
HAL Id: hal-02475914
https://hal.science/hal-02475914

Submitted on 10 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Load Balancing Scheme for Distributed
Controllers in Software Defined Data Centers

Mohamed Escheikh, Kamel Barkaoui

To cite this version:
Mohamed Escheikh, Kamel Barkaoui. Scalable Load Balancing Scheme for Distributed Controllers
in Software Defined Data Centers. 2019 Sixth International Conference on Software Defined Systems
(SDS), Jun 2019, Rome, Italy. pp.47-54, �10.1109/SDS.2019.8768708�. �hal-02475914�

https://hal.science/hal-02475914
https://hal.archives-ouvertes.fr


Scalable Load Balancing Scheme for Distributed
Controllers in Software Defined Data Centers

Mohamed Escheikh
SYSCOM, ENIT

Tunis, Tunisia
Email: mohamed.escheikh@enit.utm.tn

Kamel Barkaoui
CEDRIC, CNAM

Paris, France
Email: kamel.barkaoui@cnam.fr

Abstract—We propose in this paper a hysteresis multiple-
threshold-based load balancing (LB) system intended to dis-
tributed Software-Defined Networking (SDN) control plane net-
work architecture. The considered LB system is based on
Markov chain model and is governed by a control policy using
a set of scaling out/in thresholds to evenly distribute traffic
between an overloaded SDN controller (client controller) and a
lightly loaded neighboring controller (server controller). This is
achieved to circumvent large discrepancy in resource utilization
through dynamically adapting the global available capacity. The
proposed LB scheme aims to achieve multi-objectives tradeoff
relevant to scalability, high availability, agility, flexibility, resource
utilization, blocking probability and power saving without in-
curring significant overhead. We highlight through numerical
investigations the effectiveness of our proposed model. This is
achieved by means of transient and steady state analysis, based
on appropriate performance metrics such as average aggregated
capacity, transition rate (between client and server) and blocking
probability. We show also how the proposed LB scheme performs
the right scaling and resource provisioning decisions with respect
to specific requirements.

Index Terms—SDDC, SDN, NFV, Load balancing, Hysteresis,
Markov chains.

I. INTRODUCTION

The advent of cloud computing in IT environment and
the spectacular growth of stringent applications, in the era
of mobile, social, cloud, IoT and big data, has generated huge
ever changing requirements of resources management and an
urgent need to rationalize resource utilization.

In order to meet these requirements the trend of the cloud
IT providers is to deploy massively in their data centers
SDN paradigm and Network Functions Virtualization (NFV)
technology to build Software Defined Data Center (SDDC)
architectures. The objective is to offer on one hand agile and
scalable resource provisioning and on the other hand highly
flexible and elastic service delivery capabilities.

SDN and NFV when deployed in concert can bring several
benefits to virtualized data centers [14] since they are comple-
mentary technologies. SDN is an emergent paradigm shifting
from traditional network to the next generation Internet to
provide programmability and more flexibility for introducing
innovation in service as well as in network design and man-
agement [11]. Despite SDN brings a centralized control plane
view enabling several advantages in terms of abstraction and
control of the underlying network (i.e. data plane), achieving

such a view through one central node is likely to cause critical
scalability and reliability issues. In this regard the recent trend
nowadays is to envisage multiple controllers based architecture.
However, even though this solution empowers to cope with
bottleneck and availability issues, traffic unbalance remains a
potential weakness and a traffic engineering challenge to be
met. The aforementioned problem is manifested whenever static
configuration of the mapping between a forwarding element,
in the data plane, and a controller is achieved. Hence scalable
LB should be deployed in the SDN control plane.

On the other hand NFV enables to virtualize network func-
tions such as ADCs (Application Delivery Controllers), WAFs
(Web Application Firewalls) and load balancing. Implementing
network functions as a software removes the need for hardware
appliance and is achieved through virtual appliances hosted on
commodity hardware. In a nutshell NFV together with SDN
provides more flexibility, cost-effectiveness, scalability, security
and better quality of experience to next generation data centers.

In this paper, we propose a modeling analysis of LB model
for distributed SDDC controllers, with logically centralized
view, enabling scalability and high availability while enhancing
resource utilization and power saving. The proposed LB model
is based on agile and flexible control policies hysteresis-based
with multiple threshold structure based on Continuous Time
Markov Chains (CTMC). It allows traffic flow management
empowering dynamic accommodation of controller resources to
unpredictable workload variations without incurring significant
overheads.
The remainder of this paper is organized as follows. Section
II presents the related work. Section III emphasizes on LB in
distributed SDN controller networks. Section IV addresses the
system description and client/server controller roles. Section V
presents the proposed LB model. Related numerical analysis
and performance evaluation is provided in Section VI. Section
VII concludes this paper.

II. RELATED WORK

Authors in [18] present SDN survey describing SDN features
and illustrating in detail its layers. They succinctly tackle
multi-controllers issue in the context where control layer
performance enhancements are needed. In [3] a comprehensive
overview of SDN multi-controllers architectures is provided.
Issue related to implementing LB mechanism in SDN control



plane, based on distributed multi-controllers architecture, had
been investigated in several previous works where LB making
decision is either centralized [4], [12] or distributed [19].
Authors in [17] introduce an overview of current research
status in SDN and multi-domain SDN, focusing particularly
on OpenFlow protocol, and its future related challenges. SDN
control plane synchronization issue has been addressed in
[20] and [1]. In [1], authors implement a Communication
Interface for Distributed Control plane (CIDC) that allows
synchronization and notifications exchanges. The aim of such
implementation is to enable distributed services such as
Firewall and Load Balancer between multiple distributed SDN
controllers in order to enhance security and overall quality of
service in distributed SDN architecture. Related results show
the feasibility of CIDC in terms of performance compared to
earlier models based on clustered controllers. [6] proposes a
novel online algorithm to mitigate scalability and reliability
concerns jointly considering dynamic association between
switches and SDN controllers. The reason of such consideration
is to dynamically devolve flows’ control to switches leading
to convenient cost-latency trade-off. Authors in [2] present
different existing solutions and mitigation techniques that
address SDN scalability, elasticity, dependability, reliability,
high availability, resiliency, security, and performance concerns.
In [13] authors present a mathematical model representing
a multi-controllers loose management strategy dynamically
adjusting interaction frequency and enhancing communication
efficiency between controllers and network devices. In [5]
an adaptive elastic distributed SDN architecture model is
proposed as an optimization problem for selecting a minimum
number of active controllers by changing mapping between
switches and controllers through switch migration between
domains according to network load. In [16], authors study
two scheduling problems for delay tolerant applications on
minimizing on one hand the peak resource usage for a given
set of demands and time-varying resource cost while ensuring
each demand service without missing their deadlines and
on the other hand the demand completion time for a given
maximum allowable resource. Wang et al. [15], formulated
a joint optimization virtual machine placement problem with
both delay and migration cost considered to leverage the spatial
variation in the VMs migration for delay and cost optimization.

In literature hysteretic based models had been proposed to
achieve multi-objective tradeoff. In [10] proposes an analytic
framework for modeling Digital subscriber line DSL modems
and providing optimal sleeping policies. This is achieved
through finding a convenient tradeoff between energy con-
sumption, delay performance and stability. The problem is
formulated as a continuous time Markov Decision Process
(MDP). Its shown that the optimal sleeping policy for the
above MDP is a monotone hysteretic policy characterized by
two queue length thresholds enabling to tune the modem from
on to off or vice versa. Authors in [7] [8] [9] show that in a
data center infrastructure based on multiple identical servers
the optimal sleep energy efficient policy may be hysteretic and
governed a double threshold.

III. LOAD BALANCING IN DISTRIBUTED SDN CONTROLLER
NETWORKS

A. LB Activation/Deactivation through Horizontal Scaling
(out/in) in SDN Control Plane

In order to provide scalable resource provisioning based
on adding and removing controllers (or a set of instances in
a controller), LB process is activated/deactivated adaptively
according to load fluctuation and disparity between the set of
controllers forming the control plane network. Activation and
deactivation are governed by an horizontal scaling mechanism
including two alternating phases. The first one is referred to as
scaling out phase whereas the second is known as scaling in
phase. Load scalability is enabled, in the considered distributed
architecture, by flexible hysteretic thresholds empowering to
easily expand and contract its resource pool to accommodate
changing load. Scaling in and scaling out virtualized resources
is performed based on a threshold-based scaling policy effi-
ciently leveraging real time network status collected toward
SDN monitoring tools.

1) Scaling out phase
Scaling out phase is implemented through scaling out tech-

nique activating the LB process. Whenever current controller
load reaches a given threshold the controller behaves as a client
and attempts to trigger LB process. This is achieved through
sending a LB request to potential neighboring controller(s)
(server(s)) able and willing to cooperate.

2) Scaling in phase
Whenever the global resource utilization of a set of active

aggregated controllers, taking part in a LB process, drops under
an acceptable lower limit corresponding to a power-inefficient
utilization ratio, the scaling in phase is triggered. During
the scaling in phase the LB process is then deactivated and
additional resources provisioned by neighboring controller(s)
are released.

B. LB Policy

LB policy defines how to distribute among various nodes (i.e
controllers) according to specified weight values. appropriate
choice of LB policy is of paramount importance to address
scalability-availability-performance tradeoff issue. Policy’s
attributes should be closely related to workload dynamic,
resource availability and QoS requirements. Indeed adopting
inappropriate policy in a given context related to a given work-
load is equivalent to not taking the right decision at the right
time which results in widening mismatch between workload
assigned and resource provisioned. This would inevitably lead
to providing unsatisfactory results not complying with the preset
objectives of the adopted policy. Also oscillatory behavior
should be avoided. This may be achieved by considering a LB
hysteresis-based control policy with carefully chosen attributes
and thresholds.

LB decision is based on calculating resource utilization and
relies on comparing one controller’s available capacity with that
of one (or several other) controllers to determine whether a LB
is enabled. The problem to be addressed concerns then when



and where to live-migrate controller instances straightforward
a controller is detected overloaded. The LB decision in our
modeling approach is locally enabled at the current controller
whenever three major conditions are fulfilled. The first one
concerns the level beyond which the current controller (i.e.
client) is estimated overloaded, the second is related to the
ability of potential neighbor(s) (server(s)) to handle traffic
spikes of the overloaded controller and the last concerns
the network capabilities to enable suitable communication
conditions for traffic exchange between controllers.

Fig. 1: LB (scaling out/in) conditions with respect to
Client/server workload

Fig. 2: IAC vs Cc(t)

IV. SYSTEM DESCRIPTION AND CLIENT/SERVER
CONTROLLER ROLES

A. System Description

In what follows let us examine the main assumptions
considered for modeling a distributed SDN control plane
network with centralized logical view implementing a LB
mechanism. We consider that:
� The system to model is a SDN control plane with logically

Fig. 3: LB model CTMC

distributed architecture controlling a data plane and a logically
centralized view.
� The network (i.e. data) plane encompasses a set of
forwarding switches and each switch is connected to the best
controller in its proximity.
� The SDN control plane consists of a set of controllers (Ci
where 1≤i≤Ncmax).
� Each controller Ci is composed of a set j of virtual instances
Vij where 1≤j≤Nvmax.
� Each controller Ci runs an instance of the LB scheme
proposed in this paper, and may play the role of either a client
(requesting a LB) or a server (able and willing to cooperate
by sending back to the client a LB response).
� There exists a communication link between each pair of
neighboring controllers and each link is subject to impairments:
Whenever a LB process is going to be triggered, each link Lij
connecting a heavy-loaded controller (Ci) to a lightly loaded
controller Cj may incur congestion or failure, with probability
pij . This assumption allows us to take into consideration
network impairments in our modeling approach.
� The controllers’ network is partitioned into different
non overlapping SDN domains to enable scalability and
incremental deployment.
� The controller network is presented as a shared pool of
instances.
� Each controller governs a specific (local) manageable
SDN domain and each domain includes a subset of switches
deployed in the data plane. The number of switches per
domain do not exceed the controller capacity.
� The LB decision making is localized to each controller.
� SDN controller resources are pooled to serve multiple
switches based on multi-tenant model with diverse physical
and virtual resources dynamically and flexibly assigned and



reassigned in agreement with data plane requirements.

B. Client/Server Controller Roles

A controller may embody two kinds of LB roles (client or
server) depending on its instantaneous capacity (load). A client
is a controller reaching an overload threshold and requesting
LB service from its neighboring server controllers. A server
is a controller having enough available capacity and offering
temporarily a portion of this capacity to the client for LB.
In what follows let’s define some parameters describing the
load of client/server controller. These parameters will be used
to estimate the suitable load levels from which a controller
will behave as a client to request or deactivate LB or behave
as a server to offer a LB service.
� Cc(t), the instantaneous client controller capacity at time t;
� TCc, the total client controller capacity;
� Uc(t) = Cc(t)

TCc
, the instantaneous client controller utilization

ratio (a parameter quantifying (in percent) the relative client
load level).
� Csi(t), the instantaneous capacity of the ith neighboring
(sever) controller at instant;
� TCsi , the total controller capacity of the ith server controller;
� Usi(t) =

Csi
(t)

TCsi
, the instantaneous utilization ratio of the

ith server controller, (a parameter quantifying (in percent) the
relative load level of the ith neighboring server);
� Uc(t) (resp. Usi(t)) values are in the range between 0 and
100%. Hence, when the client (resp. ith server) controller
capacity becomes fully loaded, then Uc(t) (resp. Usi(t)) reaches
the value 100% whereas when the client (resp. ith server)
capacity is idle (no load), Uc(t) (resp. Usi(t)) value is equal
to 0%.
� ACsi(t), the available capacity offered at the instant t by
the ith server to the client controller when this latter sends a
LB request.

Hence each client controller, based on the knowledge of its
own Uc(t) and Usi(t) of every neighboring ith server controller,
may ask to activate (resp. deactivate) the LB mechanism
through triggering the scaling out (resp. in) phase. This is
enabled toward sending a request to its neighboring controllers.
These latter are invited to reply by sending back a positive or
a negative response. In the first case each server i reserves a
capacity ACsi(t) to the client whereas in the second case no
capacity will be reserved.

V. CLIENT/SERVER LB MODEL

The LB model, (Fig.2), elucidates interaction between one
client controller and one server controller. In the above model:
� Each controller capacity consists of a set of servers (instances)
with service duration exponentially distributed with parameter
µ.
� The client is fully represented through its capacity in terms
of instances, whereas LB server is represented partially toward
its reserved available capacity for LB.
� We focus on the traffic handled by the client controller. This

traffic is assumed exponentially distributed with parameter λ.
� We denote also ρ = λ

µ .

A. Threshold Capacities

� TCc = CLB + n: the maximum capacity of the client
controller.
� TCs: : the maximum capacity of the server controller.
� CLB : a preset threshold capacity having value smaller than
the total client capacity CLB + n. CLB corresponds to the
minimum capacity initially reserved by the client controller
before incurring an overload.
� n (Fig.2, column 1 (resp. column 2)): the remaining client
controller capacity.
� ACs = ACs(t): the amount of available capacity offered by
the server controller to the client at instant t. t is the instant
where the client sends a LB request to the server.
� CM = CLB +ACs: the reserved capacity by both the client
and the server given that LB is triggered and the offered server
capacity, ACs, is not fully consumed.
� CC : a fixed threshold capacity (CC < CLB) below which
the scaling in phase is triggered. Likewise we consider that:
CM > CLB > CC .

B. LB Policy

For this model (Fig.2, Fig.3) there is no LB policy since
the client has no choice except to collaborate with a single
server. A more versatile LB model with LB policy enabling
LB between one client and several servers is also investigated
however its presentation is out the scope of this paper.

C. Hysteresis Thresholds

The LB model (Fig.2, Fig.3) is hysteresis-based and involves
different alternating phases. Every phase corresponds to a given
state (described by workload level and power state). Switching
between phases is enabled once reaching suitable workload
thresholds. These thresholds (expressed in percent) are defined
as follows:
� ThLB: the load threshold beyond which a controller is
considered overloaded (i.e. hot spot) and is going to trigger
a LB request (ThLB = CLB

TCc
) . This indicates that the client

controller is heavily loaded and hence one or more instances
running on it should be transferred away through migration
techniques in order to mitigate bottleneck. Whenever Uc(t)
reaches this threshold (i.e. ThLB) the controller behaves as a
client and may trigger scaling out phase.
� Thavai = ACs(t)

TCs
: the load threshold below which a controller

is considered as a server able to offer a part of its available
capacity (i.e. ACs(t)) to overloaded controllers (i.e. client)
to balance workload. For a server controller having Us(t)<
Thavai may play a server role.
� ThC = CC

TCc
: the load threshold below which controller

is considered lightly loaded (i.e. cold spot) and is going
to trigger scaling in phase. ThC indicates that the global
resource utilization ratio of a controller is below a computing
threshold. In other words, it’s advocated to run controller
consolidation and switch the idle controller into sleep power



state if this may lead to power saving. ThC may be chosen
equal to an estimated acceptable lower limit leading to power-
inefficient utilization ratio. Fig.1 summarizes the LB conditions
(hysteresis-based) with respect to client/server workload. Notice
that every controller may be assigned a set of specific and
dynamic thresholds.

D. Instantaneous Aggregated Capacity (IAC) vs Cc(t)

The proposed LB model (Fig.2, Fig.3) describes, from a
client controller perspective, interaction between one client and
one server. The instantaneous aggregated capacity (i.e. IAC)
is defined as the instantaneous reserved capacity for a given
incoming traffic, Cc(t), to the client controller.
IAC is governed by the following rules (Fig.2):

For Cc(t)<CLB , CLB capacity is initially reserved by the
client controller; Whenever Cc(t) reaches the capacity CLB ,
two alternatives may be considered:
� Alternative1 (LB is enabled): In this case the client may
profit from LB, with probability (1 − p), the scaling out phase
may be triggered and the reserved capacity switches from CLB
(reserved by the client) to CM . This means that the initially
reserved capacity CLB by the client is extended by ACs (Fig.3,
B Co2). Hence the total reserved capacity becomes equal to
CM = CLB +ACs. In such case and as Cc(t) increases and
reaches CM , a scaling up phase is triggered and the global
reserved capacity switches from CM to CM +n. If the reserved
capacity is CM + n and Cc(t) decreases below CM a scaling
down phase is started and the reserved capacity switches down
from CM+n to CM . On the other hand if the reserved capacity
is CM and as Cc(t) decreases until reaching Cc(t) a scaling
in phase is triggered and the reserved capacity switches from
CM to CLB .
� Alternative2 (LB is not enabled): In such case the client
fails in finding available neighbor to ensure LB with probability
p and in such case, if the reserved capacity is CLB and Cc(t)
increases and goes beyond CLB − 1, a scaling up phase is
initiated and the reserved capacity (in the client) switches from
CLB to CLB + n. If the reserved capacity is CLB + n and
Cc(t) decreases below CLB a scaling down phase is triggered
and capacity switches down from CLB + n to CLB .
It’s worth mentioning also that whenever Cc(t) exceeds CLB +
n or CM + n the excessive incoming traffic to the client
controller will be lost.

E. Markov Chain Description

The different macro-states of the CTMC may be summarized
as follows (Fig.3):
� The bottom part, (Fig.3, column 1, B Co1), includes states
S1i (0≤i¡CLB) and describes a client not yet overloaded.
� The top part (Fig.3, column 1, T Co1), includes states S1i

(CLB≤i≤CLB + n) describing the client with Cc(t) reaching
and exceeding CLB without finding any LB service with
probability p.
� The bottom part (Fig.3, column 2, B Co2), includes two sub-
sets of states. The first one consists of states S2i, (CC≤i≤CLB)
representing client states (given that the LB is active) whereas

the second subset includes states S2i, (CLB + 1≤i≤CM )
corresponding to the offered available capacity ACs1 by the
server for the client during LB.
� The top part (Fig.3), column 2, T Co2), includes states S2i

(CLB≤i≤CLB +n) describes client states with Cc(t) reaching
and exceeding CLB after fully consuming ACs1 instances.

We choose to represent the system states in the infinitesimal
generator of the CTMC with two columns according to the
following rules: columns are represented in order from the left
to the right and the states of each column are represented also
in order from the bottom to the top. The above description is
necessary to understand the steady state probability distribution
evolution versus ρ and IAC versus time describing the system
behavior with respect to time.
If we consider R, the amount of reserved capacity given by:

• R=CLB (resp. CLB + n) for the set of states represented
by B Co1 (resp. T Co1),

• R=CM (resp. CM + n) for the set of states represented
by B Co2 (resp. T Co2),

and A the number of active flows, the pair (R, A) represents
a Markovian process. Based on the above assumptions, we
model the LB scheme using hysteresis-based CTMC. Given
that the CTMC is irreducible and aperiodic its ergodicity is
verified and the resolution of the state equation leads to a
unique solution. We define a state by a couple (i, j), where
i refers to the index of column in the Markov Chain and j
refers to the client/server controller capacity states. let also be
Π(i, j) is the steady state probability of the state (i, j).

F. LB Performance Metrics AC, TR and BP

Let’s define in this subsection some LB performance metrics
referred to as Average Aggregated Capacity (AC), Transition
Rate (TR) and Blocking Probability (BP ). These metrics will
be used subsequently to capture LB model behavior through
steady state analysis:

AC = CLB .

CLB−1∑
i=0

Π(1,i) + (CLB + n).

CLB+n∑
i=CLB

Π(1,i)+

CM .

CM∑
i=CC

Π(2,i) + (CM + n).

CM+n∑
i=CM+1

Π(2,i)

(1)

TR = (1 − p).λ.Π(1,CLB−1) + CC .µ.Π(2,CC) (2)

BP = Π(1,CLB+n) + Π(2,CM+n) (3)

G. Optimal Values for AC and TR

In addition to the rules governing the capacity reservation
and the switching between different capacities, a decisive
criterion that should be taken into consideration concerns
the choice of optimal parameters CLB and CC enabling to
minimize both average aggregated capacity (AC) and ping
pong overheads (due to adverse scaling out/in (i.e. TR)). In
order to achieve this goal let’s define a cost function fC (eq.



(4)).

fc =
AC

max(AC)
+ θ.

TR

max(TR)
(4)

where θ is a coefficient enabling to adjust how important is
altered TR cost compared to altered BP cost for a data center
service provider. Notice that minimizing the cost function leads
to find for a given θ a unique couple with minimum values of
respectively AC and TR.

time
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

In
s
ta

n
ta

n
e

o
u

s
 A

g
g

re
g

a
te

d
 C

a
p

a
c
it
y

0

2

4

6

8

10

12

14

16

18

No LB:
CLB=15

n=2
ρ=30

(a) NoLBmodel
time

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

In
s
ta

n
ta

n
e
o
u
s
 A

g
g
re

g
a
te

 C
a
p
a
c
it
y

0

5

10

15

20

25

30

One
Threshold:

CM=30

CLB=15

CC=10

n=2
ρ=30

(b) LB model

Fig. 4: IAC vs time for different LB models ((No LB
(LB model, p=1)), (LB model, p = 0.3) (ρ=30)

State
-2 0 2 4 6 8 10 12 14 16 18

S
te

a
d

y
 S

ta
te

 P
ro

b
a

b
ili

ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
rho=10
rho=30

No LB:
CLB=15

n=2

(a) NoLBmodel

State
-5 0 5 10 15 20 25 30 35 40 45

S
te

a
d

y
 S

ta
te

 P
ro

b
a

b
ili

ty

0

0.02

0.04

0.06

0.08

0.1

0.12
rho=10
rho=30One

Threshold:
CM=30

CLB=15

CC=10

n=2

(b) LB model

Fig. 5: Steady state probability distribution for different
models (No LB model, LB model (ρ=10-30)

VI. NUMERICAL RESULTS

In order to assess the performance of the proposed LB model,
we conduct several numerical investigations. The first one is
based on transient analysis whereas the second is based on
steady state analysis. The following parameters are used for
illustrative numerical LB models’ resolution:
� For LB model (Fig.2, Fig.3): CM = 30, CLB = 15, CC =
10, n = 2, p = 0.3. Hence AC may alternate between the
following capacities: CM + n, CM , CLB + n, CLB .
� For No LB model: LB model is also used to describe controller
without LB by setting p = 1. In this case AC may alternate
between CLB + n and CLB .
In order to investigate numerical results related to both transient

analysis (Fig.4) and steady state analysis (Fig.5) and since the
Markov chain of LB model is hysteresis-based, it’s necessary
to take into consideration in which order are represented the
states of the Markov chains in the infinitesimal generator (see
subsection V-E).

A. Transient Analysis

Fig.4 shows the evolution of IAC vs time, for a given
ρ = 30. This is given respectively for No LB model and
LB model. We have chosen ρ sufficiently high in order to
highlight the impact of Cc(t) on IAC (i.e. on the switching
frequency between different threshold capacities). For No LB
model (Fig.4.(a)) we observe that IAC alternates between only
two threshold capacities (CLB = 15 and CLB +n = 17). This
is obvious since in such scenario only scaling up and scaling
down phases are enabled and there is no neighboring server
controller able to reserve capacity for the overloaded client
controller. In other words the maximum capacity reserved in
this case corresponds to the client capacity controller. For
LB model (Fig.4.(b)) we notice that as Cc(t) fluctuates, IAC
switches between four threshold capacities (32, 30, 17, 15).
This is justified by the fact that the different scaling phases
(out/in/up/down) may be activated and deactivated. However
despite the maximum reserved capacity is the same as in LB
model, the reservation is achieved with finer granularity and
more threshold capacities are used (i.e. 32, 30, 27, 25, 22, 20,
17, 15).

B. Steady State Analysis

Fig.5 shows how workload increase impacts the steady state
probability distribution for different LB models (No LB model
(Fig.5.(a)), LB model (Fig.5.(b))) and for different ρ values
(i.e. 10, 30). For light incoming traffic (i.e. ρ=10), the most
visited states (for LB model) are those of the first column in
the CTMC (Fig.5). This means that for such traffic there is
almost no LB and the reserved capacity corresponds only to
the client controller capacity. However for heavy traffic (i.e.
ρ=30) the states of the last column (Fig.5) in the CTMC have
higher probability values since the system (i.e. client+server(s))
is heavily loaded. This means that the server controller(s) is/are
the most solicited to handle the incoming traffic to the client.
Fig.6 plots AC, TR, BP metrics vs ρ for different models:
No LB model (Fig.6.(a)), LB model with p = 1 (Fig.6.(b))
and LB model with p = 0.3 (Fig.6.(c)). A first observation
from Fig.6shows that the lack of LB (Fig.6.(a)) yields less
AC, no TR and much more BP when compared to cases
wher LB is activated (Fig.6.(b), Fig.6.(c)). This is trivial since
the absence of LB involves less reserved resources, no scaling
out/in phases and greater risk to loose exceeding load. A
second observation from Fig.6.(b) and Fig.6.(c)) shows that
AC is an increasing function of ρ whenever LB is activated.
In Fig.7(a) (resp. Fig.7(b)) we plot AC with respect to CC
(resp. CLB) for different CLB (resp. CC) values. Similarly
Fig.8(a) (resp. Fig.8(b)) highlights TR behavior with respect
to CC (resp. CLB) for different CLB (resp. CC) values. On
the other hand Fig.9(a) (resp. Fig.9(b)) investigates AC (resp.



offered load (ρ)
0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 A

g
g

re
g

a
te

d
 C

a
p

a
ci

ty

14

16

18

20

22

24

26

28

30

32

LB, One threshold (C
LB

)

No LB

One
threshold:
CM=30

CLB=15

CC=10

n=2

(a) AC vs ρ

offered load (ρ)
0 10 20 30 40 50 60 70 80 90 100

T
ra

ns
iti

on
 R

at
e 

"T
R

" 
(1

/s
)

×10-4

0

2

4

6

8

10

12

14

16

18

20

LB, One threshold (C
LB

)

No LB

One
threshold:
CM=30

CLB=15

CC=10

n=2

(b) TR vs ρ

offered load (ρ)
0 50 100 150 200 250

B
lo

ck
in

g
 P

ro
b
a
b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LB, One threshold (C
LB

)

No LB

One
threshold:
CM=30

CLB=15

CC=10

n=2

(c) BP vs ρ

Fig. 6: LB performance metrics vs ρ for different LB models ((No LB model (LB model, p = 1), (LB model, p = 0.3)) (ρ=30)

offered load (ρ)
0 10 20 30 40 50 60

T
ra

n
si

tio
n

 R
a

te
 (

1
/s

)

×10-3

-1

0

1

2

3

4

5

6

 C
C

=1

 C
C

=2

 C
C

=3

 C
C

=4

 C
C

=5

 C
C

=6

 C
C

=7

 C
C

=8

 C
C

=9

 C
C

=10

 C
C

=11

 C
C

=12

 C
C

=13

 C
C

=14

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CC=CLB-1=14

CC=1

(a) Fixed CLB , varied CC

offered load (ρ)
0 10 20 30 40 50 60

T
ra

n
si

tio
n

 R
a

te
 (

1
/s

)

×10-3

-1

0

1

2

3

4

5
 CLB=11

 CLB=12

 CLB=13

 CLB=14

 CLB=15

 CLB=16

 CLB=17

 CLB=18

 CLB=19

 CLB=20

 CLB=21

 CLB=22

 CLB=23

 CLB=24

 CLB=25

 CLB=26

 CLB=27

 CLB=28

 CLB=29

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CLB=CC+1=11

CLB=CM-1=29

(b) Fixed CC , varied CLB

Fig. 7: TR vs ρ

offered load (ρ)
0 10 20 30 40 50 60

A
v
e

ra
g

e
 A

g
g

re
g

a
te

d
 C

a
p

a
c
it
y

14

16

18

20

22

24

26

28

30

32

 C
C

=1

 C
C

=2

 C
C

=3

 C
C

=4

 C
C

=5

 C
C

=6

 C
C

=7

 C
C

=8

 C
C

=9

 C
C

=10

 C
C

=11

 C
C

=12

 C
C

=13

 C
C

=14

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CM=30

CLB=15

 n=2
p=0.3

CC=1

CC=CLB-1=14

(a) Fixed CLB , varied CC

offered load (ρ)
0 10 20 30 40 50 60

A
v
e

ra
g

e
 A

g
g

re
g

a
te

d
 C

a
p

a
c
it
y

10

15

20

25

30

35

 CLB=11

 CLB=12

 CLB=13

 CLB=14

 CLB=15

 CLB=16

 CLB=17

 CLB=18

 CLB=19

 CLB=20

 CLB=21

 CLB=22

 CLB=23

 CLB=24

 CLB=25

 CLB=26

 CLB=27

 CLB=28

 CLB=29

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CM=30

CC=10

 n=2
p=0.3

CLB=CM-1=29

CLB=CC+1=11

(b) Fixed CC , varied CLB

Fig. 8: AC vs ρ

TR) with respect to both CC and CLB . The above curves
clearly shows that the same peer CLB CC minimizes (resp.
maximizes) AC (resp. TR). It’s obvious that minimizing the
cost function fc (eq. 4) and thus minimizing both AC and
TR cannot be achieved unless a tradeoff is made. Fig.10(a)
(resp. Fig.10(b)) investigates optimal CLB and CC values with
respect to θ (resp. ρ). Notice that from Fig.10 we can deduce
the optimal hysteresis thresholds to trigger scaling out and
scaling in phases.

VII. CONCLUSION

In this paper, the main objective is to enable through
hysteresis-based scheme efficient LB scheme for LB in SDN
with multi-controllers distributed architectures with logical

252015

C
C

10500

10

20

C
LB

0

30

20

15

10

5

25

30

A
ve

ra
g

e
 A

g
g

re
g

a
te

d
 C

a
p

a
ci

ty

CM=30

 n=2
p=0.3

(a) Average aggregate load

252015

C
C

1050
0

10

20

C
LB

0

1

4

2

3

5

6

30

×10-3

T
ra

n
si

tio
n

 R
a

te

CM=30

 n=2
p=0.3

(b) Transition Rate

Fig. 9: AC and TR as function of CLB and CC

θ

10-1 100 101 102 103 104

C
L
B
 a

n
d
 C

C
 c

u
rv

e
s

0

5

10

15

20

25

30

optimal C
LB

optimal C
C

CM=30

 n=2
p=0.3

(a) Optimal CLB and CC as
function of θ

offered load (ρ)
0 2 4 6 8 10 12 14 16 18 20

C
L
B
 a

n
d
 C

C
 c

u
rv

e
s

0

5

10

15

20

25

30
C

LB
C

C

CM=30

 n=2
p=0.3
θ=1

(b) Optimal CLB and CC as
function of ρ

Fig. 10: Optimal CLB and CC as function of θ and ρ

global view. To this end, we investigate LB toward two
hysteresis-based LB models. The first one relatively simple
and concerns LB between one client controller and one server
controller whereas the second, more versatile, describes LB
interactions between one client and multiple (three) servers
according to a given LB policy. The proposed LB models
fully leverage hysteretic capabilities to bring agile scalability
while ensuring low operational costs. Numerical evaluations of
the two proposed models are conducted through two kinds of
investigation. The first one is based on transient analysis and
shows how controller resources, of both the client and servers,
are dynamically allocated during activation and deactivation of



the LB process with respect to variable and unpredictable
spike. The second is based on steady state analysis and
highlights performance metrics with respect to workload such
as the average aggregated capacity (AC) (measuring the global
capacity reserved during LB, the transition rate (quantifying
the frequency of scaling out/in) and the blocking probability
(BP ). Notice also that all numerical investigations are based
on comparative evaluation between controller models with and
without LB. In future work we will be interested to jointly use
auto-scaling with LB mechanisms (based on similar hysteretic
concept used in this paper), enabling to combine vertical scaling
with horizontal scaling. We will also generalize the proposed
model in this paper by investigating the problem of optimal
LB policies between one client and multiple servers in the
SDN control plane.

REFERENCES

[1] F. Benamrane, M. Ben Mamoun, and R. Benaini. An east-west
interface for distributed sdn control plane: Implementation and evaluation.
Computers and Electrical Engineering, 57:162–175, 2017.

[2] K. Benzekki, A. El Fergougui, and A. E. Elalaoui. Software defined
networking (sdn): a survey. Security and Communication Networks,
2016.

[3] O. Blial, M. Ben Mamoun, and R. Nguyen Benaini. An overview on sdn
architectures with multiple controllers. Journal of Computer Networks
and Communications, (4), 2016.

[4] A. A. Dixit, S. Mukherjee, T.V. Lakshman, and R. Kompella. Elasticon: an
elastic distributed sdn controller. In Proceedings of the tenth ACM/IEEE
symposium on Architectures for networking and communications systems,
pages 17–28, 2014.

[5] Ligang Dong, Jing Zhou, Tijie Xu, Dandan Yang, Ying Li, and Weiming
Wang. Loose management for multi-controller in sdn. volume 177, pages
3–13, 06 2017.

[6] X. Huang, S. Bian, Z. Shao, and H. Xu. Dynamic switch-controller
association and control devolution for sdn systems. In proceedings of
IEEE ICC 2017, 2017.

[7] Ioannis Kamitsos, Lachlan Andrew, Hongseok Kim, and Mung Chiang.
Optimal sleep patterns for serving delay-tolerant jobs. In Proceedings
of the 1st International Conference on Energy-Efficient Computing and
Networking, pages 31–40. ACM, 2010.

[8] Ioannis Kamitsos, Lachlan Andrew, Hongseok Kim, Sangtae Ha, and
Mung Chiang. Better energy-delay tradeoff via server resource pooling.
In 2012 International Conference on Computing, Networking and
Communications (ICNC), pages 611–616. IEEE, 2012.

[9] Ioannis Kamitsos, Sangtae Ha, Lachlan LH Andrew, Jasika Bawa, Dana
Butnariu, Hongseok Kim, and Mung Chiang. Optimal sleeping: models
and experiments for energy-delay tradeoff. International Journal of
Systems Science: Operations & Logistics, 4(4):356–371, 2017.

[10] Ioannis Kamitsos, Paschalis Tsiaflakis, Sangtae Ha, and Mung Chiang.
Stable sleeping in dsl broadband access: Feasibility and tradeoffs. In
2011 IEEE Global Telecommunications Conference-GLOBECOM 2011,
pages 1–6. IEEE, 2011.

[11] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-defined networking: a comprehensive
survey. Proceedings of the IEEE, 103:14–76, 2015.

[12] C. Liang, R. Kawashima, and H. Matsuo. Scalable and crash-tolerant load
balancing based on switch migration for multiple open flow controllers. In
Proceedings of the 2014 Second International Symposium on Computing
and Networking, pages 171–177, 2014.

[13] H. Sufiev and Y. Haddad. Dcf: Dynamic cluster flow architecture for sdn
control plane. in consumer electronics (icce). In 2017 IEEE International
Conference on Consumer Electronics, pages 172–173, 2017.

[14] F. De Turck, P. Chemouil, R. Boutaba, M. Yuand, C. E. Rothenberg, and
K. Shiomoto. Introduction: Special issue on management of softwarized
networks. IEEE Transactions on Network and Service Management,
13:362–365, 2016.

[15] X. Wang, X. Chen, C. Yuen, W. Wu, M. Zhang, and C. Zhan. Delay-cost
tradeoff for virtual machine migration in cloud data centers. Journal of
Network and Computer Applications, 78:62–72, Jan 2017.

[16] X. Wang, C. Yuen, X. Chen, N. Ul Hassan, and Y. Ouyang. Cost-aware
demand scheduling for delay tolerant applications. Journal of Network
and Computer Applications, 53:173–182, July 2017.

[17] F. X. Wibowo, M. A. Gregory, K. Ahmed, and K. M. Gomez. Multi-
domain software defined networking: Research status and challenges.
Journal of Network and Computer Applications, 87:32–45, 2017.

[18] W. Xia, Y.Wen, C.Heng Foh, D.Niyato, and H. Xie. A survey on software-
defined networking. IEEE Communications Surveys and Tutorials, 17:27–
51, 2015.

[19] Y. Zhou, M. Zhu, and L. Xiao. A load balancing strategy of sdn controller
based on distributed decision. In Proceedings of the 2014 IEEE 13th
International Conference on Trust, Security and Privacy in Computing
and Communications, pages 851–856, 2014.

[20] Y. Zou, Y. Tian, S. Guo, and Y. Wu. Active synchronization of multi-
domain controllers in software defined networks. Concurrency and
Computation: Practice and Experience, 2016.


