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Inference for partially observed epidemic dynamics guided by
Kalman filtering techniques .

Romain Narci**, Maud Delattre?, Catherine Larédo?, Elisabeta Vergu®

“MalAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France

Abstract

Despite the recent development of methods dealing with partially observed epidemic dynamics
(unobserved model coordinates, discrete and noisy outbreak data), limitations remain in practice,
mainly related to the quantity of augmented data and calibration of numerous tuning parameters.
In particular, as coordinates of dynamic epidemic models are coupled, the presence of unob-
served coordinates leads to a statistically difficult problem. The aim is to propose an easy-to-use
and general inference method that is able to tackle these issues. First, using the properties of epi-
demics in large populations, a two-layer model is constructed. Via a diffusion-based approach, a
Gaussian approximation of the epidemic density-dependent Markovian jump process is obtained,
representing the state model. The observational model, consisting of noisy observations of cer-
tain model coordinates, is approximated by Gaussian distributions. Then, an inference method
based on an approximate likelihood using Kalman filtering recursion is developed to estimate
parameters of both the state and observational models. The performance of estimators of key
model parameters is assessed on simulated data of SIR epidemic dynamics for different scenar-
ios with respect to the population size and the number of observations. This performance is
compared with that obtained using the well-known maximum iterated filtering method. Finally,
the inference method is applied to a real data set on an influenza outbreak in a British boarding
school in 1978.

Keywords: Approximate maximum likelihood; Diffusion approach; Kalman filter;
Measurement errors; Partially-observed Markov process; Epidemic dynamics.

1. Introduction

The interest and impact of mathematical modeling and inference methods for infectious dis-
eases have considerably grown in recent years in a context of increasing complex models and
abundant data of varying quality. Estimating the parameters governing epidemic dynamics from
available data has become a major challenge, in particular from the perspective of subsequently
providing reliable predictions of such dynamics. Many authors have addressed the problem of
key epidemic parameter estimation based on likelihood approaches (e.g.,
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Cauchemez and Ferguson| (2008)). While estimation is quite straightforward for complete ob-
servations, this is no longer true in the incomplete observation setting which occurs in practice,
regardless of the mathematical formalism used. Indeed, available data tends to be only partially
observed (e.g., certain health statuses such as asymptomatic infected stages cannot be observed at
all; infectious and recovery dates are not observed for all individuals during the outbreak; not all
infectious individuals are reported) and may also be temporally and/or spatially aggregated. Var-
ious approaches have been developed to deal with these types of data (e.g., see |O’Neill| (2010),
Britton and Giardina) (2016)) for reviews). In the general framework of partially-observed Markov
processes, some of these methods have been implemented in the R package POMP (King et al.
(2017)). Among these, we cite maximum iterated filtering (MIF: [lonides et al.| (2006)), [fonides
et al.| (2015)) in which the parameter space is explored by considering that parameters follow
a random walk over time with variance decreasing over filtering iterations, and the likelihood
being stochastically estimated. Theoretical justification for convergence to the maximum likeli-
hood estimates in the parameter space has been provided for this method (Ionides et al.|(2011)).
Furthermore, likelihood-free methods, such as approximate Bayesian computation based on se-
quential Monte Carlo (ABC-SMC, [Sisson et al.| (2007), [Toni et al.| (2009)) and particle Markov
chain Monte Carlo (PMCMC, |Andrieu et al.|(2010)), have opened some of the most promising
pathways for improvement. Nevertheless, these algorithms do not provide a definitive solution to
statistical inference from incomplete epidemic data. Indeed, there are real limitations in practice
due to the amount of augmented data and fitting the numerous tuning parameters involved. That
can lead to substantial computational overheads.

In this paper, we consider a different approach to deal with the presence of missing coor-
dinates, discrete observations, and reporting and measurement errors. Our goal is to propose a
useful and coherent latent variable model that allows key epidemic parameters to be estimated
from imperfect observations from outbreaks.

A multidimensional Markov jump process describes the epidemic dynamics in a closed pop-
ulation of size N. Using the large population framework, i.e., with N large, we first build an
approximation of epidemic dynamics using an autoregressive Gaussian process via a diffusion
approach (see e.g., Ethier and Kurtz| (2005)), (Guy et al.|(2015)). Then we simultaneously account
for a given missing coordinate value and systematic noise present in observations by applying
a projection operator to the process and adding heteroscedastic Gaussian errors. This yields the
theoretical framework that allows recursive computations of an approximate likelihood. This
approach, based on Kalman filtering, enables the computation of the approximate log-likelihood
of the available observations and, consequently, the estimation of model parameters. An initial
innovative aspect of this method with respect to others is the use of a Kalman filter to recursively
compute the approximate likelihood in the non-standard case of the small noise framework (i.e.,
with noise covariance matrix proportional to 1/N), rather than the classical recurrent case cou-
pled with a large observation time-window (with the number of observations going to infinity).
In addition, the explicit integration into the algorithm of the data sampling interval, and an alter-
native point of view in the prediction of successive model states—given the observations—are
further innovative points.

The derivation and accuracy assessment of Gaussian process approximation for stochastic
epidemic models have previously been described inBuckingham-Jeffery et al.|(2018)), along with
maximum likelihood inference for parameters underlying epidemic dynamics. However, that
study does not rely on Kalman filtering, nor does it consider noise in outbreak data. Computation
of the approximate likelihood of the associated statistical model, as well as parameter estimation,
performed via Kalman filtering recursion was proposed in [Favetto and Samson| (2010), but for
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simpler models without nonlinear terms in the drift, and with no parameter to estimate in the
diffusion term.

For the sake of simplicity, we consider here an epidemic with homogeneous mixing in a

closed population whose dynamics are described by a compartmental model, with each compart-
ment containing individuals with identical health states. We focus on the simple SIR (susceptible
- infectious - recovered) epidemic model characterized by a two-dimensional jump process, par-
tially observed at regularly-spaced discrete times, with measurement errors. The approach can
be easily extended to broader epidemic models observed with various sampling intervals.
The paper is organized as follows. In Section 2] we introduce the general framework and related
inference issues, and propose the model approximation. Section[3|contains the main methodolog-
ical developments of our paper: construction of the approximate log-likelihood, its computation
based on Kalman filtering recursion, and the associated parameter estimation. In Sections [
and [5] we assess the performance of our estimators on both simulated data and real data from
an influenza outbreak in a British boarding school in 1978, and compare our results with those
obtained using the MIF method. Section [§|contains a discussion and concluding remarks.

2. Gaussian model approximation for large population epidemics

2.1. Preliminary comments on inference in epidemic models

Epidemic dynamics can be naturally described using compartmental models, which are by
essence mechanistic and include parameters in their characterization. In such models, the popu-
lation is partitioned into compartments corresponding to different stages of the infection process,
whose temporal evolution is described. As an illustrative example throughout the article, we
will use the simple SIR epidemic model. At any time, each individual is either susceptible (S),
infectious (I), or recovered (R). In this model, there are two mechanistic parameters of interest
that govern the transitions of individuals between states S, I, and R: the transmission rate of
the pathogen A and the recovery rate y. More precisely, individuals can move from state S to I
according to A, or from state I to R according to y (Figure [I).

Al/N Y

Figure 1: SIR compartmental model with three blocks corresponding respectively to susceptible (S), infectious (I), and
recovered (R) individuals. Transitions of individuals from state S to I are governed by the transmission rate A, and
transitions of individuals from state I to R are governed by the recovery rate y of the epidemic.

One of the main goals of epidemic studies is to estimate such mechanistic parameters from the
available data. One of the most natural probabilistic representations of compartmental epidemic
models is the continuous-time Markov jump process (see Section [2.2)). Inference for Markov
jump processes is straightforward when sample paths are completely observed. In the context
of epidemics, this is equivalent to the observation of all infection and recovery times for all
individuals in the population. This rarely occurs in practice; often one or more of the coordinates
(i.e., S(1), I(r)) are not observed, and available observations are only collected at discrete time
points #, withO =7y < t; <t <--- <t, = T over a finite time interval [0, T]. More specifically,
the data often consists of counting newly infected individuals N;(#;) on successive time intervals
3



[#x-1,%]. Alternatively, the successive numbers of infectious individuals I(#;) are sometimes
available, especially for low population sizes. Moreover, it is common that the available data
is affected by several sources of noise such as under-reporting of infection events or—when
reported—imperfect diagnostic tests. Essentially, the nature of such data makes it difficult to
infer key epidemic parameters: (i) observations are available at discrete time points, (ii) not all
coordinates of the dynamical model are observed, and (iii) systematic reporting and measurement
errors have to be taken into account.

2.2. Approximation of large population epidemic models and the autoregressive point of view

Consider an epidemic in a closed population with homogeneous mixing modeled by a d-
dimensional Markov jump process Z(¢), where d is the number of compartments corresponding
to successive health statuses within the population. If N is the population size, the state space of
(Z@),t > 0)is E =1{0,...,N}. Let Q = (gxs,k, I € E) denote its Q-matrix; the latter satisfies
Vi # k, gy > 0,and grr = — X jep 2k gr- There are two standard ways of describing this jump
process (see e.g.,|Norris| (1997)):

(i) By the underlying jump chain and holding times. Starting from Q, set m;; = % with

Gk = =Gk » Tk = 0if g # 0, and m . = 1 if g = 0. The process stays in state k according
to an exponential distribution &(gx) and jumps to state / with probability ;.

(i1) Using its infinitesimal generator: as h — 0, P(Z(t + h) = [|Z(t) = k) = 01 + qrih + op(h),
where 6 ; denotes the Kronecker function (6x; = 1if [ =k, 6,y = 0if [ # k).

Hence, for f a measurable function £ — R, if [E; denotes the expectation conditional on
Z0) =k, [Qf1(k) = Y ek qraf (D) = lim, %(Ekf(Z(t)) — f(k)). Simulations of Z(f) are usually
based on (i), while (ii) relies on general properties of Markov processes.

For any vector V or matrix M, let V' or M"' denote their transpose. For a jump ¢ # (0, ...,0)" of
Z(1), we define the jump function:

ae(k) = i+t for k,k+(€E.

Consider now the normalized Markov jump process (Zy(#));>0:

Zy@) = % € EN = {k/N,k € E). (1)

The associated jump functions are, for x € EV | a?’ (x) = ﬁag([Nx]). Assume that the process
(Z(®)) is density-dependent, i.e.,

H1: Ve, Vxel0, 11, lcx/;([Nx]) - Bux),
N Nesboo
H2: V¢, Br e CX([0, 119 R),

where [Nx] is the vector of integers [Nx;],...,[Nx,], with [Nx;] the integer part of Nx;. Next,



define for x € [0, 1]¢ the function b(-) and the d X d symmetric non-negative matrix X(-):
b= Y (R T =) Bl @
leE~ leE~

For the SIR epidemic model in a closed population, we have that S (¢) + I(r) + R(¢) = N for all ¢.
Therefore, its state space is E = {0,..., N}*. Only two jumps are possible from k = (S, I)':

o {1 =(=L+1)":(S,1) > (S - 1,LI+1)= grise, = ASI/N = ay, (k),
o 0 =(0,-1): (S, 1) > (S, 1= 1)= Grase, = ¥I = g, (h).
This process is density dependent: if s = %,i %
and vay,([Nsl, [Ni]) = +y[Ni] > yias N — c.

Moreover @ iS, for x = (j), b(x) = Asi (_11) + )/l (_01) 5 Z(X) = Asi (_11 _11) + yl (8 (l)) .

We now recall the law of large numbers result stated (for instance) in|Britton and Pardoux](2020).

then Ly, ([Nsl, [Ni]) = LAINsDEL — Asi

Lemma 1. Assume that (Z(1)) satisfies (H1), (H2), and Zn(0) — xg as N = +oo. Then, (Zy (1))
converges almost surely uniformly on [0, T] to the solution x(t) of the ordinary differential equa-
tion J
<= by x(0) = x. 3)
t

If xo = (0,...,0) , then x(¢) = O for all t and no longer adequately describes the epidemic
dynamics (see e.g., [Britton and Pardoux| (2020) Part I). Equation (3) describes the dynamics in
the case of a major outbreak corresponding to xo # (0, ...,0)".

In|Guy et al.|(2015)), by extending the results of [Ethier and Kurtz|(2005), another approxima-
tion of the epidemic model was proposed, leading to a diffusion process (Zy());>0 with the small
diffusion matrix #Z(x), where X is the matrix defined in :

- 1
dZy(t) = b(Zy(10) + 50 (Zn(D) dB(), @
Zy(0) = X,
where (B(?)),>0 is a d-dimensional Brownian motion and o a d X d matrix such that
o(x)o'(x) = Z(x). 5)

For stochastic differential equations with small noise (i.e., proportional to %), an approximation
of Zy(#) can be obtained using (2)-(3)), based on the theory of perturbations of dynamical systems
(see e.g.,|Azencott| (1982), Freidlin and Wentzell (1978))):

Zy() = x(0) + 580 + S Ru(),
dg(t) = V.b(x(n) g(t) di + o(x(r)) dB(1);  g(0) =0, (6)
with  sup,||[Ry(#)]| = O in probability as N — +oo,

where V,b(x) denotes the matrix (%(X))]S[, j<d- The stochastic differential equation for g(-) de-
J
fined in (6) can be solved explicitly (see e.g.,Guy et al|(2014) for details) and its solution is the
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time-inhomogeneous Gaussian process
!
g1 = f O(t, s)o(x(s)) dB(s), (N
0
. 0D . .
where ®(z, s) satisfies E(L s) = V,.b(x(1)D(t, 5), D(s, s) = I;. Hence, D(¢, s) is the d X d matrix

d(1, s) = exp (fr V..b(x(u)) du). ®)

N

Using (@) and (7)), let us define the Gaussian process Gy (?):
1
Gy() = x(1) + —=g(0). )
N N

Consider now the Wasserstein-1 distance on the interval [0, T'] between R?-valued processes
U, V,on[0,T]. W, 7(U, V) =inf E(|U - V||), where if x : [0,T] — R Ixllr = SUPg<<7 IX@)I,
and the above infimum is over all couplings of two processes. According to|Britton and Pardoux
(2020), Part I, Theorem 2.4.1, the following holds.

Proposition 1. For all T > 0, the Wasserstein-1 distances on [0, T] between the three processes

(ZNnE), (Zn(), and (G (")) defined in (1), @), Q) satisfy, as N — oo,
\/NWI,T(ZN’ZN) -0, \/NWLT(ZN,GN) — 0, and \/NWI,T(ZN, Gy) — 0.

From a statistical point of view, this proposition has important consequences: given the fact that
these distances are o(N~'/?), we develop our inference method by plugging the observations into
the likelihood of either the diffusion process (Zy) or the Gaussian process (Gy). This approach is
often used to derive approximate likelihoods or contrasts for stochastic processes. For instance,
for discretely observed diffusion processes, parametric inference is often based on the likelihood
of the Euler scheme of the diffusion (see e.g., Kessler et al.| (2012)). Moreover, it was proved
in (Guy et al.|(2014) that parametric inference based on (Gy) leads to efficient estimators for the
parameters ruling the jump process.

From here on, we will use the approximation of (Zy) by the Gaussian process (Gy). Let us
now consider a parametric model for epidemic dynamics. This yields a parametric continuous-
time approximate model for epidemic dynamics, with parameter

1 = (£, xo), (10)

where £ contains the parameters found in the transition rates of the jump process, and therefore in
the functions SB,(x) defined in H1, and xj is the initial point of the ordinary differential equation
(ODE) defined in Lemma([I] As mentioned in Section [2.1} the process is however observed at
discrete times #;, where (#;) is an increasing sequence on [0, 7], with#p =0 < ¢#;--- <t, = T.
We therefore deduce from above a discrete-time representation of the epidemic evolution.

Let us denote by 7, = o(B(s), s < ). Then the following holds.

Proposition 2. There exists a sequence of independent Gaussian random variables (Uy) such
that

(i) Forall k, Uy is F; -measurable and independent of F;,_,.
6



(ii) The process Gy defined in Q) is an AR(1) process and satisfies, using (3), @), Gn(0) = x,
fork>1,

Gy(t) = Fi() + A1 () Gy(tr-1) + Uy,

where

A1 () = A, 1-1) = O, 1k, k1),
Fi() = F(, ) = x(1, tx) — O, 1y, tr-1)x(1, tx-1),

and (Uy) are independent random variables such that
Ui ~ Na(0, Ti(m)),

with
Tk

1
Ti(n) = I O(n, 1y, $)Z(n, x(n, 5)) O (1, 1y, $)ds.
k-1

The proof of Proposition [2|is given in the Appendix. Using now that sup, [|Zy(f) — Gyl =
%0})(1), Propositionbecomes, setting X := X(#) = Zn(t), Xo = xo, for k > 1,

Xi = Fir(m) + Are 1 (D Xioy + Uy (11)

2.3. Approximation of the observation model

Assume now that there are noisy observations O(#;) of the original jump process Z(f) (with
state space E = {0,...,N }¢ at discrete times f;). As mentioned in Section it often occurs in
practice that not all epidemiological health states are observed. We account for this by introduc-
ing a projection operator B : R — RY with g < d, where BX(-) contains only the coordinates
that can be observed. Therefore B is a d X ¢ matrix whose elements are 0 and 1. Fork = 0,...,n,
define

C(t) = (Ci(t), - .., Cy()) = BZ(1) € {0, ..., N}

In an initial approach, assume that each component of C is observed with independent reporting
rate p; and measurement errors. In this way, we propose a rather general model for the observa-
tions conditional on Z(¢), for 1 <i < g:

Oi(ty) = 01 (tx) + Oi2(tr), with O;1(#) ~ Binomial(C;(#), pi), Oi2(te) ~ N(O, T,'zci(tk))s (12)

where, conditional on 07(Z(s),0 < s < f;), the variables O;(#) and O;,(#;) are independent.
This yields a new higher-dimensional parameter containing parameters for both the epidemic
(i.e., n defined in (I0)) and observation processes:

9: (T’7(pl""’pq)7(T%"~'7T¢2]))'

Consider now the normalized process Zy(f). We can then define Cy () = BZy(¢) and associated
normalized observations Oy (#;) = %O(tk). A Gaussian approximation of the observation process
has first and second moments which satisfy

EOpn(t)IZ(t)
Var(On,i(t)l Z(t))

DiCn,i(t),

1
N(pi(l - pi) + THCN ().
7



Using now (€) and Proposition [I] we get that

() = BZu(t) = Bx(n, 1) + %Bg(n, 0+ %o})(l).

The Gaussian process g(7, ) is uniformly bounded in probability on [0, T'], so we have that

1
Var(On (01 Zw) = % (pi(1 = pi) + H(Bx(n, 1)); + Op(N~>'?).

Let us next define the g-dimensional matrices

1
P(0) = diag(pi<i<g» Ox(0) = Ndiag ((Pi(l - pi) + TH(Bx(, fk))i), (13)

and the ¢ X d matrix
B(6) = P(O)B.

The Gaussian approximations (Y) of the observations Oy (t;) satisfy that conditionally on Z(#),

Y = B(O)Xi + Vi with Vi ~ N,(0, 0r(6)), (14)

where (V;) are independent random variables such that for all k, V is independent of Zy(#;).

2.4. Application on the SIR epidemic model

Let us now illustrate the model approximations derived in Sections[2.2]and [2.3]on the simple
SIR model introduced in Section The Markov jump process Z(¢) = (S(¥),1(1))), t > 0 is
defined in Section [2.2] The parameters controlling the dynamics of the system are

n= (/ls Y -XO) = (/L Y> S0, i0)9
which include the transition rates A and vy, and the initial point xy = (8¢, ip) (cf Lemma 1).

Dynamical state model. Let us define the key quantities necessary to derive the appropriate
Gaussian process (Gy()) as defined in @]), including the dependence on 7:

() = x(m.1) + %g(n, 1.

The first important element is x(n, ) = (s(n, 1), i(y, t))’, solution of the following ODEs:

%(r]’ t) = —/lS(?], t)l(?’], t)’
G, 1) = As(p, i, 1) - yi(n, 1),
X0 = (S(), l())

When there is no ambiguity, we denote by s and i respectively s(7,f) and i(n, 7). Then, to get
g(n,-), we need to derive the functions b(n, -) and (1, -) from @) (see Section [2.2)):

15)

. —Asi Asi —Asi
19(77,s,l)=(/l )

si—yi); 2. 5,8) = (—Asi Asi +yi

8



and the Cholesky decomposition of X(1, -):
o, 5.1) = VAasi 0
PEUE Vs i)
From (T3)), we deduce the gradient of b:
. -l =As
be(”’s’l)‘(/u As—y)’

and the resolvent matrix defined in (8):

O(n,t,s) = exp (f V.,.b(n, x(n, u))du) .

Finally, we obtain
3
g(n. 1) = f O(n, 1, u)o(n, x(n, u))dB(u),
0
where (B(u)),>0 is a bidimensionnal Brownian motion.

Discrete-time system. For simplicity, we assume a regular sampling: # = kA, k = 0,...,n,
T = nA. The dependence with respect to A is explicitly given in the equations. The approximate
autoregressive model, setting X; = Zn () = (S y(kA), Iy(kA))', is given by:

X = Fi(1,A) + Ag-1 (17, A)Xy—1 + Uy,  where

Fk(’% A) = x(’% tk) - (D(na tk7 tk—l)x(n’ tk—1)7 Ak—l (77’ A) = (D(T], tka tk—] )’ (16)
. 1)

U ~ N2(0, Ti(n, b)) with Ty(n, A) = %ffk: O, tr, $)Z(, x(17, $))D' (1, tx, 5)ds.

Observation model. Suppose for example that only the infected individuals are observed with
reporting and measurement errors. This corresponds to considering in (12):

O, (tx) ~ Binomial(I(t;), p),  Oa(tx) ~ N (O, T°1(t;)). (17)

Hence the full parameter vector is 6 = (4,7, o, iy, P, 72). To derive @I) from this example, we
define the operator B(f) = pB, where B : (x1, x2)' — x; is the projection operator on the infected
compartment, and Qy(0) = I%J(p(l -p)+ Tz)i(r], t), with Q is defined in (T3)).

By joining (T6) with the Gaussian approximate observation model defined above, we get the
following discrete-time state-space model:

X = Fr(,A) + A1 (g, Xy + Uy, with U ~ N> (0, Ti(n, A))
Ye= p(0 D)X+ Vio with Vi~ N (0, (p(1 = p) + )i(n. 1)) .

3. Parameter estimation using Kalman filtering techniques

3.1. Approximate likelihood inference

The parameters of interest in the general case are denoted by 6 = (17, (p1, . .., py), (T%, e, 72)),
where 1 contains the parameters controlling the dynamics and xy, whereas (pi,...,p,) and
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(T%, ...,72) are derived from the reporting and measurements errors in the observations. Our
aim is to estimate the unknown parameters 6 from observations y,.oc = (yo,-..,y,) obtained at
discrete time points #y < #t; < -+ < f,,. Joining (TI)) and (T4), we get the following discrete-time
Gaussian state-space setting that is more convenient for inference:

{Xk = Fi() + Ae1 (D Xpe-1 + Uk, (18)

Y, =BO)X+Vy,

where all quantities are explicitly defined in Sections [2.2] and 2.3] Using (I8), we propose to
estimate # by maximizing the associated likelihood L(:; Yy, ..., ¥,):

0= argmax L(6; Yy, ..., Yy,). (19)
0

The log-likelihood of the observations yy, . .., y, is given by:

LB Y0, -»ya) = log f(6,y0) + ) 10g fil6; yelyi-1.0)- (20)
k=1

Computing L(6; yo, . . ., yn) requires the computation of the two first moments of the Gaussian
conditional distributions corresponding to each log fi.(8; .. .) term. This relies on the computation
of the predictive distributions vi—_1.0(0; dx) = L(Xklyr-1.0), k = 1, from which we derive the
conditional densities

SO yilyk-1:0) = ff(Yk|x)Vk|k—1:0(9;dx)-
Usually, these conditional distributions are obtained by means of filtering methods, based on the
iterative computations of the conditional distributions:
o the predictive distribution: L(Xi|yk-1..-.,Y0) = Vir-1:0(dx), k > 1, with the convention
vo0(dx) = L(Xo),
o the updating distribution: L(Xilyk, . ..,Y0) = Vkko(dx), k > 0,
o the marginal distribution: L(Yi|yi-1,- - -, ¥0) = Muk-1.0, k = 1, with the convention pgp.0(dx) =
L(Yo).

In the special case of the Gaussian state space model and Gaussian noise, all of these distributions
are Gaussian and therefore characterized by their mean and covariance matrix. Using notation
specific to Kalman filtering, let us set

L(XeVi-1,"* ,Y0) Vige—1:0(dx) = NsXe, Ex)  (predictive distribution).
LXilyes - >y0) = vigro(dx) = Nao(Xe, Ty)  (updating distribution).
LYye-1,-++ 5 ¥0)

Hifk-1:0 = Nq(Mk, flk) (marginal distribution).

The Gaussian approximations defined in (TT)), and allow us to use specific properties of
Gaussian distributions that are recalled below.

3.1.1. Preliminary results in the general framework of Kalman filtering
Let (X;,i > 0) be a non-centered d-dimensional Gaussian AR(1) process and assume that

only g coordinates of (X;) are observed, with Gaussian noise. Computations of the conditional
10



distributions rely on a Kalman filter approach, which is derived from the following lemma.

Lemma 2. Assume that X is a random variable with distribution Ny(&, T) which conditional on

X, Y has distribution Ny(BX, Q). Then, L(X|Y) is Gaussian: Ny(&(y), T), with
Ey)=¢é+TB'(BTB' + Q)'(y-Bé); T =T-TB(BTB + Q) 'BT. 2D

Remark 1. We stress that Lemma 2| holds even if Q is singular. In particular, the formula holds
when Q = 0 and B is a projection operator, i.e., the observations are Y, = BXy, provided that T
is non-singular.

Let us now go back to our general setting (X, ;) defined in (T8).

Proposition 3. Assume that (X;,Y)) are defined as in (T8). Then, vig-1.0(dx), viyro(dx), and
Higk—1:0)(dy) satisfy, with the initialization X = &, B g =T, fork >0,

(i) Prediction: viy- 10(dx) ~ Nd(Xk,_k) with
X = Fr+ A Xt s B = A T AL + T

(ii) Updatlng Vik: o(dx) ~ Nd(Xk,Tk) with
Xi = Xi + ExB'(BEB' + Q) (Y — BXy), Ty = Ex — ExB'(BEB' + Q) ' BE;.

(iii) Margmal distribution: Hic1jk: oldy) ~ Ny (Mk+1,Qk+1) with
M1 = BXis1, g1 = BE B + Qk+l

Using specific notation from Kalman filtering, we recover a modified version of the Kalman
algorithm. Assume that Xy ~ Ny(&, To) and that, for all £ > 0, the matrices I'; defined below
are non-singular. Then, setting X = &o, Ey = Ty, we have

&1 = Yii—BXii, (innovation)
i = BE 1B + Q1 (innovation covariance)
Hi1 = Ap1E B Tk 1> (Kalman gain)
X = Fe+Ai X + Hoae, (predicted mean state estimation)
o= (A - Hi, B)ék_lA;(_l + T (predicted error covariance)

Therefore, the marginal distributions appearing in the computation of the log-likelihood (20) are
His1eo(dy) ~ Ny(Mir1, 41), with

Mk+l = BXkJrl, Qkﬂ = BékﬂBt + Oks1. (22)

3.1.2. Recursive computation of the approximate log-likelihood
An important consequence of the previous section is that we can compute (20) based on the
recursive computations of the first moments of the Gaussian distributions corresponding to each

term of the log-likelihood. By explicitly accounting for the dependence on 6 of moments given
in (22), we obtain:

n

L(8: Y0, ya) = C + log (8 y0) - % > [log (19:O)]) + (s~ M0 () i~ ¥8))|.

k=1

with C a constant (independent of the parameters) and |A| denoting the determinant of the matrix
A.
11



Note that the sampling interval A plays an important role in the various key quantities involved

in the Kalman recursions (see [Appendix Alfor details).

3.2. Application on the SIR epidemic model

Let us again take the example of SIR epidemics, when only the infected individuals are
observed with reporting and measurement errors, considered in Section 2.4} By assuming an
initial distribution Xy ~ N> (&, Tp), setting Xy = &o, éo = Ty, and applying the algorithm given
in Proposition[3| we have, fork =0,...,n - I:

&-10) = Yi1 - pli-1(6), (scalar)
L0 = pPPE1@)a + v(p(1 = p) + )i, 1), (scalar)
Hi1(0) = pAici()Zi-1(6) (?)r,:l(e), (vector)
X0 = Fu) + A (Xt 0) + Hi 1061 0), (vector)
B0 = (A0~ pHici®) (0 1))Eci@Aci@) + Tum). (2 x 2 matrix)

This yields the marginal distributions:

N . A 2 1 .
My (60) = plin ©), Qu0) = 7 (Erar(@) , + 5 (p(1 = p) + TG, 1)),
which are used to compute the likelihood

1 <5 Ok — Mi(6))?

1 v A
-L(&)’lnn»)’n):__ long(g)__ ~
2 ; 2 k=1 Qi (6)

4. Simulation study

We assessed the performance of our method on simulated SIR epidemics in which only the
infectious compartment is observed at discrete time points (see Section [2.4] where the model is
fully described).

4.1. Simulation settings

Data simulation. We first simulated SIR dynamics according to the Markov jump process us-
ing the Gillespie algorithm (Gillespie| (1977)). Only trajectories that did not exhibit early ex-
tinction were considered for inference. The theoretical proportion of these trajectories is given
by 1 — (y/A)" (Andersson and Britton| (2000)), where I, is the number of infectious individ-
uals at time 0. We simulated two cases. First, for the emergent trajectories, the observations
were generated by binomial draws from I(7) at n + 1 discrete time points #yp < f; < ... < f,.
In , this amounts to considering 7 = 0, with simulated observations finally obtained via
O(ty) = O:(ty) ~ Binomial(I(#;), p). Second, we considered the more general case where ob-
servations are O(t) = O(#) + O (1), with Oy () ~ Binomial(I(1,), p), Oa(t) ~ N (0, 721(1y)).
where the non-zero measurement error 7 is an additional parameter to estimate. Figure 2] rep-
resents epidemic trajectories corresponding to the various steps of data simulation. These plots
illustrate the variability in the stochastic trajectories compared to the deterministic counterpart of
the SIR model, and the loss of information from the unobservable real dynamics to the observa-
tions available for inference. Moreover, the second source of error, driven by the measurement
12



error T, seems to have a minor impact on the global observational noise compared to the reporting
error. The evolution of the number of susceptible individuals is not shown in Figure 2} From the
point of view of inference, the S compartment is a latent variable, the observations being only
available for the infected state.

o o
o S
~ ~
ODE solution o p=03,1t=0
o %) o
27 Jump process 27
© o © o
g 37 g 37
b=l b=l
2 =
el el
£ g | £ s |
3 v L
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Time (days) Time (days)

Figure 2: Left panel: ODE solution for the number of infected individuals / (plain black line) and 20 trajectories of the
Markov jump process for I (purple lines) when N = 2000. Right panel: n = 30 observations obtained from a particular
trajectory of the jump process (in bold purple in the left panel) as a function of time. The points and triangles stand
for observations generated with measurement error terms 7 = 0 and 7 = 0.5 respectively, and the blue and red symbols
represent observations generated with p = 0.8 and p = 0.3 respectively.

Numerical scenarios. We used the following parameter values for the simulation of the epi-
demics: 4 = 1, y = 1/3, and initial starting points S (0)/N = so = 0.99, I(0)/N = iy = 0.01,
R(0) = 0 (hence with so + iy = 1). Observations were generated under two scenarios: i) high
reporting rate p = 0.8 and ii) low reporting rate p = 0.3. Two experiments were considered
concerning the measurement error: 7 = 0 (experiment 1) and 7 = 0.5 (experiment 2). Scenarios
combining three population sizes (N € {1000,2000, 10000}) with different values for the number
of observations (n) for each epidemic trajectory were also investigated. For each value of N,
conditionally on non extinction, 500 SIR epidemic dynamics were simulated. Observations were
generated at regularly-spaced time points #; = kA using, for a given scenario, the same value
of A for each of the 500 epidemics (obtained by dividing the mean epidemic duration over 500
trajectories by a target number of observations n). As the epidemic duration is stochastic, we
considered slightly different observation intervals [0, T'] for each epidemic and set the value of
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T as the first time point when the number of infected individuals became zero. This generates
slightly different numbers of observations per epidemic trajectory.

4.2. Inference: settings, performance comparison, and implementation

The unknown parameters to be estimated are either 8 = (A,y, p,ip) or 6 = (4,7, p, iy, T),
according to the experiment. Here, we do not need to estimate sg as so = 1 —ip. When 7 # 0, the
observational model used for the two estimation methods was a Gaussian model given as the sum
of the two sources of noise in the data (reporting: Gaussian approximation of a binomial model;
measurement: Gaussian model). For each simulated dataset, 8 is estimated with our Kalman
filter-based estimation method (KM) and with the MIF algorithm (Ionides et al.| (2006), lonides
et al.| (2011)), Tonides et al.| (2015)), which is widely used in practice for statistical inference of
epidemics. The simulation study was performed with the R software on a Bi-pro Xeon E5-2680
processor with 2.8 Ghz, 96 Go RAM, and 20 cores. MIF estimation was performed with the
mif2 function of the POMP-package (King et al.|(2017)). We provide user-friendly code on the
RunMyCode website (see for details).

Let us make some initial remarks on the algorithms and their practical implementations. Re-

gardless of the estimation method used, maximisation of the log-likelihood requires considering
several constraints: (i) strict positivity of 4, y, i, (i) so+ip = 1 (or so+ip < 1 in the general case),
and (iii) 0 < p < 1. To facilitate optimization, a different parameterization was implemented:
A =exp(u), v = exp(ua), p = (1 + exp(u3))™!, iy = (1 + exp(uy))~", where puy, uo, p3, 4 € R.
With no constraints on this new set of parameters, numerical optimization was more stable in
practice.
The approximated log-likelihood given by Kalman filtering techniques cannot be maximized
explicitly. We instead used the Nelder-Mead method implemented in the optim function in R,
which requires inputting initial values for the unknown parameters. According to the amount of
information available in the observations, the result of the optimization is more or less sensitive
to these initial points. The same problem can occur for the MIF algorithm. The dependence on
the initialization can be circumvented by trying different starting values (10 in the present case)
and choosing the maximum value for the log-likelihood among them. The starting parameter
values for the maximization algorithm were uniformly drawn from a hypercube encompassing
the likely true values.

When the time intervals A between observations are large (which often occurs for low val-
ues of n), we computed the resolvent matrix defined in (8) as in (A.I) in order to obtain the
approximated log-likelihood with Kalman filtering techniques.

MIF, based on particle filtering, returns an estimate of the log-likelihood of the observations
by using resampling techniques. The parameter space is investigated by randomly perturbing the
parameters of interest at each iteration, the amplitude of the perturbation decreasing as the itera-
tions progress. The MIF algorithm has a complexity of O(JM), where J and M are respectively
the number of particles and the number of iterations. Running MIF requires specifying several
tuning parameters. For the present study, the best results were obtained using M = 100 iterations,
J =500 particles, standard deviation rw. sd equal to 0.2 for the random walk for each parameter,
and a cooling of the perturbations of cooling.fraction.50=0.05 in the POMP-package (we
drew inspiration from Stocks|(2017) for this choice of tuning parameters).

Concerning implementation issues, in our experience, the tuning of the MIF algorithm (num-
ber of particles, number of iterations, etc.) can greatly affect the quality of the estimates. In
particular, it seems that there is an important interplay between the tuning parameters and the
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initialization values of model parameters to be inferred. In comparison, our method has only one
main calibration parameter in practice. In the filtering step, it is necessary to initialize the covari-
ance matrix (i.e., Tg in Section@ of the state variables, conditional on the observations, but it
seems that this initialization does not have a noticeable influence on the accuracy of estimates.

4.3. Point estimates and standard deviations for key model parameters 0

4.3.1. Simulation results for the first experiment (1 = 0)

Three different target values for sample sizes were considered: n = 10, n = 30 and n = 100.
Tables [T] and 2] respectively display the results for the high reporting scenario (p = 0.8) and the
low reporting scenario (p = 0.3). Each table compares estimates obtained with KM and MIF.
For each parameter and each estimation method, the reported values are the mean of the 500
parameter estimates, with their standard deviations in brackets.

These results show that, irrespective of the reporting rate p, when the population size N
and the number of observations n per epidemic increase, the bias and the standard error of the
estimates obtained decrease, whichever method is used for inference. For a given (N, n), the
estimation bias is higher when the reporting rate is low (p* = 0.3, where the star here designates
the true value). This may be partly related to the fact that the information contained in the data
decreases as p* decreases. Both methods provide estimates with comparable levels of accuracy.

Table 1: First experiment (7 = 0). Estimation of § = (4, y, p, ip) under the constraint sy + ip = 1 in Setting 1 with true
parameter values (1%, y*, p*, iz‘)):(l ,1/3,0.8,0.01). For each combination of (N, n) and for each model parameter, point
estimates and standard deviations are calculated as the mean of the 500 individual estimates and their standard deviations
(in brackets) obtained by our Kalman-based method (KM) and Maximum Iterated Filtering (MIF). The reported values
for the number of observations n correspond to the average over the 500 trajectories, with the min and max in brackets.

N = 1000 N = 2000 N = 10000
n=11 n=31 n=101 n=11 n=31 n=102 n=10 n=30 n=100
(7,18) (21,51) (68,168) 8,19) (23,55) (75,179) (8,15) (25,44) (81,143)

A =
KM 1.01 0.99 0.99 1.02 1.00 1.00 1.02 1.00 1.00
(0.09) (0.08)  (0.07) (0.06) (0.06)  (0.06) (0.03) (0.03) (0.03)
MIF 1.02 0.99 1.00 1.01 1.00 1.01 1.01 1.00 1.00
(0.07) (0.06)  (0.06) (0.05) (0.05) (0.05) (0.02) (0.02) (0.02)
Y =1/3
KM 0.30 0.31 0.33 0.31 0.32 0.33 0.32 0.33 0.34
(0.03) (0.04) (0.03) (0.03) (0.04) (0.03) (0.02) (0.02) (0.02)
MIF 0.32 0.31 0.34 0.32 0.32 0.34 0.33 0.32 0.34
(0.04) (0.04) (0.02) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
p* =028
KM 0.70 0.73 0.79 0.73 0.75 0.79 0.77 0.78 0.82
(0.10) (0.11)  (0.06) (0.08) (0.11)  (0.07) (0.05) (0.06) (0.05)
MIF 0.75 0.74 0.80 0.77 0.74 0.80 0.78 0.74 0.81
(0.11)  (0.09)  (0.04) (0.09) (0.08)  (0.05) (0.06) (0.04) (0.04)
i; =001
KM 0.011  0.016 0.012 0.010 0.013 0.011 0.010 0.010 0.010
(0.005) (0.008) (0.006) (0.003) (0.006) (0.005) (0.001) (0.002) (0.003)
MIF 0.011  0.012 0.011 0.011  0.012 0.011 0.010 0.011 0.010

(0.005) (0.004) (0.002) (0.003) (0.003) (0.002) (0.002) (0.001) (0.001)
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Table 2: First experiment (r = 0). Estimation of 6 = (4,7, p, ip) under the constraint so + ip = 1 in Setting 2 with true
parameter values (1%, y*, p*, i(*))z(l, 1/3,0.3,0.01). For each combination of (N, n) and for each model parameter, point
estimates and standard deviations are calculated as the mean of the 500 individual estimates and their standard deviations
(in brackets) obtained by KM and MIF. The reported values for the number of observations n correspond to the average
over the 500 trajectories, with the min and max in brackets.

N = 1000 N = 2000 N = 10000
n=11 n=31 n=101 n=11 n=31 n=102 n=10 n=30 n=100
(7,18) (21,51) (68,168) (8,19) (23,55) (75,179) (8,15) (25,44) (81,143)

A* =
KM 1.01 1.04 1.00 1.00 1.02 1.01 0.99 1.02 1.00
(0.10) (0.08)  (0.07) (0.07) (0.07)  (0.07) (0.03) (0.03) (0.03)
MIF 1.02 1.07 1.01 0.99 1.03 1.02 0.98 1.01 1.00
(0.09) (0.07)  (0.06) (0.06) (0.04) (0.05) (0.03) (0.02) (0.02)
Y =1/3
KM 0.26 0.30 0.32 0.28 0.32 0.32 0.31 0.33 0.34
(0.03) (0.05) (0.05) (0.03) (0.05) (0.05) (0.02) (0.02) (0.03)
MIF 0.27 0.30 0.31 0.28 0.32 0.32 0.31 0.34 0.33
(0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02)
p* =03
KM 0.21 0.26 0.29 0.23 0.29 0.29 0.27 0.30 0.30
(0.03) (0.05) (0.05) (0.03) (0.05) (0.05) (0.02) (0.03) (0.03)
MIF 0.22 0.26 0.27 0.23 0.28 0.28 0.27 0.30 0.29
(0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02)
in = 0.01
’ KM 0.010  0.007 0.010 0.012  0.009 0.011 0.011  0.010 0.011
(0.006) (0.004) (0.006) (0.004) (0.004) (0.004) (0.002) (0.002) (0.002)
MIF 0.012  0.008 0.009 0.013  0.009 0.009 0.012  0.010 0.010

(0.007) (0.004) (0.003) (0.004) (0.003) (0.002) (0.002) (0.001) (0.001)

The estimates are less computationally demanding and require less algorithmic tuning with
the Kalman filtering approach. This simulation study was also performed for a second set of
parameter values (1 = 0.6, ¥ = 0.4, iy = 0.01), under the constraint sy + iy = 1 and for p = 0.8
and p = 0.3, and naturally led to greater variability between simulated trajectories. These results

are provided in for comparative purposes.

4.3.2. Simulation results for the second experiment (T # 0)

Here, we present the estimation results when the simulated observations are obtained with
a non-zero measurement error 7, which is to be estimated. As noticed in |Stocks et al.| (2018)),
the initial conditions of the system are difficult to estimate, and usually set at plausible values.
Consequently, we distinguish two situations, where either (i) iy is unknown and estimated; or (ii)
ip is known and fixed.

Unknown starting point iy. Five different target values for sample sizes were considered: n = 10,
n = 30, n = 100, n = 500, and n = 1000. The unknown parameters to be estimated were
6 = (4,7, p,ip, T) under the constraint so + ip = 1. For the sake of clarity, we do not show the
results when N = 2000 and p = 0.3. Results are displayed in Table 3]
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Table 3: Second experiment (v # 0). Estimation of 8§ = (4,7, p,ip, ) under the constraint so + iy = 1 in Setting 1
with true parameter values (1%, y*, p*, i(*), 7)=(1,1/3,0.8,0.01,0.5). For each combination of (N, n) and for each model
parameter, point estimates and standard deviations are calculated as the mean of the 500 individual estimates and their
standard deviations (in brackets) obtained by our Kalman-based method and the MIF algorithm. The reported values for
the number of observations n correspond to the average over the 500 trajectories, with the min and max in brackets.

N = 1000 N = 10000
n=11 n=31 n=101 n=501 n=1001 n=10 n=30 n=100 n=499 n=998
(7,18) (21,51) (68,168) (338,833) (676, 1665) (8,15) (25,44) (81,143) (406,716) (811, 1430)
=1
KM 0.99 0.98 0.98 0.97 0.99 1.01 0.99 0.99 0.98 0.99
(0.10) (0.08) (0.07) (0.08) (0.08) (0.03) (0.03) (0.03) (0.03) (0.04)
MIF 1.02 1.00 1.02 1.01 1.00 1.01 1.00 1.01 1.00 1.01
(0.08) (0.07) (0.07) (0.07) (0.07) (0.02) (0.02) (0.02) (0.02) (0.02)
Y =1/3
KM 0.29 0.30 0.31 0.32 0.32 0.32 0.32 0.33 0.32 0.33
(0.03) (0.05) (0.05) (0.06) (0.07) (0.02) (0.02) (0.02) (0.03) (0.04)
MIF 0.30 0.30 0.31 0.32 0.33 0.32 0.31 0.33 0.33 0.34
(0.03) (0.04) (0.04) (0.03) (0.04) (0.02) (0.02) (0.02) (0.02) (0.02)
p*=0.8
KM 0.67 0.72 0.74 0.76 0.75 0.75 0.76 0.79 0.77 0.80
(0.09) (0.15) (0.12) (0.13) (0.15) (0.05) (0.07) (0.07) (0.07) (0.11)
MIF 0.70 0.70 0.74 0.75 0.78 0.75 0.72 0.78 0.77 0.82
(0.09) (0.09) (0.10) (0.08) (0.11) (0.05) (0.04) (0.05) (0.05) (0.06)
in =0.01
0 KM 0.011 0.014 0.016 0.014 0.014 0.010 0.011 0.010 0.011 0.009
(0.005) (0.006) (0.006) (0.005) (0.010) (0.001) (0.002) (0.002) (0.002) (0.002)
MIF 0.011 0.012 0.012 0.012 0.011 0.011 0.011  0.011 0.011 0.010
(0.004) (0.004) (0.003) (0.002) (0.003) (0.002) (0.001) (0.001) (0.001) (0.001)
™ =05
KM 0.05 0.48 0.48 0.46 0.44 0.05 0.47 0.42 0.43 0.51
(0.16) (0.22) (0.13) 0.17) (0.21) (0.16) (0.19)  (0.08) (0.09) (0.13)
MIF 0.48 0.52 0.46 0.48 0.49 0.60 0.54 0.39 0.46 0.53
(0.21) (0.15) (0.12) (0.09) (0.13) (0.21) (0.14) (0.09) (0.06) (0.07)

As in the first experiment where T = 0, the results show that the estimations provided by KM and
MIF are of the same order of accuracy. The pattern concerning the bias and the standard error
observed in the case 7 = 0 also occurs when 7 = 0.5 is estimated, i.e., bias decreasing and accu-
racy increasing when N and n increase. We remark that the estimation is more difficult, inducing
larger bias, when the measurement error 7 is unknown, even for a quite large number of obser-
vations n ~ 100. Consider for example N = 1000, n = 101 and p* = 0.8. The point estimate
value of p obtained by KM with 7 = 0 (cf. Table[T) and 7 # 0 (cf. Table[3) is respectively 0.79
and 0.74. This is more marked for the second set of parameters values (1 = 0.6 and y = 0.4),
presented in which induces more variability between epidemics. For N = 1000,
n =99 and p* = 0.8, comparing the results in Tables[E.6|and [E.§| shows that p passes from 0.75
to 0.66 when 7 = 0.5 unknown. Higher frequency observations of the epidemics lead to more
satisfactory estimations: considering n = 998 when 7 = 0.5 unknown leads to p = 0.78. The
estimates obtained with MIF behave similarly. In summary, when the measurement error 7 is
non-zero and estimated, a greater number of observations is needed in order to obtain estimates
without bias for both the Kalman-based and MIF methods.
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Known starting point iy. The unknown parameters to be estimated are 6 = (4,7, p, 7). Tables 4]
and 5 respectively display the results for the high reporting scenario (p = 0.8) and low reporting
scenario (p = 0.3).

Table 4: Second experiment (7 # 0). Estimation of 6 = (4, y, p, ) with 5o = 0.99 and iy = 0.01 known in Setting 1 with
true parameter values (4%, y*, p*,7")=(1,1/3,0.8,0.5). For each combination of (N, n) and for each model parameter,
point estimates and standard deviations are calculated as the mean of the 500 individual estimates and their standard
deviations (in brackets) obtained by KM and MIF. The reported values for the number of observations n correspond to
the average over the 500 trajectories, with the min and max in brackets.

N = 1000 N =2000 N = 10000
n=11 n=31 n=101 n=11 n=31 n=102 n=10 n=30 n=100
(7,18) (21,51) (68,168) (8,19) (23,55) (75,179) (8,15) (25,44) (81,143)
A =1
KM 1.04 1.01 1.01 1.03 0.98 1.01 1.01 0.99 1.00
(0.12)  (0.08)  (0.08) (0.08) (0.07)  (0.07) (0.04) (0.03) (0.03)
MIF 1.03 1.01 1.02 1.02 1.01 1.02 1.02 1.00 1.01
(0.08) (0.07)  (0.07) (0.05) (0.05) (0.05) (0.02) (0.02) (0.02)
vy =1/3
KM 0.29 0.31 0.32 0.29 0.30 0.31 0.31 0.32 0.33
(0.04) (0.06) (0.05) (0.03) (0.04) (0.04) (0.02) (0.02) (0.02)
MIF 0.30 0.31 0.33 0.31 0.31 0.32 0.32 0.32 0.33
(0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.02) (0.02)  (0.02)
p*=0.8
KM 0.69 0.76 0.76 0.71 0.71 0.75 0.74 0.76 0.79
(0.11) (0.16)  (0.13) 0.09) (0.12)  (0.10) (0.05) (0.06)  (0.06)
MIF 0.70 0.72 0.78 0.73 0.72 0.76 0.75 0.73 0.79
(0.09) (0.10) (0.10) (0.08) (0.07)  (0.08) (0.06) (0.05) (0.04)
™ =05
KM 0.11 0.54 0.52 0.08 0.34 0.50 0.11 0.50 0.43
(0.23) (0.23) (0.14) 0.22) (0.22)  (0.10) (0.26) (0.18)  (0.08)
MIF 0.49 0.54 0.50 0.49 0.48 0.48 0.60 0.56 0.42
(0.22) (0.15) (0.11) 0.22) (0.14)  (0.09) (0.23) (0.13)  (0.07)
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Table 5: Second experiment (t # 0). Estimation of 6 = (4,7, p, 7) with 5o = 0.99 and ip = 0.01 known in Setting 2 with
true parameter values (1%, y*, p*,7%)=(1,1/3,0.3,0.5). For each combination of (N, n) and for each model parameter,
point estimates and standard deviations are calculated as the mean of the 500 individual estimates and their standard
deviations (in brackets) obtained by KM and MIF. The reported values for the number of observations n correspond to
the average over the 500 trajectories, with the min and max in brackets.

N = 1000 N = 2000 N = 10000
n=11 n=31 n=101 n=11 n=31 n=102 n=10 n=30 n=100
(7,18) (21,51) (68,168) (8,19) (23,55) (75,179) (8,15) (25,44) (81,143)

A* =

KM 0.99 1.01 1.05 1.03 0.99 1.01 1.01 0.99 1.01
(0.14) (0.09)  (0.08) 0.11) (0.07)  (0.07) 0.04) (0.03) (0.03)
MIF 1.05 1.06 1.05 1.06 1.02 1.03 1.02 1.01 1.01
(0.14) (0.08)  (0.07) (0.10)  (0.05)  (0.05) 0.04) (0.02) (0.02)

v =1/3
KM 0.24 0.28 0.29 0.26 0.30 0.29 0.28 0.32 0.34
(0.06) (0.05)  (0.05) 0.07) (0.04) (0.04) (0.03) (0.02) (0.02)
MIF 0.23 0.29 0.29 0.24 0.30 0.30 0.28 0.32 0.34
(0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)

p*=03
KM 0.20 0.25 0.26 0.22 0.27 0.26 0.24 0.29 0.31
(0.07) (0.05) (0.05) (0.07) (0.05) (0.04) (0.03) (0.03)  (0.03)
MIF 0.19 0.25 0.25 0.20 0.27 0.27 0.24 0.29 0.30
(0.03) (0.03) (0.03) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02)

™ =05
KM 0.15 0.16 0.44 0.17 0.12 0.32 0.08 0.20 0.52
(0.15) (0.12)  (0.06) (0.18) (0.12)  (0.06) (0.16) (0.15)  (0.05)
MIF 0.41 0.26 0.44 0.45 0.24 0.36 0.50 0.30 0.50
(0.12)  (0.10)  (0.04) (0.12) (0.10)  (0.06) (0.13)  (0.09)  (0.04)

It appears that the influence of knowing or not knowing the initial condition iy is different ac-
cording to the values of the parameters used to simulate the data. For the setting where 4 = 1 and
¥ = 1/3, Tables [3|and [d] does not exhibit major differences between estimates. On the contrary,
the impact of knowing or not knowing the initial condition i is more visible when considering
A = 0.6 and y = 0.4 (see [Appendix E). Tables [E.§ and [E.9 show that the quality of estimates
deteriorates when iy is unknown, leading in particular to more significant biases. For N = 10000,
n = 101 and p* = 0.8, p passes from 0.77 when iy is known to 0.65 when it is not. Once
again, higher frequency observations of the epidemics lead to more satisfactory estimates (see
Table [E.8)). Tables[4]and [5]suggest that the estimation bias obtained for the measurement error 7
increases when p* decreases.

4.3.3. Additional comments

In the simulation study, we also considered cases where only the susceptible individuals are
observed (not shown here). We noticed that the estimates provided by our Kalman-based method
and the MIF algorithm were more accurate when considering the S rather than the / values. As
the S values are several orders of magnitude larger than the / ones, a plausible explanation is that
the observation noise (due to imperfect reporting and measurement errors) has a lower impact on
the S values.

As for the computation times of both methods, these are sensitive to the number of observa-
tions n per epidemic: the computation time increases linearly with n. Concerning the population
size N, only the computation time for MIF-based inference increased when N increased, while
our method was insensitive to it. As an example, for the scenario with N = 10000, n = 30
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and p = 0.8 (which corresponds to Table [I), the average computation time for a single esti-
mate (i.e., a single trajectory) was 31 seconds with KM and 97 seconds with the MIF algorithm.
For n = 100, the average computation times were 81 and 147 seconds for the KM and MIF
algorithms, respectively.

4.4. Confidence interval estimates based on profile likelihood

Following other authors (see[lonides et al.|(2017) for instance), we provide profile-likelihood
confidence intervals of estimated parameters, for which we briefly recall the principle. Let us
denote a general parameter vector ¢ = ({1,1>), where ¢; € R is the parameter of interest and
Y, contains the remaining parameters. The profile log-likelihood of i is built by maximizing
the approximate log-likelihood function (proposed in Section [3)) over v, for fixed values of y:
LyrofileW1) = maxy, L(1,¥2). A 95% confidence interval for ¢ is given by:

{';01 : mefile(&) - Lprofile(wl)} < 192, (23)

where i/ is the maximum approximate likelihood estimator (see (T9)). The threshold value of 1.92
comes from Wilks’ theorem and corresponds to the quantile of order 0.95 of the y? distribution
with 1 degree of freedom.

As an illustrative example, 95% profile likelihood confidence intervals were constructed for
the key epidemic parameters A and y on two particular trajectories of SIR simulated dynamics
in the first experiment (r = 0). A graphical representation is provided in Figure [3| for parameter
A and in Figure [ for parameter y. The first confidence interval (left panel of both figures)
is obtained with a sample of n = 30 observation of an SIR epidemic for a population of size
N = 2000 with reporting rate p = 0.3. The second confidence interval (right panel of each
Figures) is obtained with a sample of n = 100 observation of an SIR epidemic for a population
of size N = 10000 with reporting rate p = 0.8. For each of the two parameters (playing the
role of ¢ in (23)), 20 values were considered in a relevant interval containing the point estimate.
For each of the 20 values of the parameter of interest, the remaining parameters (playing the
role of ¥, in (23)), on which the likelihood is optimized (corresponding to Lorofite(W1) in 23,
were randomly initialized, with 10 different initialization values, the best being stored. The 20
values of maximum log-likelihood were reported on a graph, linked up by a smoothing curve.
The two vertical lines, going through the intersection of this curve with the horizontal line at the
y-value equal to the maximum log-likelihood for all parameters minus 1.92 (cf. equation (23)),
determine the x-value for the CI95%. Based on Figures [3| and |4l we see that the widths of the
confidence intervals CI95%(1) = [0.96, 1.10] and CI95%(y) = [0.31,0.48] are naturally greater
in the case where N = 2000, n = 30 and p = 0.3 (which is a more difficult case for performing
estimates, due to an increased stochasticity of epidemic trajectories and significant noise in the
observations) than for N = 10000, n = 100 and p = 0.8 (a much more tractable case with low
variability amongst trajectories and low levels of noise in observations): CI95%(1) = [0.95, 1.00]
and CI95%(y) = [0.33,0.36].
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Figure 3: Profile likelihood and confidence intervals (CI95%) for A. Left panel: data simulated with N = 2000, n = 30
and p = 0.3; the true value A* = 1, the point estimate A= 1.02, and CI95% = [0.96, 1.10]. Right panel: data simulated
with N = 10000, n = 100 and p = 0.8; the true value A* = 1, the point estimate A = 1.00, and CI95% = [0.95, 1.00].
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Figure 4: Profile likelihood and confidence intervals (CI95%) for y. Left panel: data simulated with N = 2000, n = 30
and p = 0.3; the true value y* = 1/3, the point estimate ¥ = 0.32, and CI95% = [0.31,0.48]. Right panel: data simulated
with N = 10000, n = 100 and p = 0.8; the true value y* = 1/3, the point estimate ¥ = 0.34, and CI95% = [0.33,0.36].

5. Application on real data

We applied our inference method on the data from an influenza outbreak that occurred in
January 1978 in a boarding school in the north of England (Anonymous|(1978)), with N = 763.
The observations correspond to the daily number of infectious boys across 14 days (n = 14). Itis
known that the epidemic started from a single infectious student. Here we also assumed that the
epidemic dynamics followed an SIR model. Hence, S (0) = 762 and /(0) = 1, and the parameters
to be estimated are the epidemic parameters (4,7y), the reporting rate p, and the parameter T
related to observational noise.

Estimates were performed with both KM and MIF. For the MIF method, we used the same
tuning parameters values as those chosen in the simulation study. Both series of results were
graphically assessed by post-predictive checks. For this, the Markov jump processes of the SIR
model were simulated using each set of parameter estimates. We kept 1000 trajectories that did
not exhibit early extinction, according to the theoretical criterion used in Section[d.1] From these
1000 trajectories, we then generated equally-spaced observations with n = 14. Empirical mean,
5th, 50th and 95th percentiles were extracted at each time point and superimposed on the real
data (Figure3).

The following estimates were obtained, with the profile likelihood-based confidence intervals
(CI95%) provided in brackets:
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o dxm = 1.72[1.61,1.83]; Jxm = 0.48 [0.43,0.52]; pxm = 1.00 [0.92, 1.00];
Trm = 0.91 [0.42,1.62] with KM,

o dyvir = 1.85[1.62,2.15]; #e = 0.47 [0.39, 0.54]; pyie = 0.97 [0.84, 1.00];
Ty = 1.58 [0.80, 2.80] with MIF.

The estimated values for 4, y and p are similar in both methods, but the estimated values for T
are rather different. The confidence intervals provided by the MIF method are larger than those
obtained by our Kalman-based method, but this could be due to non-optimal tuning in the MIF
case. Moreover, we see that the confidence interval for 7 is particularly wide for both methods,
which is in agreement with the fact that a moderate number of observations is needed in order to
properly estimate 7 (as showed in the simulation analyses). A post-predictive check (Figure [5)
indicates that both methods provide estimates and hence predictions that are consistent with the
data. Estimation took 22.7 seconds with our method, versus 46.5 seconds using MIF.

KM MIF

_— Observations

E—— Average ftrajectory

----------- 5th, 50th and 95th percentiles

Heporis
Heporis

2 4 6 8 10 12 14 2 4 6 8 10 12 14
Time (days) Time (days)

Figure 5: Post-predictive checks for the Kalman-based (KM, left panel) and the maximum iterated filtering (MIF, right
panel) estimates. In blue: observations (number of infectious boys). Solid red line: average trajectory over 1000 Markov
jump processes from the estimated model. Dotted red lines: 5th, 50th, and 95th percentiles.

6. Discussion

In this paper we have proposed a general and practical inference method for continuous-
time epidemics involving discrete, partially and noisily observed time-series data. We derived a
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Gaussian approximation of an epidemic’s density-dependent Markovian jump process underly-
ing its dynamics using a diffusion based approach and a Gaussian approximation of observations
model. This two-level Gaussian approximation allowed us to develop an inference method based
on Kalman filtering for the calculation of the likelihood, to estimate key epidemic parameters
(such as transmission and recovery rates), the initial state of the system (number of susceptible
and infectious individuals), and parameters of the observation model (such as the reporting rate)
from incomplete and noisy data (proportion of infectious individuals over time).

The performance of the estimators obtained with the Kalman-based method was investigated
on simulated data under various scenarios with respect to the parameter values of epidemic and
observation processes, the population size (N), the number of observations (n), and the nature
of the data (number of susceptible S or infectious / individuals over time). Performance, in
terms of bias and in particular accuracy, improved when increasing N and (especially) n, and
was satisfactory for a realistic observation design (e.g., n = 30, which corresponds in our case to
one observation per day or every two days) and moderate community size (N = 2000).

The influence of N and n is less pronounced when data are more complete, here in the case
where p, the proportion of available data—corresponding to the reporting rate—was equal to 0.8,
and 7, corresponding to the measurement error, was zero. Estimation was more challenging when
the measurement error 7 was unknown. In the latter case, higher frequency observations were
needed in order to obtain more accurate estimates. When, in addition to a non-zero measurement
error, the initial point iy is unknown, the quality of the estimates could deteriorate in some cases.

A similar performance was observed irrespective of data type (when observations were sam-
pled from § instead of 7; results not shown). In addition, our method seemed to be little-impacted
by tuning aspects. Indeed, the only obvious tuning parameter, concerning the initialization of the
covariance matrix of the state variables conditionally upon the observations—in the filtering
step—did not seem to influence estimation accuracy. Besides simulated data, our method pro-
vided quite plausible estimates when applied to real data from an influenza outbreak in a British
boarding school in 1978, supported by the fact that the post-predictive check showed consistency
with data. The good performance seen here is all the more noteworthy given that the data came
with certain difficulties (low N and n).

Estimates obtained with KM were compared to those using MIF (Ionides et al.| (2011), [King
et al.|(2017)). The MIF algorithm is efficient in terms of inference quality, but computationally
expensive and uses tuning parameters (number of particles, number of iterations, etc.) that are
crucial for the successful functioning of the procedure. Importantly, our method does not require
such specific computational calibration and its results are computed faster.

In terms of limitations of our method, we observed that the joint estimation of parameters
from epidemic and observation models (4, y, p), along with the initial conditions of the underly-
ing epidemic process (proportions of susceptible and infectious individuals (so, ip)), can lead to
difficulties when no constraint (e.g., so + ip = 1) is imposed, and when only one discretized and
perturbed coordinate of the system (here I) is observed. This occurred even in a “simple” sce-
nario where N = 10000, n = 100, and p = 0.8 (low stochasticity and little loss of information in
the data). This difficulty is no longer encountered if the two coordinates of the system (S and /)
are observed. As well as this issue, two blocks of dependance between estimates were observed:
(4,7, s9) on the one hand, and (p, ip) on the other. Therefore, an incorrect estimate of iy or sy will
be reflected in the estimate of p and (4, y), respectively. One potential way to solve this problem
could be to consider a prior for the initial conditions of the system. For more details on how to
overcome this practical issue, see |Stocks et al.| (2018]), [Stocks| (2017), who also emphasize the
fact that inference algorithms are very sensitive to the initial values of the system.
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Our method relies on two successive Gaussian model approximations (one for the latent state
and the other for the observation model). These approximations do not seem to alter the quality
of the estimates. Indeed, the small variance coefficient N~/ provides an advantageous frame-
work for the approximation of the state model, for which the Kalman filter performs very well in
practice (small prediction errors). The decent accuracy of Gaussian process approximations for
stochastic epidemic models has previously been highlighted (Buckingham-Jeffery et al.| (2018)).
Here, we went further and examined the performance of Gaussian approximations of epidemic
dynamics, not only by using a different approach based on Kalman filtering, but also by consid-
ering an even less convenient configuration where the initial conditions and observation errors
had to be estimated.

Our approach can be generalized in several ways. First, although we focused in this study
on the SIR model as a case study, our method is quite general since it can be extended to other
mechanistic models of epidemic dynamics, including additional health states (such as an exposed
state E). Second, the observations can encompass variable sampling intervals (i.e., A, the time
step between two consecutive observations, is not necessarily constant). Third, other types of
observations can be considered, both with regards to their nature (e.g., the number of new infec-
tious individuals, which can be viewed as a function of state variables S and 7) and to the error
model.

Therefore, given its ease in implementation, low computation time, and satisfactory perfor-
mance, we recommend the use of our Kalman filtering-based estimation method to providing an
initial guess for parameters in the framework of partially observed complex epidemic dynamics.
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Appendix A. Remarks on the sampling interval

The sampling interval A is important in our method and we distinguish between two cases:
“Small A” and “Moderate A”. We give below the dependencies on quantities of interest with
respect to A.

(1) Small sampling interval A
Taylor expansions with respect to ¢ at point #;_; yield

Fi(m) = Fi(@,A) = AWD®m, x(, tre1)) — Vb, X(1, 15-1))x(17, tr1)) + A o(1),
Ar(m) Ar(m, A) = I+ AV, b(p, x(17, 1r—1)) + A o(1),

1
Ty() Ti(n, 8) =  (AZ(n, x(n. fr-1) + A o(1)) .
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The following additional approximations, which simplify the analytic expressions, can be used
in the state space equation:

Xk = A(b(n, x(, tr-1)) = Vib(n7, x(, tr-1))x(1, 1)) + Ly + AV, b(1, x(17, 15-1)) X1 + Uy,

A
Ui ~ N O,NZ(U, x(m, t-1) |-

(2) Moderate A

Computing the approximate log-likelihood (20) with Kalman filtering techniques requires com-
puting the resolvent matrix ® of the ODE system (8). When the time intervals between ob-
servations are too large (i.e., A is too large), we use the following approximation for matrix
exponentials:

OOnticst) > [ | (la+ @1 = a)Vib(6r, X0, a). (A1)
j=1d-1
where ty = a; < a; < ... < aj = t;41. This can however significantly increase computation

times.

Appendix B. Proof of Proposition 2]

By the semigroup property of @, we have that g, defined in (7), satisfies for s < ¢,

g(®) (1, 5) f‘v O(s, u)o(x(u))dB(u) + f O(t, w)o(x(u))dB(u),
0 K

D(t, s)g(s) + f (¢, u)o(x(u))dB(u).
Substituting g(s) with \/N(GN(S) — x(s)) using (9) yields:
Gn() = x(t) + D2, s)(Gy(s) — x(s)) + L f (¢, u)o(x(u))dB(u).
VN Js

Setting F(ty) = x(t)—D(ty, ty-1)x(t—1) and Uy, = f:: O(tr, u)o(x(u))dB(u) yields (ii). Clearly, Uy
is F; -measurable. By the independent increments property of Brownian motion, we get more-
over that Uy is independent of #;,_,. This achieves the proof of Proposition 2]

Appendix C. Proof of Lemma 2]

Assume first that Q and T are non-singular. The joint distribution of (¥, X) is Gaussian:

1
LX) = expl—5 (0= B Qv - By + (x =& T ' (x - )1

Hence,
LXIY) = exp{—% (F(BQ'B+T Hx-20BQ 'y +T'9)).
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Setting
T=BQ'B+1HY'=U,+TB'QO'B)'T,

we get:
LX|Y) = exp{—% (x-TBQ'y+Te) T (x-TBQ 'y + T '),
and
Ey)=Us+TBQ'BY'T(TT'¢ + B'Q7'y) = Ua + TB'Q™'B) ' (¢ + TB'Q™'y).
We then obtain, using the matrix relation:
(I + TB'Q'B)"' =1, - TB(BTB + 0)"'B,

the following results:

Ey) = &é-TB'(BTB'+Q)'BE+TB(Q ' —(BTB' +Q)'TB'Q "y,
= ¢+ TB(BTB + Q) '(y - Bé),
T = (U;+TBQ'B'T=T-TB(BTB + Q) 'BT.

Appendix D. Proof of Proposition 3]

For k = 0, we have that X, ~ N(fo,ﬁo). The induction assumption is: L(Xi|Yx-10) =
Na(Xi, Bp), with k > 1.

To get (i), we apply Lemma |2 noting that the distribution L(X¢|Yi-10) = Ny(Xi, B) and
that the distribution Y} conditional on X is N(BXy, Or). Therefore, setting & = X T = fk and
Q = O, we get that the distribution of (Xi|Ys.0) is Ny(Xx, Ty), with Xk = &(Yy), where £(Y}) and
Ty are given by (ZI). These are precisely the expressions for Ty and Z; given in (i).

For (ii), we use that X3, = Fiy1 + A Xy + Uy and L(Xi|Yi0) ~ Nd(Xk, T:). Therefore,
LXir11Yi0) = Na(Fior +ArXe, AkTiAL +Tip). Setting Xpwy = Fip + A Xy and Sy = A TRAL +
Tk+1 yields (ll)

For (iii), we use that Y, = BXk+1 + Vk+1 and that £(Xg.11Ye0) ~ N(Xix1, Zk11). This gives
that £(Yy IYk 0) 18 equal to Ny (BXjs1, B_.k+|B + Qi1)-

Setting Mk+1 = BXk+],Qk+1 = B_k+]B + Qg+ yields (iii). The induction assumption is
fulfilled and therefore this achieves the proof of Proposition 3]

Appendix E. Additional simulation study

Appendix E.1. Description

We reproduced the simulation study described in Section [] with other parameter values:
A1=0.6,y =04, 5o = 0.99, ip = 0.01. An extract of the simulated data is shown in Figure[E.6]
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Figure E.6: Left panel: ODE solution for the number of infected individuals 7 (plain black line) and 20 trajectories of the
Markov jump process for I (purple lines) when N = 2000. Right panel: n = 30 observations obtained from a particular
trajectory of the jump process (in bold purple in the left panel) as a function of time. The points and triangles stand
for observations generated with measurement error terms 7 = 0 and 7 = 0.5 respectively, and the blue and red symbols
represent observations generated with p = 0.8 and p = 0.3 respectively.

Appendix E.2. Point estimates and standard deviations for key model parameters 6

Appendix E.2.1. Numerical results for the first experiment (T = 0)

Tables [E.6] and [E7] respectively display the results for the high-reporting scenario (p = 0.8)
and low reporting scenario (p = 0.3) when 7 = 0 and is not estimated. Each table compares the
Kalman-based method (KM) to the maximum iterated filtering algorithm (MIF). The first column
display the true parameter values. Columns 2 to 10 display the results for different combinations
of (N, n). For each parameter and each estimation method, the reported values are the mean of
the 500 parameter estimates and their standard deviations (in brackets).
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Table E.6: First experiment (7 = 0). Estimation of 6 = (4, v, p, ip) under the constraint sy + ip = 1 in Setting 1 with true
parameter values (1%, y*, p*, i(*))=(0.6, 0.4,0.8,0.01). For each combination of (N, n) and for each model parameter, point
estimates and standard deviations are calculated as the mean of the 500 individual estimates and their standard deviations
(in brackets) obtained by our Kalman-based method (KM) and maximum iterated filtering (MIF). The reported values
for the number of observations n correspond to the average over the 500 trajectories, with the min and max in brackets.

N = 1000 N = 2000 N = 10000
n=10 n=30 n=99 n=11 n=31 n=102 n=11 n=31 n=101
(3,19) (9,56) (30,182) (7,19) (20,56) (66,182) 8,17) (24,49) (78,160)
=06
KM 0.47 0.50 0.59 0.45 0.50 0.59 0.48 0.51 0.60
(0.16) (0.15)  (0.16) (0.08) (0.10)  (0.08) (0.04) (0.06)  (0.05)
MIF 0.50 0.53 0.58 0.49 0.52 0.59 0.51 0.52 0.60
(0.14) (0.17)  (0.11) (0.09) (0.09) (0.07) (0.06) (0.06)  (0.04)
vy =04
KM 0.19 0.27 0.39 0.21 0.28 0.39 0.25 0.29 0.40
(0.08) (0.11)  (0.09) (0.07) (0.09) (0.04) (0.05) (0.07) (0.03)
MIF 0.22 0.30 0.39 0.25 0.31 0.40 0.29 0.32 0.41
(0.11)  (0.10)  (0.06) (0.10) (0.08)  (0.04) (0.07) (0.07) (0.03)
pF =028
KM 0.28 0.49 0.75 0.32 0.50 0.77 0.41 0.50 0.82
(0.20) (0.27)  (0.11) (0.18) (0.22)  (0.08) (0.13) (0.18)  (0.09)
MIF 0.37 0.53 0.78 0.40 0.55 0.78 0.49 0.55 0.83
0.24) (0.24) (0.07) (0.22) (0.21)  (0.07) (0.17)  (0.18)  (0.07)
it =0.01
’ KM 0.029 0.032 0.013 0.025 0.022 0.012 0.018 0.019 0.011
(0.034) (0.081) (0.019) (0.021) (0.013) (0.005) (0.006) (0.006) (0.003)
MIF 0.027 0.025 0.012 0.023  0.019 0.011 0.016 0.016 0.010
(0.029) (0.048) (0.003) (0.019) (0.011) (0.002) (0.006) (0.006) (0.001)
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Table E.7: First experiment (7 = 0). Estimation of 6 = (4, v, p, ip) under the constraint sy + iy = 1 in Setting 2 with true
parameter values (1%, y*, p*, i(*))=(0.6, 0.4,0.3,0.01). For each combination of (N, n) and for each model parameter, point
estimates and standard deviations are calculated as the mean of the 500 individual estimates and their standard deviations
(in brackets) obtained by our Kalman-based method (KM) and maximum iterated filtering (MIF). The reported values
for the number of observations n correspond to the average over the 500 trajectories, with the min and max in brackets.

N = 1000 N = 2000 N = 10000
n=10 n=30 n=99 n=11 n=31 n=102 n=11 n=31 n=101
(3,19) (9,56) (30,182) (7,19) (20,56) (66,182) 8,17) (24,49) (78,160)
=06
KM 0.44 0.50 0.53 0.43 0.47 0.54 0.48 0.50 0.55
(0.18) (0.12)  (0.15) (0.08) (0.09) (0.09) (0.06) (0.06) (0.07)
MIF 0.47 0.51 0.55 0.47 0.49 0.53 0.52 0.53 0.55
(0.12) (0.11)  (0.15) (0.09) (0.08)  (0.08) (0.09) (0.06) (0.06)
vy =04
KM 0.17 0.19 0.29 0.17 0.21 0.31 0.26 0.28 0.34
(0.19) (0.09) (0.09) (0.06) (0.08)  (0.08) (0.07) (0.06)  (0.08)
MIF 0.20 0.21 0.29 0.22 0.24 0.31 0.31 0.31 0.35
(0.09) (0.10) (0.10) (0.09) (0.09) (0.08) (0.11) (0.07)  (0.07)
pF=03
KM 0.08 0.11 0.19 0.08 0.12 0.21 0.16 0.17 0.24
(0.08) (0.08) (0.09) (0.04) (0.07) (0.09) (0.07) (0.07)  (0.09)
MIF 0.11 0.12 0.18 0.12 0.13 0.20 0.21 0.20 0.24
(0.10) (0.09)  (0.08) (0.09) (0.07) (0.08) (0.12) (0.07)  (0.07)
it =0.01
’ KM 0.028 0.020 0.023 0.023  0.019 0.015 0.020 0.017 0.013
(0.069) (0.022) (0.078) (0.016) (0.012) (0.010) (0.009) (0.006) (0.006)
MIF 0.025 0.022 0.023 0.022  0.020 0.015 0.018 0.015 0.013

(0.027) (0.029) (0.061) (0.016) (0.015) (0.009) (0.009) (0.005) (0.005)

The results on the second set of epidemic parameters displayed in Tables [E.6] and are more
contrasted, since the parameter values chosen (1* = 0.6 and y* = 0.4) generate more stochasticity
(see Figure [E.0), so trajectories are less similar and further from the mean of the jump process;
hence estimates are less accurate. Besides, the peak of the number of infectious individuals is
clearly lower than in the A* = 1 and y* = 1/3 case. The estimates of p are particularly poor when
n is low, which obviously impacts estimation of the other parameters.

Appendix E.2.2. Numerical results for the second experiment (T # 0)

Unknown starting point iy. Table[E.8]displays the results obtained by our Kalman-based method
and the MIF algorithm for the high-reporting scenario (p = 0.8).
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Table E.8: Second experiment (7 # 0). Estimation of 8 = (4,7, p, i, 7) under the constraint so + ip = 1 in Setting 1
with true parameter values (1%, y*, p*, iS, 7)=(0.6,0.4,0.8,0.01,0.5). For each combination of (N, n) and for each model
parameter, point estimates and standard deviations are calculated as the mean of the 500 individual estimates and their
standard deviations (in brackets) obtained by our Kalman-based method and the MIF algorithm. The reported values for
the number of observations n correspond to the average over the 500 trajectories, with the min and max in brackets.

N = 1000 N = 10000
n=10 n=30 n=99 n=499 n=998 n=11 n=31 n=101 n=500 n=1001
(3,19) (9,56) (30,182) (152,916) (304, 1831) (8,17) (24,49) (78,160) (385,789) (771,1577)
=06
KM 0.50 049 0.56 0.58 0.57 048  0.50 0.55 0.57 0.58
(0.32) (0.15) (0.13) (0.12) (0.14) (0.04) (0.07) (0.06) (0.05) (0.07)
MIF 052 051 0.56 0.59 0.58 052  0.52 0.56 0.58 0.59
(0.13) (0.10) (0.11) (0.10) 0.11) (0.04) (0.05) (0.05) (0.04) (0.05)
vy =04
KM 020 025 0.35 0.39 0.39 025 0.28 0.34 0.38 0.39
(0.33) (0.13) (0.09) (0.07) (0.09) (0.04) (0.07) (0.06) (0.03) (0.04)
MIF 025 030 0.36 0.39 0.38 030  0.32 0.36 0.39 0.40
(0.07) (0.07) (0.08) (0.07) (0.07) (0.05) (0.05) (0.05) (0.04) (0.04)
p*=0.8
KM 0.24 0.42 0.66 0.77 0.78 0.39 0.49 0.65 0.75 0.77
(0.16) (0.25) (0.23) (0.16) (0.14) (0.11) (0.20) (0.19) 0.11) (0.11)
MIF 039 050 0.65 0.72 0.72 051  0.55 0.68 0.76 0.79
0.16) (0.17) (0.17) (0.13) (0.15) (0.13) (0.15) (0.15) (0.13) (0.13)
it =0.01
0 KM 0.029 0.037 0.022 0.016 0.015 0.019 0.017 0.014 0.012 0.011
(0.048) (0.086) (0.078)  (0.039) (0.010) (0.006) (0.007) (0.004) (0.003) (0.004)
MIF 0.014 0.016 0.014 0.012 0.012 0.015 0.015 0.013 0.011 0.011
(0.005) (0.005) (0.004) (0.003) (0.003) (0.004) (0.004) (0.003) (0.002) (0.002)
=05
KM 034 044 0.52 0.54 0.52 0.11 0.21 0.35 0.42 0.47
(0.69) (0.44) (0.20) (0.16) 0.17) (0.22) (0.21) (0.20) (0.13) (0.13)
MIF 049 049 0.47 0.48 0.43 046  0.39 0.35 0.44 0.49
(0.25) (0.19) (0.17) (0.15) (0.20) (0.24) (0.18) (0.17) (0.15) (0.14)

Known starting point iy. Tables [E.9] and [EI0] respectively display the results obtained by our
Kalman-based method and the MIF algorithm for the high-reporting scenario (p = 0.8) and

low-reporting scenario (p = 0.3).
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Table E.9: Second experiment (7 # 0). Estimation of 6 = (4,7, p, 7) with 5o = 0.99 and iy = 0.01 known in Setting 1 with
true parameter values (1%, y*, p*,7*)=(0.6,0.4,0.8,0.5). For each combination of (N, n) and for each model parameter,
point estimates and standard deviations are calculated as the mean of the 500 individual estimates and their standard
deviations (in brackets) obtained by KM and MIF. The reported values for the number of observations n correspond to
the average over the 500 trajectories, with the min and max in brackets.

N = 1000 N = 2000 N = 10000
n=10 n=30 n=99 n=11 n=31 n=102 n=11 n=31 n=101
(3,19) (9,56) (30,182) (7,19) (20,56) (66,182) 8,17) (24,49) (78,160)

=06
KM 054 057 0.59 0.55 0.58 0.60 0.56 0.56 0.59
(0.15) (0.15) (0.13) (0.11) (0.10)  (0.08) (0.06) (0.06)  (0.05)
MIF 055 055 0.59 0.56 0.57 0.60 0.57 0.58 0.60
(0.12) (0.10) (0.11) (0.09) (0.07) (0.07) 0.04) (0.03) (0.03)

v =04
KM 027 035 0.38 0.30 0.36 0.39 0.35 0.36 0.39
(0.11) (0.11)  (0.10) (0.09) (0.07)  (0.05) (0.05) (0.05)  (0.04)
MIF 027 034 0.39 0.30 0.37 0.40 0.36 0.39 0.41
(0.09) (0.07) (0.07) (0.09) (0.05) (0.04) 0.04) (0.03) (0.02)

pF =028
KM 042  0.61 0.72 0.49 0.67 0.76 0.65 0.69 0.77
(0.22) (0.22) (0.18) (0.20) (0.19)  (0.15) 0.14) (0.15)  (0.12)
MIF 043  0.62 0.75 0.49 0.67 0.78 0.67 0.75 0.80
(0.19) (0.17)  (0.13) (0.19) (0.14)  (0.10) 0.12)  (0.09)  (0.07)

™ =0.5
KM 041  0.63 0.60 0.32 0.65 0.62 0.09 0.30 0.46
(0.47) (0.33) (0.20) 0.42) (0.25)  (0.16) (0.26) (0.28)  (0.16)
MIF 052 056 0.55 0.55 0.62 0.56 0.50 0.50 0.47
027) (020) (0.13) 0.29) (0.18)  (0.12) (027) (0.19)  (0.10)
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Table E.10: Second experiment (7 # 0). Estimation of 6 = (4,7, p, 7) with 5o = 0.99 and ip = 0.01 known in Setting 2
with true parameter values (1%, y*, p*, 7*)=(0.6,0.4,0.3,0.5). For each combination of (N, n) and for each model param-
eter, point estimates and standard deviations are calculated as the mean of the 500 individual estimates and their standard
deviations (in brackets) obtained by KM and MIF. The reported values for the number of observations n correspond to
the average over the 500 trajectories, with the min and max in brackets.

N = 1000 N = 2000 N = 10000
n=10 n=30 n=99 n=11 n=31 n=102 n=11 n=31 n=101
(3,19) (9,56) (30,182) (7,19) (20,56) (66,182) 8,17) (24,49) (78,160)

=06
KM 047 057 0.57 0.47 0.54 0.58 0.56 0.55 0.56
(0.16) (0.13)  (0.16) (0.12)  (0.09)  (0.09) (0.06) (0.06)  (0.05)
MIF 051 055 0.55 0.52 0.55 0.56 0.57 0.57 0.59
(0.12) (0.13)  (0.11) (0.09) (0.07) (0.07) (0.05) (0.04) (0.03)

v =04
KM 020 029 0.35 0.26 0.30 0.37 0.37 0.35 0.35
(0.12) (0.13) (0.14) (0.10)  (0.09)  (0.09) (0.05) (0.06)  (0.05)
MIF 022 026 0.32 0.25 0.30 0.34 0.38 0.37 0.39
(0.08) (0.10)  (0.09) (0.10) (0.08)  (0.06) (0.06) (0.04) (0.03)

pF=03
KM 0.10  0.19 0.24 0.15 0.20 0.27 0.28 0.25 0.25
(0.09) (0.15) (0.12) (0.08) (0.12)  (0.13) (0.06) (0.08)  (0.10)
MIF 0.11 0.14 0.19 0.14 0.18 0.21 0.27 0.27 0.28
(0.06) (0.09) (0.06) (0.08) (0.07)  (0.05) (0.07) (0.04) (0.03)

™ =0.5
KM 023 042 0.52 0.13 0.24 0.51 0.05 0.19 0.36
(0.20) (0.29) (0.21) (0.19) (0.21)  (0.18) 0.14) (0.15)  (0.12)
MIF 038 037 0.44 0.39 0.29 0.43 0.61 0.33 0.43
0.14) (0.15)  (0.09) (0.15)  (0.15)  (0.07) (0.17) (0.12)  (0.05)

Appendix E.3. Numerical confidence intervals

Figures [E7]and [E-8] represent the profile likelihoods and the subsequent confidence intervals
(CI95%) for the parameters A and y obtained for our Kalman filtering-based method in two
settings (first case: N = 2000, n = 30, and p = 0.3; second case: N = 10000, n = 100, and
p =0.8).
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Figure E.7: Profile likelihood and confidence intervals (CI95%) for A. Left panel: N = 2000, n = 30, and p = 0.3. The
true value 2* = 0.6, the point estimate A = 0.47, and CI95% = [0.54,0.76]. Right panel: N = 10000, n = 100, and
p = 0.8. The true value 2* = 0.6, the point estimate A= 0.60, and CI95% = [0.56, 0.64].
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Figure E.8: Profile likelihood and confidence intervals (CI95%) for y. Left panel: N = 2000, n = 30, and p = 0.3. The
true value y* = 0.4, the point estimate ¥ = 0.21, and CI95% = [0.26,0.48]. Right panel: N = 10000, n = 100, and
p = 0.8. The true value y* = 0.4, the point estimate ¥ = 0.40, and CI95% = [0.35, 0.42].

Appendix F. User-friendly code

We propose user-friendly code composed of four distinct programs in the R language, avail-
able at the RunMyCode website: http://www.runmycode.org/companion/view/4074.

o KalmanFunctions.R includes general functions implementing the Kalman filter and com-
puting the likelihood of the observations, given a specified compartmental model, with a
fixed sampling interval. These functions are easily generalizable to the case where the
sampling interval is variable. Moreover, this script includes a function computing the re-
solvent matrix defined in (8)) for large time intervals between observations A.

e ModelFunctions.R implements the SIR and SEIR models and defines the key quantities
(described in the manuscript for the SIR model) necessary to apply the Kalman filter-
based method. More precisely, given a compartmental model (SIR or SEIR), the following
functions are implemented: the ode system, the drift function, the gradient of the drift
function, the diffusion matrix, the projection operator linking the observations to the states
of the epidemic model and the variance of the observations.

o SIRexample.R and SEIRexample.R simulate respectively SIR and SEIR Markovian jump
processes for a set of parameters values, using the GillespieSSA package. The obser-
vations of infectious individuals are obtained by: O,(#;) ~ Binomial(I/(t), p), Ox(tx) ~
NQO,721(1), k = 1,...,n, at regularly-spaced time points. Finally, an estimation of key
parameters A, y, p and T with known starting points and, in the SEIR model, with a known
transition rate from E to I, is proposed.
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