 0.33 0.31 0.32 0.33 0.32 0.33 0.34
(0.03) (0.04) (0.03) (0.03) (0.04) (0.03) (0.02) (0.02) (0.02)

MIF 0.32 0.31 0.34 0.32 0.32 0.34 0.33 0.32 0.34
(0.04) (0.04) (0.02) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)

p∗ = 0.8
KM 0.70 0.73 0.79 0.73 0.75 0.79 0.77 0.78 0.82

(0.10) (0.11) (0.06) (0.08) (0.11) (0.07) (0.05) (0.06) (0.05)
MIF 0.75 0.74 0.80 0.77 0.74 0.80 0.78 0.74 0.81

(0.11) (0.09) (0.04) (0.09) (0.08) (0.05) (0.06) (0.04) (0.04)
i∗0 = 0.01

KM 0.011 0.016 0.012 0.010 0.013 0.011 0.010 0.010 0.010
(0.005) (0.008) (0.006) (0.003) (0.006) (0.005) (0.001) (0.002) (0.003)

MIF 0.011 0.012 0.011 0.011 0.012 0.011 0.010 0.011 0.010
(0.005) (0.004) (0.002) (0.003) (0.003) (0.002) (0.002) (0.001) (0.001)
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Table 2: Estimation of θ = (λ, γ, p, i0, s0) under the constraint s0 + i0 = 1. Setting 2 with true parameter values
(λ∗, γ∗, p∗, i∗0)=(1, 1/3, 0.3, 0.01). For each combination of (N, n) and for each model parameter, point estimates and
standard deviation are calculated as the mean of the 500 individual estimates and their standard deviation (in brackets)
obtained by KM and MIF. The reported values for the number of observations n correspond to the average over the 500
trajectories, with the min and the max in brackets.

N = 1000 N = 2000 N = 10000
n = 11 n = 31 n = 101 n = 11 n = 31 n = 102 n = 10 n = 30 n = 100
(7, 18) (21, 51) (68, 168) (8, 19) (23, 55) (75, 179) (8, 15) (25, 44) (81, 143)

λ∗ = 1
KM 1.01 1.04 1.00 1.00 1.02 1.01 0.99 1.02 1.00

(0.10) (0.08) (0.07) (0.07) (0.07) (0.07) (0.03) (0.03) (0.03)
MIF 1.02 1.07 1.01 0.99 1.03 1.02 0.98 1.01 1.00

(0.09) (0.07) (0.06) (0.06) (0.04) (0.05) (0.03) (0.02) (0.02)
γ∗ = 1/3

KM 0.26 0.30 0.32 0.28 0.32 0.32 0.31 0.33 0.34
(0.03) (0.05) (0.05) (0.03) (0.05) (0.05) (0.02) (0.02) (0.03)

MIF 0.27 0.30 0.31 0.28 0.32 0.32 0.31 0.34 0.33
(0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02)

p∗ = 0.3
KM 0.21 0.26 0.29 0.23 0.29 0.29 0.27 0.30 0.30

(0.03) (0.05) (0.05) (0.03) (0.05) (0.05) (0.02) (0.03) (0.03)
MIF 0.22 0.26 0.27 0.23 0.28 0.28 0.27 0.30 0.29

(0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02)
i∗0 = 0.01

KM 0.010 0.007 0.010 0.012 0.009 0.011 0.011 0.010 0.011
(0.006) (0.004) (0.006) (0.004) (0.004) (0.004) (0.002) (0.002) (0.002)

MIF 0.012 0.008 0.009 0.013 0.009 0.009 0.012 0.010 0.010
(0.007) (0.004) (0.003) (0.004) (0.003) (0.002) (0.002) (0.001) (0.001)

According to results in Tables 1, 2, whereas the estimations obtained with KM are of the same
order of accuracy as those obtained with the MIF algorithm, they are less computationally de-
manding and require less algorithmic tuning. This numerical study was also performed for a
second set of parameter values (λ = 0.6, γ = 0.4, i0 = 0.01), under the constraint s0 + i0 = 1 and
for p = 0.8 and p = 0.3, that naturally leads to greater variability between simulated trajectories.
The results are provided in the Appendix (see Section Appendix E) for comparative purposes.
We have also considered cases where τ , 0 as well as situations where only the susceptible are
observed, yielding similar results.

4.4. Confidence interval estimates based on profile likelihood
Following other authors (see Ionides et al. (2017) for instance), we provided profile-likelihood

confidence intervals of estimated parameters, for which we briefly recall the principle. Let us de-
note a general parameters vector ψ = (ψ1, ψ2) where ψ1 ∈ R is the parameter of interest and
ψ2 contains the remaining parameters. The profile log-likelihood of ψ1 is built by maximizing
the approximate log-likelihood function (proposed in Section 3) over ψ2, for fixed values of ψ1:
Lpro f ile(ψ1) = maxψ2 L(ψ1, ψ2). A 95% confidence interval for ψ1 is given by:

{ψ1 : Lpro f ile(ψ̂) − Lpro f ile(ψ1)} < 1.92, (38)

where ψ̂ is the maximum approximate likelihood estimator (see (33)). The threshold 1.92 comes
from Wilks’ theorem and corresponds to the quantile of order 0.95 of the χ2 distribution with 1
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degree of freedom.

As an illustrative example, 95% profile likelihood confidence intervals were constructed for the
key epidemic parameters λ and γ on two particular trajectories of SIR simulated dynamics. A
graphical representation is provided in Figure 3 for parameter λ and in Figure 4 for parameter
γ. The first confidence interval (left panel of both Figures) is obtained with a sample of n = 30
observation of an SIR epidemic for a population of size N = 2000 with reporting rate p =

0.3. The second confidence interval (right panel of each Figures) is obtained with a sample of
n = 100 observation of an SIR epidemic for a population of size N = 10000 with reporting
rate p = 0.8. For each of the two parameters (playing the role of ψ1 in (38)), 20 values were
considered in a relevant interval containing the point estimate. For each of the 20 values of
the parameter of interest, the remaining parameters (playing the role of ψ2 in (38)), on which
the likelihood is optimized (corresponding to Lpro f ile(ψ1) in (38))), were randomly initialized,
with 10 different initialization values, the best one being stored. The 20 values of maximum
log-likelihood were reported on a graph, relied by a smoothing curve. The two vertical lines,
going through the intersection of this curve with the horizontal line at the ordinate equal to
the maximum log-likelihood for all parameters minus 1.92 (cf. equation (38)), determine the
abscissa for the CI95%. Based on Figures 3 and 4, we see that the width of the confidence
intervals, CI95%(λ) = [0.96, 1.10] and CI95%(γ) = [0.31, 0.48], is naturally greater in the case
where N = 2000, n = 30 and p = 0.3 (which is a more difficult case for performing estimations,
due to an increased stochasticity of epidemic trajectories and a significant noise in observations)
than for N = 10000, n = 100 and p = 0.8 (a much more tractable case with small variability
among trajectories and a low amount of noise in observations), CI95%(λ) = [0.95, 1.00] and
CI95%(γ) = [0.33, 0.36].

Figure 3: Profile likelihood and confidence intervals (CI95%) for λ. Left panel: data simulated with N = 2000, n = 30
and p = 0.3; the true value λ∗ = 1, the point estimate λ̂ = 1.02 and CI95% = [0.96, 1.10]. Right panel : data simulated
with N = 10000, n = 100 and p = 0.8; the true value λ∗ = 1, the point estimate λ̂ = 1.00 and CI95% = [0.95, 1.00].
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Figure 4: Profile likelihood and confidence intervals (CI95%) for γ. Left panel: data simulated with N = 2000, n = 30
and p = 0.3; the true value γ∗ = 1/3, the point estimate γ̂ = 0.32 and CI95% = [0.31, 0.48]. Right panel: data simulated
with N = 10000, n = 100 and p = 0.8; the true value γ∗ = 1/3, the point estimate γ̂ = 0.34 and CI95% = [0.33, 0.36].

5. Application to real data

We applied our inference method on the data from an influenza outbreak that occurred in
January 1978 in a boarding school in the North of England (Anonymous (1978)), with N = 763.
The observations correspond to the daily number of infectious boys over 14 days (n = 14). It
is known that the epidemics started due to a single infectious student. Here also, we assumed
that the epidemic dynamics followed an SIR model. Hence, S (0) = 762 and I(0) = 1 and
the parameters to be estimated are the epidemic parameters (λ, γ), the reporting rate p and the
parameter τ related to observational noise.
Estimations were performed with both KM and MIF. For the MIF method, we used the same
tuning parameters values than those chosen in the simulation study. For each method, we tried
5 initial guess points for the parameters values and chose the best estimates according to the
likelihood value. Both series of results were graphically assessed by post-predictive checks.
For that purpose, Markov jump processes of the SIR model were simulated using each set of
parameter estimates. We kept 1000 trajectories that did not exhibit early extinction according
to the theoretical criterion used in section 4.1. From these 1000 trajectories, we then generated
equally spaced observations with n = 14. Empirical mean, 5th, 50th and 95th percentiles were
extracted time by time and superimposed to the real data (Figure 5).
The following estimations were obtained: λ̂ = 1.72; γ̂ = 0.48; p̂ = 1.00; τ̂ = 0.91 for the KM and
λ̂ = 1.71; γ̂ = 0.45; p̂ = 0.95 for the MIF. Note that τ is not estimated with the second method
since usual estimations with MIF are based on the assumption of binomial observations. The
estimated values for λ, γ and p are very close for both methods. Estimation takes 5.8 seconds
with our method whereas it takes 12.4 seconds with MIF. The post-predictive check indicates
(Figure 5) that both methods provide estimations and hence predictions that are consistent with
the data.

6. Discussion

In this paper we propose a generic and easily practicable inference method for discrete, par-
tially and noisily observed continuous-time epidemic models from time-series data. We derived
a Gaussian approximation of the epidemic density-dependent Markovian jump process under-
lying epidemic dynamics, through a diffusion based approach, and a Gaussian approximation
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Figure 5: Post-predictive checks for the Kalman-based (left panel) and the MIF (right panel) estimations. In blue:
observations (numbers of infectious boys). In black: ODE solution. Red solid line: average trajectory over 1000 Markov
jump processes from the estimated model. Red dotted lines: 5th, 50th and 95th percentiles.

of the model of observations. This two-level Gaussian approximation allowed us to develop an
inference method based on Kalman filtering for the calculation of the likelihood, to estimate key
epidemic parameters (such as transmission and recovery rates), initial state of the system (num-
ber of susceptible and infectious) and parameters of observation model (such as the reporting
rate) from parsimonious and noisy data (proportion of infectious over time).
The performances of the estimators obtained with the Kalman-based method were investigated
on simulated data, under various scenarios, with respect to the parameter values of epidemic and
observation processes, the population size (N), the number of observations (n) and the nature of
data (number of susceptibles S or infectious I over time). The performances, in terms of bias but
even more of accuracy, were improved when increasing N and especially n, becoming satisfac-
tory for realistic observation design (e.g. n = 30 which corresponds in our case to one observation
per day or every two days) and moderate community size (N = 2000). The influence of N and
n is less pronounced when data are less incomplete (here in the case where p, the proportion of
available data, corresponding to the reporting rate, was equal to 0.8). Similar performances were
observed irrespective to the data type (when observations are sampled from S instead of I; results
not shown). In addition, our method seems to be little impacted by tuning aspects. Indeed, the
only obvious tuning parameter, concerning the initialization of the covariance matrix of the state
variables conditionally upon the observations, in the filtering step, does not seem to influence the
estimation accuracy. Besides simulated data, our method provides very satisfying estimations
when applied to real data, from an influenza outbreak in a Britain boarding school in 1978, as
revealed by the post-predictive check showing consistency with data. These good performances
are all the more noteworthy as the numerical scenario involves certain difficulties (low N and n).
Estimations obtained with the KM were compared to those obtained using MIF (Ionides et al.
(2011), King et al. (2017)). The MIF algorithm is efficient in terms of inference performances,
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but computationally expensive and uses tuning parameters (number of particles, number of it-
erations, etc.) that are crucial for the successful functioning of the procedure. Importantly,
our method does not require such specific computational calibration and its computation time is
lower.
As a limitation of our method, we noticed that joint estimation of parameters of epidemic and
observation models (λ, γ, p) along with the initial conditions of the underlying epidemic process
(proportions of susceptible and infectious (s0, i0)) can raise some difficulties when no constraint
(such as s0 + i0 = 1) is imposed and when only one discretized and perturbed coordinate of the
system (here I) is observed. This occurred even for a convenient scenario, when N = 10000,
n = 100 and p = 0.8 (low stochasticity and little loss of information in the data). The problem is
no longer encountered if the two coordinates of the system (S and I) are observed. Besides, two
blocks of dependance between the estimates were noticed: (λ, γ, s0) on the one hand and (p, i0)
on the other hand. Therefore, a wrong estimation of i0 or s0 will be reflected in the estimation of
p and of (λ, γ), respectively. One potential way to solve this problem, exceeding the scope of this
paper, could be to consider a prior for the initial conditions of the system. For more details on
how to overcome this practical issue, see Stocks et al. (2018), Stocks (2017), who also emphasize
the fact that inference algorithms are very sensitive to the initial values of the system.
Our method relies on two successive Gaussian model approximations (one for the latent state and
the other for the observation model). These approximations do not seem to alter the quality of
the estimates. Indeed, the small variance coefficient N−1/2 provides an advantageous framework
for the approximation of the state model for which the Kalman filter has very good performances
in practice (small prediction errors). The good accuracy of Gaussian process approximations
for stochastic epidemic models was already shown (Buckingham-Jeffery et al. (2018)). Here,
we went beyond the investigations in Buckingham-Jeffery et al. (2018) and explored further the
performances of Gaussian approximations of epidemic dynamics not only by using a different ap-
proach based on Kalman filtering, but also by considering an even less convenient configuration,
where the initial condition and the observation error have to be estimated.
Our approach can be generalized in several directions. First, although we focused in this study
on the SIR model as a case study, our method is quite generic, since it can be extended to other
mechanistic models of epidemic dynamics, including additional health states (such as exposed
state E). Second, the observations can encompass variable sampling intervals (i.e. ∆, the time
step between two consecutive observations, is not necessarily constant). Third, other types of
observations can be considered, both with regard to their nature (e.g. such as the number of new
infectious individuals, which can be viewed as a function of state variables S and I) and to the
error model.
Hence, given its facility of implementation, low computation time and satisfying performances,
we recommend to use our estimation method based on Kalman filtering for providing first guess
for parameters, in the framework of partially observed complex epidemic dynamics.
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Appendix A. Remarks on the sampling interval

The sampling interval ∆ is important in our method and we can distinguish two cases: "Small
∆" and "Moderate ∆". We explicit the dependence on the quantities of interest with respect to ∆.
(1) Small sampling interval ∆

The Taylor expansions with respect to t at point tk−1 yield

Fk(η) = Fk(η,∆) = ∆ (b(η, x(η, tk−1)) − ∇xb(η, x(η, tk−1))x(η, tk−1)) + ∆ o(1)
Ak(η) = Ak(η,∆) = Id + ∆∇xb(η, x(η, tk−1)) + ∆ o(1),

Tk(η) = Tk(η,∆) =
1
N

(∆Σ(η, x(η, tk−1)) + ∆ o(1)) .

These additional approximations that simplify the analytic expressions can be used in the state
space equation:

Xk = ∆ (b(η, x(η, tk−1)) − ∇xb(η, x(η, tk−1))x(η, tk−1)) + (Id + ∆∇xb(η, x(η, tk−1)) Xk−1 + Uk,

Uk ∼ Nd

(
0,

∆

N
Σ(η, x(η, tk−1))

)
.

(2) Moderate ∆

We can notice that computing the approximated log-likelihood (34) with Kalman filtering tech-
niques requires to compute the resolvent matrix Φ of the ODE system (9). When the time in-
tervals between observations are too large (i.e. ∆ too big), we use the approximation for matrix
exponential

Φ (θx, tk+1, tk) ≈
∏

j=1,...,J−1

(
Id + (a j+1 − a j)∇xb(θx, x(θx, a j))

)
, (A.1)

where tk = a1 < a2 < . . . < aJ = tk+1. This can however significantly increase computation
times.

Appendix B. Proof of Proposition 2

By the semi group property of Φ, we have that g defined in (8) satisfies, for s ≤ t,

g(t) = Φ(t, s)
∫ s

0
Φ(s, u)σ(x(u))dB(u) +

∫ t

s
Φ(t, u)σ(x(u))dB(u)

= Φ(t, s)g(s) +

∫ t

s
Φ(t, u)σ(x(u))dB(u).

Substituting g(s) by
√

N(GN(s) − x(s)) using (10) yields

GN(t) = x(t) + Φ(t, s)(GN(s) − x(s)) +
1
√

N

∫ t

s
Φ(t, u)σ(x(u))dB(u).

Setting F(tk) = x(tk) − Φ(tk, tk−1)x(tk−1) and Uk =
∫ tk

tk−1
Φ(tk, u)σ(x(u))dB(u) yields (ii).

Clearly, Uk is Ftk - measurable. By the property of independent increments of the Brownian mo-
tion, we get moreover that Uk is independent of Ftk−1 . This achieves the proof of Proposition 2.
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Appendix C. Proof of Lemma 2

Assume first that Q and T are non singular. The joint distribution of (Y, X) is Gaussian,
L(Y, X) ' exp{− 1

2

(
(y − Bx)tQ−1(y − Bx) + (x − ξ)tT−1(x − ξ)

)
}.

Hence, L(X|Y) ' exp{− 1
2

(
xt(BtQ−1B + T−1)x − 2xt(BtQ−1y + T−1ξ)

)
}.

Setting T̄ = (BtQ−1B + T−1)−1 = (Id + T BtQ−1B)−1T , we get
L(X|Y) ' exp{− 1

2

(
(x − T̄ (BtQ−1y + T−1ξ))tT̄−1(x − T̄ (BtQ−1y + T−1ξ))

)
},

and ξ̄(y) = (Id + T BtQ−1B)−1T (T−1ξ + BtQ−1y) = (Id + T BtQ−1B)−1(ξ + T BtQ−1y).
We get, using now the following matrix relation,

(Id + T BtQ−1B)−1 = Id − T Bt(BT Bt + Q)−1B. (C.1)

ξ̄(y) = ξ − T Bt(BT Bt + Q)−1Bξ + T Bt(Q−1 − (BT Bt + Q)−1T BtQ−1)y
= ξ + T Bt(BT Bt + Q)−1(y − Bξ),

T̄ = (Id + T BtQ−1B)−1T = T − T Bt(BT Bt + Q)−1BT.

Appendix D. Proof of Proposition 3

For k = 0, we have that X0 ∼ N(ξ0, Ξ̂0).The induction assumption is: L(Xk |Yk−1,0) =

Nd(X̂k, Ξ̂k) with k ≥ 1.
To get (i), we apply Lemma 2 noting that the distribution L(Xk |Yk−1,0) = Nd(X̂k, Ξ̂k) and that the
distribution Yk conditionally on Xk is N(BXk,Qk). Therefore, setting ξ = X̂k, T = Ξ̂k, B and
Q = Qk, we get that the distribution of (Xk |Yk:0) is Nd(X̄k, T̄k) with X̄k = ξ̄(Yk) where ξ̄(Yk) and
T̄k are given by (36). It is precisely the expressions for T̄k, Ξ̄k given in (i).
For (ii), we use that Xk+1 = Fk+1 + AkXk + Uk+1 and L(Xk |Yk:0) ∼ Nd(X̄k, T̄k). Therefore,
L(Xk+1|Yk:0) = Nd(Fk+1 + AkX̄k, AkT̄kAt

k + Tk+1). Setting X̂k+1 = Fk+1 + AkX̄k and Ξ̂k+1 =

AkT̄kAt
k + Tk+1 yields (ii).

For (iii), we use that Yk+1 = BXk+1 + Vk+1 and that L(Xk+1|Yk:0) ∼ N(X̂k+1, Ξ̂k+1). This yields
L(Yk+1|Yk:0) is Nq(BX̂k+1, BΞ̂k+1Bt + Qk+1).
Setting M̂k+1 = BX̂k+1, Ω̂k+1 = BΞ̂k+1Bt + Qk+1 yields (iii). The induction assumption is fulfilled
and therefore this achieves the proof of Proposition 3.

Appendix E. Complementary simulation study

Appendix E.1. Description

We reproduced the simulation study described in Section 4 with other parameter values:
λ = 0.6, γ = 0.4, s0 = 0.99, i0 = 0.01. An extract of the simulated data is shown in Figure E.6.

Appendix E.2. Estimation results

Tables E.3 and E.4 respectively display the results for the high reporting scenario (p = 0.8)
and the low reporting scenario (p = 0.3). Each Table compares the Kalman-based method (KM)
to the Maximum Iterated Filtering algorithm (MIF). The first column display the true parameter
values. Columns 2 to 10 display the results for the different combinations (N, n). For each
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Figure E.6: Left panel : ODE solution for I (black plain line) and 20 trajectories of the Markov jump process for I (purple
lines) when N = 2000. Right panel : n = 30 observations (blue points for p = 0.8 and red points for p = 0.3), obtained
from a particular trajectory of the jump process (in purple bold in the left panel), as a function of time.

parameter and each estimation method, the reported values are the mean of the 500 parameter
estimates and their standard deviations (in brackets).
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Table E.3: Estimation of θ = (λ, γ, p, i0, s0) under the constraint s0 + i0 = 1. Setting 1 with true parameter values
(λ∗, γ∗, p∗, i∗0)=(0.6, 0.4, 0.8, 0.01). For each combination of (N, n) and for each model parameter, point estimates and
standard deviation are calculated as the mean of the 500 individual estimates and their standard deviation (in brackets)
obtained by our Kalman-based method (KM) and Maximum Iterated Filtering (MIF). The reported values for the number
of observations n correspond to the average over the 500 trajectories, with the min and the max in brackets.

N = 1000 N = 2000 N = 10000
n = 10 n = 30 n = 99 n = 11 n = 31 n = 102 n = 11 n = 31 n = 101
(3, 19) (9, 56) (30, 182) (7, 19) (20, 56) (66, 182) (8, 17) (24, 49) (78, 160)

λ∗ = 0.6
KM 0.47 0.50 0.59 0.45 0.50 0.59 0.48 0.51 0.60

(0.16) (0.15) (0.16) (0.08) (0.10) (0.08) (0.04) (0.06) (0.05)
MIF 0.50 0.53 0.58 0.49 0.52 0.59 0.51 0.52 0.60

(0.14) (0.17) (0.11) (0.09) (0.09) (0.07) (0.06) (0.06) (0.04)
γ∗ = 0.4

KM 0.19 0.27 0.39 0.21 0.28 0.39 0.25 0.29 0.40
(0.08) (0.11) (0.09) (0.07) (0.09) (0.04) (0.05) (0.07) (0.03)

MIF 0.22 0.30 0.39 0.25 0.31 0.40 0.29 0.32 0.41
(0.11) (0.10) (0.06) (0.10) (0.08) (0.04) (0.07) (0.07) (0.03)

p∗ = 0.8
KM 0.28 0.49 0.75 0.32 0.50 0.77 0.41 0.50 0.82

(0.20) (0.27) (0.11) (0.18) (0.22) (0.08) (0.13) (0.18) (0.09)
MIF 0.37 0.53 0.78 0.40 0.55 0.78 0.49 0.55 0.83

(0.24) (0.24) (0.07) (0.22) (0.21) (0.07) (0.17) (0.18) (0.07)
i∗0 = 0.01

KM 0.029 0.032 0.013 0.025 0.022 0.012 0.018 0.019 0.011
(0.034) (0.081) (0.019) (0.021) (0.013) (0.005) (0.006) (0.006) (0.003)

MIF 0.027 0.025 0.012 0.023 0.019 0.011 0.016 0.016 0.010
(0.029) (0.048) (0.003) (0.019) (0.011) (0.002) (0.006) (0.006) (0.001)
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Table E.4: Estimation of θ = (λ, γ, p, i0, s0) under the constraint s0 + i0 = 1. Setting 2 with true parameter values
(λ∗, γ∗, p∗, i∗0)=(0.6, 0.4, 0.3, 0.01). For each combination of (N, n) and for each model parameter, point estimates and
standard deviation are calculated as the mean of the 500 individual estimates and their standard deviation (in brackets)
obtained by our Kalman-based method (KM) and Maximum Iterated Filtering (MIF). The reported values for the number
of observations n correspond to the average over the 500 trajectories, with the min and the max in brackets.

N = 1000 N = 2000 N = 10000
n = 10 n = 30 n = 99 n = 11 n = 31 n = 102 n = 11 n = 31 n = 101
(3, 19) (9, 56) (30, 182) (7, 19) (20, 56) (66, 182) (8, 17) (24, 49) (78, 160)

λ∗ = 0.6
KM 0.44 0.50 0.53 0.43 0.47 0.54 0.48 0.50 0.55

(0.18) (0.12) (0.15) (0.08) (0.09) (0.09) (0.06) (0.06) (0.07)
MIF 0.47 0.51 0.55 0.47 0.49 0.53 0.52 0.53 0.55

(0.12) (0.11) (0.15) (0.09) (0.08) (0.08) (0.09) (0.06) (0.06)
γ∗ = 0.4

KM 0.17 0.19 0.29 0.17 0.21 0.31 0.26 0.28 0.34
(0.19) (0.09) (0.09) (0.06) (0.08) (0.08) (0.07) (0.06) (0.08)

MIF 0.20 0.21 0.29 0.22 0.24 0.31 0.31 0.31 0.35
(0.09) (0.10) (0.10) (0.09) (0.09) (0.08) (0.11) (0.07) (0.07)

p∗ = 0.3
KM 0.08 0.11 0.19 0.08 0.12 0.21 0.16 0.17 0.24

(0.08) (0.08) (0.09) (0.04) (0.07) (0.09) (0.07) (0.07) (0.09)
MIF 0.11 0.12 0.18 0.12 0.13 0.20 0.21 0.20 0.24

(0.10) (0.09) (0.08) (0.09) (0.07) (0.08) (0.12) (0.07) (0.07)
i∗0 = 0.01

KM 0.028 0.020 0.023 0.023 0.019 0.015 0.020 0.017 0.013
(0.069) (0.022) (0.078) (0.016) (0.012) (0.010) (0.009) (0.006) (0.006)

MIF 0.025 0.022 0.023 0.022 0.020 0.015 0.018 0.015 0.013
(0.027) (0.029) (0.061) (0.016) (0.015) (0.009) (0.009) (0.005) (0.005)

The results on the second set of epidemic parameters are more contrasted, since the parameter
values chosen (λ∗ = 0.6 and γ∗ = 0.4) generate more stochasticity (see Figure E.6), so trajectories
are less similar and far to the mean of the jump process and hence the estimates are less accurate.
Besides, the peak of the number of infectious individuals is clearly lower than in the case λ∗ = 1
and γ∗ = 1/3. The estimations of p are particularly bad when n is low, impacting obviously the
estimations of the other parameters.

A.3 Numerical confidence intervals

Figures E.7, E.8 represent the profile likelihoods and the subsequent confidence intervals
(CI95%) for the parameters λ and γ obtained for our Kalman filtering based method on 2 cases
(first case: N = 2000, n = 30 and p = 0.3 ; second case: N = 10000, n = 100 and p = 0.8).
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Figure E.7: Profile likelihood and confidence intervals (CI95%) for λ. Left panel: N = 2000, n = 30 and p = 0.3. The
true value λ∗ = 0.6, the point estimate λ̂ = 0.47 and CI95% = [0.54, 0.76]. Right panel : N = 10000, n = 100 and
p = 0.8. The true value λ∗ = 0.6, the point estimate λ̂ = 0.60 and CI95% = [0.56, 0.64].

Figure E.8: Profile likelihood and confidence intervals (CI95%) for γ. Left panel: N = 2000, n = 30 and p = 0.3. The
true value γ∗ = 0.4, the point estimate γ̂ = 0.21 and CI95% = [0.26, 0.48]. Right panel : N = 10000, n = 100 and
p = 0.8. The true value γ∗ = 0.4, the point estimate γ̂ = 0.40 and CI95% = [0.35, 0.42].
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