
HAL Id: hal-02475811
https://hal.science/hal-02475811v1

Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delay-dependent partial order reduction technique for
real time systems

Hanifa Boucheneb, Kamel Barkaoui

To cite this version:
Hanifa Boucheneb, Kamel Barkaoui. Delay-dependent partial order reduction technique for real time
systems. Real-Time Systems, 2018, 54 (2), pp.278-306. �10.1007/s11241-017-9297-0�. �hal-02475811�

https://hal.science/hal-02475811v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Delay-dependent partial order reduction technique for real

time systems

Hanifa Boucheneb · Kamel Barkaoui

Received: date / Accepted: date

Abstract Partial order reduction techniques aim at coping with the state explosion

problem by reducing, while preserving the properties of interest, the number of tran-

sitions to be fired from each state of the model. For (time) Petri nets, the selection

of these transitions is, generally, based on the structure of the (underlying) Petri net

and its current marking. This paper proposes a partial order reduction technique for

time Petri nets (TPN in short), where the selection procedure takes into account the

structure, including the firing intervals, and the current state (i.e., the current marking

and the firing delays of the enabled transitions). We show that our technique pre-

serves non-equivalent firing sequences of the TPN. Therefore, its extension to deal

with LTL−X properties is straightforward, using the well established methods based

on the stuttering equivalent sequences.

Keywords Time Petri nets · Partial order techniques · State space abstractions ·
Contracted state class graph method,

1 Introduction

A time Petri net (TPN in short) is a Petri net, where each transition is labelled with

an interval specifying, relatively to its enabling date, its minimal and maximal firing

H. Boucheneb

Laboratoire VeriForm, Department of Computer Engineering and Software Engineering,

École Polytechnique de Montréal,

P.O. Box 6079, Station Centre-ville, Montréal, Québec, Canada, H3C 3A7.

Tel.: +1-3404711 ext. 4101

E-mail: hanifa.boucheneb@polymtl.ca

K. Barkaoui

Laboratoire CEDRIC, Conservatoire National des Arts et Métiers,

192 rue Saint Martin, Paris Cedex 03, France

Tel.: +331-40272852 E-mail: kamel.barkaoui@cnam.fr

2 Hanifa Boucheneb, Kamel Barkaoui

delays. Time Petri nets are definitely established as a powerful formalism for formal

verification of real time systems. The verification techniques, such as reachability

analysis, are based on the so-called state space abstraction, where states reachable

by the same firing sequence, but at different dates, are grouped in the same set and

considered modulo some relation of equivalence (abstract states, state classes or state

zones) [5,9,10,12,26]. For bounded time Petri nets, state space abstractions, such as

the State Class Graph (SCG) [5] and the Zone Based Graph (ZBG) [9], yield finite

representations that preserve marking and firing sequences. However, for highly con-

current systems, these verification techniques face a severe problem of state space

explosion.

To alleviate this problem, partial order techniques are proposed in the literature

for time Petri nets such as: partial order unfolding [14,15,24] and partial order re-

duction [6–8,16,22,21,25,27]. The idea of the unfolding techniques is to translate a

TPN model into an acyclic Petri net with firing time constraints, respecting the partial

order of the originate model. The available unfolding techniques are however limited

to 1-safe TPNs1. The common characteristics of the partial order reduction methods

is that they explore a subset of firing sequences (representative firing sequences) from

each (abstract) state. These subsets are sufficient to verify the properties of interest.

Among the TPN state space abstractions in the literature, we consider the Con-

tracted State Class Graph (CSCG in short) [12] and investigate partial order reduction

techniques, which preserve non-equivalent firing sequences of the TPN (i.e., there is

no maximal firing sequence2 in the TPN with no equivalent sequence3 in the reduced

space and vice-versa). Since the CSCG preserves markings and firing sequences of

the TPN, the purpose is to select a subset of firable transitions to be explored from

each state class, so as to cover all and only all non-equivalent firing sequences of the

CSCG.

In almost all partial order reduction techniques, the selection procedure of repre-

sentative transitions is based on an independence relation over transitions. Intuitively,

two transitions are independent, if they can neither disable nor enable each other and

their firings in both orders lead to the same state. If a transition is selected to be fired

from a state, then all its dependent and firable transitions are selected too. Various

sufficient conditions, guaranteeing an effective selection of an over-approximation of

dependent transitions, are proposed in the literature such as persistent sets [16], am-

ple sets [21,22] and stubborn sets [25].

However, in the context of the TPN state space abstractions such as the CSCG,

different interleavings of the same set of transitions lead, in general, to different ab-

stract states and then the relation of independency is difficult to meet. For instance,

1 A 1-safe time Petri net is a 1-bounded time Petri net (i.e., each place can contain at most one token).
2 A maximal firing sequence is either infinite or finite ending up in a deadlock state (i.e., a state with no

enabled transitions).
3 Two sequences ω and ω ′ are equivalent (denoted by ω ≡ ω ′) iff ω ′ can be obtained from ω by

successive permutations of its transitions. By convention, it holds that ω ≡ ω ′.

Delay-dependent partial order reduction for real time systems 3

for the TPN at Fig.1.a, taken from [6], the firing of the non-conflicting transitions t1
and t2 in both orders leads to two state classes with different behaviours (see Fig.2.a

and Table 1). The transition t3 is not firable from the state class reached by t2t1 but is

firable from the successor of the initial state class by t1t2. To overcome this limitation,

two main techniques are used in the literature: the local time semantics [3,17,20] and

Partially Ordered Sets (POSETs) of transitions or events [1,18,19,27].

The local time semantics approaches suppose that the model consists of a set

of components, each one is represented by a timed model (timed automaton, TPN,

etc.) and has, in addition to its clocks, a reference clock. The reference clocks evolve

asynchronously and are synchronized when needed (i.e., when an action of synchro-

nization is executed). Such approaches need additional clocks and the differences

between reference clocks may diverge leading to an infinite state space [19].

The partial order reduction approaches based on POSETs aim to force the inde-

pendency relation by fixing partially the firing order of transitions or events [1,18,19,

27]. The idea is to compute, by exploring one sequence of transitions, the convex hull

of the abstract states reachable by some of its equivalent sequences. However, unlike

timed automata [23], for TPNs, including 1-safe TPNs, this convex hull is not neces-

sarily the union of the abstract states reached by equivalent sequences of transitions

[6]. As an example, for the TPN at Fig.1.b taken from [6], the union of state classes

reached by different interleavings of transitions t1 and t2 from the initial state class

is not equal to their convex hull [6]. From its initial state class α0, firing sequences

t1t2 and t2t1 lead respectively to state classes α3 and α5.Their convex hull is the state

class α35 = (p3 + p4 + 2p5,−4 ≤ t3 − t4 ≤ 3∧−2 ≤ t3 − t5 ≤ 5∧ 0 ≤ t4 − t5 ≤ 4)
(see Fig.2.a and Table 1). The firing schedule (t3 = 2, t4 = 2, t5 = 2) of α35 belongs

neither to α3 nor to α5. The union of α3 and α5 is then not equal to their convex hull.

Moreover, if we replace state classes α3 and α5 by their convex hull α35, we preserve

neither boundedness nor reachability properties of the model. Fig.2.b shows a firing

sequence that is neither feasible from α3 nor from α5 but feasible from α35. Indeed,

the infinite sequence t4t3t6t7t7.... is neither firable from α3 nor from α5. It is however

firable from α35 and produces an infinite number of markings. This issue is caused

by the fact that the parent of t5 depends of the firing order of transitions t1 and t2. The

transition t5 is enabled by t2, in case t1 is fired before t2. It is enabled by t1, otherwise.

Since, the firing delay of a transition is relative to the firing date of its parent, the

firing intervals of t5 in α3 and α5 have different references.

In [27], to deal with this issue, the authors keep, in each abstract state, in addi-

tion to the time constraints of the enabled transitions, those of their parents. All the

different possible parents of the enabled transitions are considered when computing

successors of the abstract states. Moreover, the selection procedure of independent

transitions takes into account neither the static nor the dynamic timing information of

the model. In [18], the authors have defined a state space abstraction where the firing

order constraints between non-related transitions4 are totally ignored when comput-

4 Transitions are non-related if no one is enabled by the others (i.e., no one is the parent of the others).

4 Hanifa Boucheneb, Kamel Barkaoui

ing successors. The subset of transitions explored from each abstract state is a persis-

tent set [18]. However, the state space abstraction proposed in [18] preserve neither

markings nor the firing sequences of the TPN. The counterexample is given by the

TPN at Fig.3 [7].

In [7], the authors have revisited, using POSETS, the stubborn method in the

context of time Petri nets. This method yields reduced graphs that preserve the non-

equivalent firing sequences of time Petri nets. However, its selection procedure of

representative transitions is only based on the structure of the untimed underlying

Petri nets and markings. In [8], the authors have investigated and proposed a selec-

tion procedure that takes into account the static and dynamic firing intervals of transi-

tions. These time constraints allow to relax the selection conditions of representative

transitions. For instance, the persistency of an enabled transition t is guarantied, if

there is no conflicting transition that can fire before t (i.e., t is eventually fired before

all conflicting transitions). So, firing delays between transitions allow to weaken the

sufficient condition of persistent transitions. The purpose of the present paper is to im-

prove the approach developed in [8], so as to achieve further reduction. The idea is to

weaken the selection conditions by taking into better account the static and dynamic

firing time constraints of time Petri net. We show that the resulting reduced graph

preserves non-equivalent sequences of the TPN. So, the extension of the verification

approach proposed here to LT L−X
5 properties over markings could be achieved as

shown in [25].

The rest of the paper is organized as follows. Section 2 is devoted to the TPN, its

semantics and its CSCG. Section 3 defines the notions of partial order successor and

reduced state class graph. Section 4 is devoted to our reduced state class graph and

the proof that it preserves the non-equivalent firing sequences of the TPN. Section 5

reports some experimental results. Finally, the conclusions are presented in Section 6.

α0 α1 α2 α3

p1 + p2 + p8 p2 + p3 + p5 + p8 p1 + p4 + p5 + p8 p3 + p4 +2p5 + p8

−1 ≤ t1 − t2 ≤ 5 −2 ≤ t2 − t3 ≤ 5 2 ≤ t1 − t4 ≤ 4 −4 ≤ t3 − t4 ≤ 2

−2 ≤ t3 − t5 ≤ 5

1 ≤ t4 − t5 ≤ 4

α4 α5 α6 α7

p2 + p5 + p6 + p8 p3 + p4 +2p5 + p8 p3 + p4 p4 +2p5 + p6 + p8

true −1 ≤ t3 − t4 ≤ 3 −4 ≤ t3 − t4 ≤ 2 1 ≤ t4 − t5 ≤ 4

1 ≤ t3 − t5 ≤ 5

0 ≤ t4 − t5 ≤ 4

α8 α9 α10 α11

p3 + p4 p3 +2p5 + p7 + p8 p4 + p6 p3 + p7

−1 ≤ t3 − t4 ≤ 3 1 ≤ t3 − t5 ≤ 3 true true

α12

p6 + p7

true

Table 1 State classes of the CSCG at Fig.2.a

5 LTL−X properties are LTL properties where the next operator X is forbidden.

Delay-dependent partial order reduction for real time systems 5

a) TPN1

b)TPN2

p1 p2

p5p3 p4

p6 p7p8

p9

p10

t1[1,3] t2[2,6]

t3[3,5] t5[0,2] t4[3,4]

t6[0,0]

t7[1,1]

2

• •

•

p1 p2

p3 p4

t4[1,1]t3[2,2]

t1[2,2] t2[1,3]

• •

Fig. 1 Time Petri nets used to illustrate features of the interleaving

a) The CSCG of the TPN at Fig.1.a

b) A behaviour of the convex hull of α3 and α5.

t1

t2

t3
t2

t1

t2
t3

t5 t4

t5t5 t3

t4
t5

t4

t4
t4

t3

α0

α1 α2

α3α4 α5

α6 α7 α8

α9

α10 α11

α12 ...

t1

t2

t2
t1

t4

t3

t6
t7 t7

α0

α1 α2

α35

α15

α16

α17 α18 α19

Fig. 2 Convex hull issue of state classes reached by different interleavings of the same set of transitions

2 Time Petri Nets

2.1 Definition and semantics

Let P be a nonempty set. A multi-set over P is a function M : P −→ N, N being the

set of natural numbers, defined also by the formal sum: ∑
p∈P

M(p)× p 6.

We denote by PMS and 0 the set of all multi-sets over P and the empty multi-

set, respectively. Let M1 ∈ PMS, M2 ∈ PMS and ≺∈ {≤,=,<,>,≥}. Operations on

multi-sets are defined as usual:

6 The symbol × is an optional separator between elements of M and their occurrence numbers.

6 Hanifa Boucheneb, Kamel Barkaoui

1) ∀p ∈ P, p ∈ M1 iff M1(p)> 0;

2) M1 + M2 = ∑
p∈P

(M1(p) + M2(p))× p;

3) M1 ≺ M2 iff ∀p ∈ P,M1(p)≺ M2(p);
4) M1 6≺ M2 iff not (M1 ≺ M2);

5) M1 ×M2 = ∑
p∈P

Min(M1(p),M2(p))× p;

6) If the multi-sets M1 and M2 are s.t. M1 ≤ M2, then M2 −M1 is the multi-set de-

fined by: ∑
p∈P

(M2(p)−M1(p))× p.

Let Q+ and R+ be the sets of non-negative rational and real numbers, respec-

tively, and INTX = {[a,b]|(a,b) ∈ X× (X∪ {∞})}, for X ∈ {Q+,R+}, the set of

intervals whose lower and upper bounds are in X and X∪{∞}, respectively.

Definition 1 A time Petri net is a tuple N = (P,T, pre, post,M0, Is) where

– P and T are finite and nonempty sets of places and transitions s.t. P∩T = /0;

– pre and post are the backward and forward incidence functions

(pre, post : T −→ PMS);

– M0 ∈ PMS is the initial marking; Is is the static firing function (Is : T → INTQ+).
↓ Is(t) and ↑ Is(t) denote the lower and upper bounds of the static firing interval

of transition t.

For t ∈ T , ◦t = {p ∈ P|pre(t)(p) > 0} and t◦ = {p ∈ P|post(t)(p) > 0} denote

the sets of input and output places of t, respectively. Similarly, for p ∈ P, the sets of

input and output transitions of p are denoted by ◦p = {t ∈ T |post(t)(p) > 0} and

p◦ = {t ∈ T |pre(t)(p)> 0}, respectively.

The transition t is structurally in conflict with a transition t ′ of T iff they share at least

an input place, i.e., ◦t ∩◦ t ′ 6= /0.

We denote by CFS(t) =
⋃

p∈◦t

p◦ the set of transitions structurally in conflict with t.

Note that t ∈CFS(t).
We denote by NwS(t) =

⋃

p∈t◦
p◦ the set of output transitions of t (the transitions that

may be enabled by firing t).

Several semantics are proposed in the literature for the TPN model [4,11,13]. An

overview and a classification of the TPN semantics can be found in [11]. They differ

mainly in the interpretation of the notion of newly enabled transition, the characteri-

zation of states and the server policy. The notion of newly enabled transitions may re-

fer to the intermediate markings (markings resulting from the consumption of tokens)

or the markings before and after firings (intermediate or atomic firing semantics) [4].

The timing information is either associated with transitions represented by clocks or

delays (threshold semantics) or tokens represented by clocks giving their ages (age

semantics) [13]. The service policy specifies whether several enabling instances of

the same transition may be handled simultaneously (multiple-server semantics) or

not (single-server semantics). For the single-server semantics, the multi-enabledness

Delay-dependent partial order reduction for real time systems 7

is not ambiguous, since only one enabling instance of each transition is considered

at each state (i.e., sequential management). However, different interpretations can be

defined for multiple-server semantics [11]. We consider here the classical and widely

used semantics (i.e., the threshold, intermediate and single-server semantics).

Each marking of N is a multi-set over P. Let M be a marking of N and t ∈ T a

transition. The transition t is enabled at marking M, denoted by M[t> iff all required

tokens for firing t are present in M, i.e., M ≥ pre(t). In case t is enabled at M, its

firing leads to the marking M′ = M − pre(t)+ post(t). The notation M[t>M′ means

that t is enabled at M and M′ is the marking reached from M by t. We denote by

En(M) the set of transitions enabled at M, i.e., En(M) = {t ∈ T | M ≥ pre(t)}.

For t ∈ En(M), we denote by CF(M, t) the set of transitions enabled at M but in

conflict with t, i.e., CF(M, t) = {t ′ ∈ En(M) | t ′ = t ∨M 6≥ pre(t)+ pre(t ′)}. Note

that CF(M, t)⊆CFS(t).

For any sequence t1t2...tn ∈ T+, the usual notation M[t1t2...tn> means that there

are markings M1, ...,Mn so that M1 = M and Mi[ti>Mi+1, for i ∈ [1,n−1] and Mn[tn>.

The notation M[t1t2...tn>M′ gives, in addition, the marking reached by the sequence.

Let M′ be the successor marking of M by t. We denote by Nw(M, t) the set of

transitions newly enabled at the marking M′ reached from M by firing t. Formally,

Nw(M, t) contains t, if t is enabled at M′, and also all transitions enabled at the mark-

ing M′ but not enabled at the intermediate marking M− pre(t), i.e.,

Nw(M, t) = {t ′ ∈ En(M′) | t ′ = t ∨ M − pre(t) 6≥ pre(t ′)}. Note that Nw(M, t) ⊆
NwS(t).

Starting from the initial marking M0, the marking of N evolves by firing tran-

sitions at irregular intervals of time. When a transition t is newly enabled, its firing

interval is set to its static firing interval. Bounds of its interval decrease synchronously

with time until it is fired or disabled by a conflicting firing. Transition t is firable, if

the lower bound of its firing interval reaches 0. It must fire immediately, without any

additional delay, when the upper bound of its firing interval reaches 0, unless it is

disabled by another firing. The firing of a transition takes no time but leads to a new

marking.

Syntactically, in the context of N , a state is defined as a pair s = (M, I), where M

is a marking and I is a firing interval function (I: En(M)→ INTR+). The initial state

of N is s0 = (M0, I0), where I0(t) = Is(t), for all t ∈ En(M0).

Let S = {(M, I) | M ∈ PMS ∧ I: En(M)→ INTR+} be the set of all syntactically

correct states, s = (M, I) and s′ = (M′, I′) two states of S , dh ∈ R+ a nonnegative

real number, t ∈ T a transition and → the transition relation defined by:

• s
dh
→ s′ (s′ is also denoted by s+ dh) iff the state s′ is reachable from state s by dh

time units, i.e., ∀t ∈ En(M),dh ≤ ↑ I(t),M′ = M and

8 Hanifa Boucheneb, Kamel Barkaoui

∀t ′ ∈ En(M′), I′(t ′) = [Max(0,↓ I(t ′)− dh),↑ I(t ′)− dh].

• s
t
→ s′ iff t is immediately firable from s and its firing leads to s′, i.e.,

t ∈ En(M), ↓ I(t) = 0, M′ = M− pre(t)+ post(t),and

∀t ′ ∈ En(M′), I′(t ′) =

{

Is(t ′) if t ′ ∈ Nw(M, t)

I(t ′) otherwise.

The semantics of N is defined by the transition system (S,→,s0), where S ⊆ S

is the set of all states reachable from the initial state s0 by
∗
→ (the reflexive and tran-

sitive closure of →).

A run in (S,→,s0), starting from a state s1 of S, is a maximal sequence ρ =

s1
dh1→ s1 + dh1

t1→ s2
dh2→ s2 + dh2

t2→ s3.... By convention, for any state si, relation

si
0
→ si holds. Sequences dh1t1dh2t2... and t1t2... are called the timed trace and firing

sequence (untimed trace) of ρ , respectively. The total elapsed time during the run ρ ,

denoted by time(ρ), is ∑
i=1,|ρ |

dhi, where |ρ | is the length of the firing sequence of ρ .

An infinite run ρ is diverging if time(ρ) = ∞, otherwise it is said to be zeno. Runs of

N are all runs of the initial state s0. A TPN model is said to be non-zeno if all its

runs are non-zeno. We consider here only non-zeno TPNs. This restriction ensures

that each enabled transition will eventually become firable in the future, unless it is

disabled by a conflicting transition. The timed language of N is the set of its timed

traces. A marking M is reachable in N iff ∃s ∈ S s.t. the marking of s is M.

2.2 Contracted state class graph

Let N =(P,T, pre, post,M0, Is) be a TPN. Several state space abstractions have been

proposed in the literature for N : the State Class Graph (SCG) [5], the Contracted

State Class Graph (CSCG) [12], the Geometric Region Graph (GRG) [26], the Strong

State Class Graph (SSCG) [5], the Zone Based Graph (ZBG) [9] and the Atomic State

Class Graphs (ASCGs) [5,10,26]. In such abstractions, all states grouped in the same

node share the same marking and the union of their time domains is represented by a

consistent conjunction of atomic constraints 7.

From a practical point of view, every conjunction of atomic constraints is rep-

resented by means of a Difference Bound Matrix (DBM) [2]. Although the same

nonempty domain may be encoded by different conjunction of atomic constraints,

their DBMs have a canonical form. The canonical form of a DBM is the representa-

tion with tightest bounds on all differences between variables, computed by propagat-

ing the effect of each entry through the DBM. Two conjunctions of atomic constraints

are equivalent (i.e., represent the same domain) iff their DBMs have the same canon-

ical form. Canonical forms make operations over formulas much simpler [2].

7 An atomic constraint is a constraint of the form x ≺ c,−x ≺ c or x− y ≺ c, where x,y are real-valued

variables, ≺∈ {<,=,≤,≥,>} and c ∈Q∪{∞,−∞} is a rational number

Delay-dependent partial order reduction for real time systems 9

Among these abstractions, we consider the CSCG. The CSCG is the quotient

graph of the SCG [5] w.r.t. some relation of equivalence over state classes of the SCG

[12]. Intuitively, this relation groups together all state classes, which have the same

marking and triangular constraints8, but not necessarily the same simple atomic con-

straints9. The CSCG and SCG have the same reachable markings and firing sequences

[12]. In other words, the CSCG preserves markings and firing sequences of the SCG,

which, in turn, preserves markings and firing sequences of N [5]. The CSCG of N

is finite iff N is bounded (i.e. has a finite number of reachable markings).

Syntactically, a CSCG state class is defined as a pair α = (M,F), where M is a

marking and F is a consistent conjunction of triangular atomic constraints over firing

delays of transitions enabled at M. The formula F characterizes the union of firing

time domains of all states within α . By convention, F = true if the number of en-

abled transitions at M is less than 2 (i.e., there is no triangular atomic constraint in

F). A state s′ = (M′, I′) belongs to α iff M = M′ and its firing time domain (i.e.,
∧

t∈En(M′)
↓ I′(t)≤ t ≤ ↑ I′(t)) is included in the firing time domain of α (i.e., F).

The CSCG initial state class is α0 = (M0,F0), where

F0 =
∧

t,t′∈En(M0) s.t. t 6=t′

t − t ′ ≤ ↑ Is(t)−↓ Is(t ′),

t and t ′ being real-valued variables representing firing delays of transitions t and t ′,

respectively. It keeps only the triangular atomic constraints of the SCG initial state

class.

Let CS be the set of all syntactically correct CSCG state classes and succ a suc-

cessor function from CS ×T to CS ∪{ /0} defined by: ∀α ∈ CS,∀t f ∈ T,

– succ(α, t f) 6= /0 (i.e., t f is firable from α) iff t f ∈En(M) and the following formula

is consistent (its domain is not empty): F ∧ (
∧

t∈En(M)

t f − t ≤ 0).

Intuitively, this formula, called the firing condition of t f from α , means that t f is

firable from α before all other transitions enabled at M. In other words, there is

at least a valuation of firing delays in F s.t. t f has the smallest firing delay.

– If succ(α, t f) 6= /0 then succ(α, t f) = (M′,F ′), where:

M′ = M− pre(t f)+ post(t f) and F ′ is computed in three steps:

1) Set F ′ to F ∧
∧

t∈En(M)

t f − t ≤ 0 ∧
∧

t′∈Nw(M,t f)

↓ Is(t ′)≤ t ′ f − t f ≤↑ Is(t ′)

(Variables t ′ f for t ′ ∈ Nw(M, t f) are new variables introduced for representing

the firing delays of the newly enabled transitions. The notation t ′ f allows to deal

with the situation where t ′ is enabled before firing t f and newly enabled by t f (i.e.

t ′ ∈ CF(M, t f)∩Nw(M, t f)). The new instance of t ′ is temporally represented by

t ′ f , in this step);

8 A triangular atomic constraint is an atomic constraint of the form x− y ≺ c.
9 A simple atomic constraint is an atomic constraint of the form x ≺ c or −x ≺ c.

10 Hanifa Boucheneb, Kamel Barkaoui

2) Put F ′ in canonical form10 and eliminate all transitions of CF(M, t f);
3) Rename each t ′ f into t ′.

Let α = (M,F) ∈ CS. We denote by Fr(α) = {t ∈ T | succ(α, t) 6= /0} the set of

transitions firable from α . The function succ is extended to sequences of transitions

as follows: ∀ω ∈ T ∗, succ(α,ω) = succ(succ(α,ω1),ω2), where ω = ω1ω2 and, by

convention, succ(α,ε) = α , ε being the empty sequence. We denote by ||ω || ⊆ T the

set of transitions appearing in ω .

The CSCG of N is the structure C= (C ,succ,α0), where α0 is the initial CSCG

state class of N and C is the set of state classes accessible from α0 by applying re-

peatedly the successor function succ, i.e., C = {α ∈ CS|∃ω ∈ T ∗,α = succ(α0,ω) 6=
/0}. A sequence ω ∈ T+ is a firing sequence of C iff succ(α0,ω) 6= /0.

p1 p2

p3 p4

t1[1,2] t2[2,3]

t3[2,2] t4[1,1]

• •

Fig. 3 TPN3

Example 1 Consider the model T PN2 at Fig.1.b. Its CSCG initial state class is:

α0 = (p1 + p2,−1 ≤ t1 − t2 ≤ 1). There are two enabled transitions t1 and t2, which

are also firable from α0, since their firing conditions −1 ≤ t1 − t2 ≤ 1∧ t1 ≤ t2 and

−1 ≤ t1 − t2 ≤ 1∧ t2 ≤ t1 are consistent. For instance, let us compute the successor

of α0 by t1. The firing of t1 leads to the state class α1 = (p2 + p3,−2 ≤ t2− t3 ≤−1).
Its marking is computed as usual. Its formula is computed in three steps:

1) Set the formula to the firing condition of t1 from α0 augmented with time con-

straints of transition t3 newly enabled by t1: −1 ≤ t1 − t2 ≤ 1∧ t1 ≤ t2 ∧ t1
3 − t1 = 2;

2) Put the formula in canonical form and eliminate t1: −2 ≤ t2 − t1
3 ≤−1;

3) Rename t1
3 in t3: −2 ≤ t2 − t3 ≤−1.

Following the same procedure, we get succ(α, t1t2) = (p3 + p4,0 ≤ t3 − t4 ≤ 1) and

succ(α, t2t1) = (p3 + p4,1 ≤ t3 − t4 ≤ 2).

10 The canonical form of F ′ is the formula corresponding to the canonical form of its DBM.

Delay-dependent partial order reduction for real time systems 11

3 Partial order reduction based on POSETs

3.1 Partial order successors and reduced state class graphs

The idea of partial order successors is to relax the firing condition of a transition by

eliminating some firing order constraints when computing successors of state classes.

The aim is to handle concisely the equivalent sequences of transitions, obtained by

permuting some independent transitions (i.e., partially ordered sets of transitions).

As a result, the union of state classes reached by all these sequences is computed by

exploring only one of them.

Definition 2 Let α = (M,F) be a state class of CS, t f ∈ T a transition and X ⊆ T

a subset of transitions. The partial order successor of α by t f w.r.t. X , denoted by

succX(α, t f), is either equal /0 or a state class of CS defined by:

succX(α, t f) 6= /0 iff X ∩En(M) 6= /0∧ succ(α, t f) 6= /0.

If succX(α, t f) 6= /0 then the state class α ′ = succX(α, t f) is computed as succ(α, t f),
except that the firing condition, used in step 1, is replaced with: F ∧

∧

t∈X∩En(M)
t f ≤ t.

Formally, if succX(α, t f) 6= /0 then succX(α, t f) = (M′,F ′), where

M′ = M− pre(t f)+ post(t f) and F ′ is computed in three steps:

1) Set F ′ to F ∧
∧

t∈X∩En(M)

t f ≤ t ∧
∧

t′∈Nw(M,t f)

↓ Is(t ′)≤ t ′ f − t f ≤↑ Is(t ′);

2) Put F ′ in canonical form and eliminate all transitions of CF(M, t f);
3) Rename each t ′ f in t ′.

The formula used in step 1, called the processing formula of succX(α, t f), does not

impose any firing order between t f and transitions of En(M)−X . Therefore, it holds

that ∀t f ∈ T,succ(α, t f)⊆ succX(α, t f) and succEn(M)(α, t f) = succ(α, t f).

Example 2 Consider the model T PN2 at Fig.1.b and its initial state class

α0 = (p1 + p2,−1 ≤ t1 − t2 ≤ 1). Transitions t1 and t2 are both enabled and firable

from α0. Therefore, succ{t1}(α0, t1) 6= /0 and succ{t2}(α0, t2) 6= /0.

Let α ′
1 = succ{t1}(α0, t1). Let us show how to compute the firing domain formulas of

α ′
1 and α ′

2 = succ{t2}(α
′
1, t2).

For the state class α ′
1 = (p2 + p3,F

′
1), its firing domain formula F ′

1 is computed in

three steps as follows:

1) Set F ′
1 to −1 ≤ t1 − t2 ≤ 1∧ tn

3 − t1 = 2;

2) Put the formula in canonical form and eliminate t1: −3 ≤ t2 − tn
3 ≤−1;

3) Rename tn
3 in t3: −3 ≤ t2 − t3 ≤−1.

For the state class α ′
2 = (p3 + p4,0 ≤ t3 − t4 ≤ 2), its firing domain formula F ′

2 is

computed in three steps as follows:

1) Set F ′
2 to −3 ≤ t2 − t3 ≤−1∧ tn

4 − t2 = 1;

2) Put the formula in canonical form and eliminate t1: 0 ≤ t3 − tn
4 ≤ 2;

3) Rename tn
4 in t4: 0 ≤ t3 − t4 ≤ 2.

Note that succ{t2}(succ{t1}(α0, t1), t2) = succ(α0, t1t2)∪ succ(α0, t2t1).

12 Hanifa Boucheneb, Kamel Barkaoui

Therefore, succ(succ{t2}(succ{t1}(α0, t1), t2), t3) gives the union of state classes reached

by sequences t1t2t3 and t2t1t3. The union of these sequences can be represented by the

partially ordered set ({t1, t2, t3}, t1 ≤ t3 ∧ t2 ≤ t3).

We provide, in the following, some relationships between successors and partial

order successors of state classes, which will be helpful to establish a partial order

reduction technique and prove that it preserves the non-equivalent firing sequences

of the TPN. Let us first define the notion of effect-independent transitions used in our

partial order reduction technique (instead of the notion of truth parent [27]).

Definition 3 Let ti, t j ∈ T be two transitions. Transitions ti and t j are structurally

effect-independent, denoted by ti||t j iff their effects are independent of their firing

order from any marking, i.e.,

(CFS(ti)∪NwS(ti)) ∩ (CFS(t j)∪NwS(t j)) = /0

Let α = (M,F)∈CS be a state class, ti ∈ Fr(α) and t j ∈ Fr(α) two transitions firable

from α . Let Mi and M j be the successor markings of M by ti and t j, respectively (i.e.,

M[ti> Mi and M[t j> M j). Transitions ti and t j are effect-independent from α , denoted

by ti||α t j iff their effects from α are independent of their firing order, i.e.,

CF(M, ti) = CF(M j , ti) ∧ CF(M, t j) = CF(Mi, t j) ∧

Nw(M, ti) = Nw(M j , ti) ∧ Nw(M, t j) = Nw(Mi, t j).

In other words, from M, each of transitions ti and t j will disable (enable) the same set

of transitions no matter of which transition is fired first.

Note that relations ||α and || are symmetric (i.e., ti||α t j iff t j||α ti and ti||t j iff

t j||ti).

Lemma 1 Let α = (M,F) ∈ CS, ti ∈ Fr(α), Mi the successor marking of M by ti,

and X a subset of transitions s.t. CF(M, ti)⊆ X.

(i) ∀t j ∈ Fr(α), ti||t j ⇒ ti||α t j.
(ii) ∀t j ∈ En(Mi)−Fr(α),succ(succX(α, ti), t j) = succ(α, tit j).
(iii) ∀t j ∈ X ∩En(Mi),succ(succX(α, ti), t j) = succ(α, tit j).
(iv) ∀t j ∈ Fr(α)−X , s.t. X ⊆ En(M)∧X ∩CF(M, t j) = /0∧ ti||α t j,

succ(succX(α, ti), t j) = succ(α, tit j)∪ succX(succ(α, t j), ti).

Proof By assumption, the transition ti ∈ Fr(α) and CF(M, ti) ⊆ X . Therefore, X ∩
En(M) 6= /0, succ(α, ti) 6= /0 and succX(α, ti) 6= /0.

Proof of (i): Suppose that ti||α t j does not hold and let us show that ti||t j does not

hold too. By definition, ¬ti||α t j implies that at least one of the following statements

holds CF(M, ti) 6= CF(M j, ti), CF(M, t j) 6= CF(Mi, t j), Nw(M, ti) 6= Nw(M j , ti) or

Delay-dependent partial order reduction for real time systems 13

Nw(M, t j) 6= Nw(Mi, t j). Therefore, one of the transitions ti and t j may disable / en-

able a transition in conflict with the other or an output transition of the other. It means

that (CFS(ti)∪NwS(ti)) ∩ (CFS(t j)∩NwS(t j)) 6= /0. Therefore, ¬(ti||t j).
Proof of (ii) and (iii): The processing formula of succ(succX(α, ti), t j), denoted by

φ , is:

(F ∧
∧

t∈X∩En(M)

ti ≤ t ∧
∧

t′∈Nw(M,ti)

↓ Is(t ′)≤ t i − ti ≤↑ Is(t ′)) ∧

(
∧

t∈En(Mi)−Nw(M,ti)

t j ≤ t ∧
∧

t′∈Nw(M,ti)

t j ≤ t ′i ∧
∧

t′∈Nw(Mi ,t j)

↓ Is(t ′)≤ t ′ j − t j ≤↑ Is(t ′)).

By assumption, t j ∈ En(Mi)−Fr(α) or t j ∈ X ∩En(Mi). We consider three cases:

t j ∈ Nw(M, ti) (i.e., t j is newly enabled in Mi), t j ∈ (En(M)−CF(M, ti))∩X (i.e., t j

is not newly enabled in Mi and belongs to X) or t j ∈ En(M)−Fr(α) (i.e., t j is neither

newly enabled in Mi nor firable in α). In all cases, it holds that (φ ∧ ti ≤ t j) ≡ φ .

By definition, En(Mi) = (En(M)−CF(M, ti))+Nw(M, ti). Therefore, the following

constraints of φ : ti ≤ t j∧t j ≤ t, for t ∈En(M)−CF(M, ti) imply ti ≤ t for t ∈En(M)−
CF(M, ti). Adding these redundant constraints to φ does not affect its domain. Since

CF(M, ti)⊆ X , it follows that En(M) = (En(M)∩X)∪(En(M)−CF(M, ti)) and then

φ is equivalent to:

(F ∧
∧

t∈En(M)

ti ≤ t ∧
∧

t′∈Nw(M,ti)

↓ Is(t ′)≤ t ′i − ti ≤↑ Is(t ′))∧

(
∧

t∈En(Mi)−Nw(M,ti)

t j ≤ t ∧
∧

t′∈Nw(M,ti)

t j ≤ t ′i ∧
∧

t′∈Nw(Mi ,t j)

↓ Is(t ′)≤ t ′ j − t j ≤↑ Is(t ′)).

Therefore, succ(succX(α, ti), t j) = succ(α, tit j).

Proof of (iv): By assumption, ti ∈Fr(α), t j ∈Fr(α)−X ⊆En(M) and CF(M, ti)⊆
X . Then, X =En(M)∩X , succ(α, tit j) 6= /0 and succ(α, tit j)⊆ succ(succX(α, ti), t j) 6=
/0. Consider now the processing formula above φ of succ(succX(α, ti), t j). It holds that

φ ≡ ((φ ∧ ti ≤ t j)∨ (φ ∧ t j ≤ ti)). Following the same steps as in the proof of (ii) and

(iii), we show that (φ ∧ti ≤ t j) is equivalent to the firing condition of succ(α, tit j). For

(φ ∧ t j ≤ ti), by definition, En(Mi) = (En(M)−CF(M, ti))+Nw(M, ti) and, by as-

sumption, X ∩CF(M, t j) = /0. Therefore, the following constraints of φ : t j ≤ ti∧ti ≤ t,

for t ∈ X ∪Nw(M, ti) imply t j ≤ t for t ∈ X ∪Nw(M, ti). Adding the redundant con-

straints t j ≤ t for t ∈ X to φ ∧ t j ≤ ti does not affect its domain. Moreover, the con-

straint t j ≤ t for t ∈ Nw(M, ti) are redundant in φ ∧ t j ≤ ti. So, they can be eliminated

from φ ∧ t j ≤ ti without affecting its domain. Since CF(M, ti) ⊆ X , it follows that

En(M) = (En(M)−CF(M, ti))∪X . Therefore, we can state that φ ∧ t j ≤ ti is equiv-

alent to:

(F ∧
∧

t∈X

ti ≤ t ∧
∧

t′∈Nw(M,ti)

↓ Is(t ′)≤ t ′i − ti ≤↑ Is(t ′))∧

(
∧

t∈En(M)

t j ≤ t ∧
∧

t′∈Nw(Mi ,t j)

↓ Is(t ′)≤ t ′ j − t j ≤↑ Is(t ′)).

14 Hanifa Boucheneb, Kamel Barkaoui

Let M j be the successor marking of M by t j. By definition, En(M j) = En(M)−
CF(M, t j)+Nw(M, t j). Since by assumption X ∩CF(M, t j) = /0, it follows that X ⊆
En(M j) and then X = En(M j)∩X .
By assumption, ti ||α t j, which imply Nw(M, ti)=Nw(M j, ti) and Nw(M, t j)=Nw(Mi, t j).
Then, φ ∧t j ≤ ti is equivalent to the processing formula of succX(succ(α, t j), ti). Con-

sequently, succ(succX(α, ti), t j) = succ(α, tit j)∪ succX(succ(α, t j), ti). ⊓⊔

Intuitively, given a selection procedure (over state classes) of the representative

transitions, a reduced state class graph based on POSETs is generated by first com-

puting the partial order successors of the initial state class, by its selected transitions,

and then repeating the procedure for each computed but not processed state class.

Definition 4 Let C= (C ,succ,α0) be the CSCG of a TPN N and G a function from

CS to 2T called a partial order generator. The reduced state class graph (RSCG for

short) generated by G is the tupleR=(G,CG,succG,α0), where CG = {α|α0
∗

−→G α}

is the set of reachable state classes in R and
∗

−→G is the reflexive and transitive clo-

sure of the transition relation −→G defined by: ∀α,α ′ ∈ CS,∀t f ∈ T,

α
t f
−→G α ′ iff t f ∈ G(α)∧ succ(α, t f) 6= /0∧α ′ = succG(α)(α, t f).

Let α ∈ CG and ω = t1t2...tn be a sequence of transitions. We write α
ω

−→G αn iff

∃α1,α2, ...,αn ∈ CG s.t. α
t1−→G α1

t2−→G α2...
tn−→G αn, with αn = succG(α,ω).

The RSCG R preserves the non-equivalent sequences of the CSCG C iff for each

maximal sequence of R, there is an equivalent sequence in C and vice-versa.

4 RSCG preserving non-equivalent sequences of N

We propose, in the following, a partial order generator G and show that it results in

a RSCG preserving non-equivalent sequences of the CSCG. The proposed generator

takes into account the structure of the TPN, including the static firing intervals of

transitions, the marking and the firing domain of the current state class. The timing

information derived from the structure of the TPN is captured in a matrix called the

delay lower bound matrix.

4.1 Static delay lower bound matrix of N

According to the TPN semantics, when a transition t j is fired, the conflicting transi-

tions are disabled and new transitions may be enabled. The firing delay interval of

each newly enabled transition ti refers to its enabling date (i.e., the firing date of t j).

The lower bound of the firing delay of transition ti relatively to the firing date of t j is

↓ Is(ti). We define the delay lower bound matrix L as a square matrix over the set of

Delay-dependent partial order reduction for real time systems 15

transitions T , where: ∀ti, t j ∈ T,

li j =

0 if ti = t j

↓ Is(ti) if ti 6= t j ∧ ti ∈ NwS(t j)

∞ otherwise.

We denote by L̄ the canonical form of L obtained by applying the Floyd-Warshall’s

shortest path algorithm. This algorithm converges, as the lower bounds of the static

firing intervals are non-negative finite rational numbers. Intuitively, l̄i j is a lower

bound of the firing delay of ti, relatively to the firing date of t j, for the case where ti is

not enabled when t j is fired. Note that l̄i j = ∞ means that there is no path connecting

t j to ti and then ti cannot be enabled directly or indirectly by t j.

Table 2 Firing delay lower bound matrix of TPN3 at Fig.3 and its canonical form

L t1 t2 t3 t4

t1 0 ∞ ∞ 1

t2 ∞ 0 ∞ 2

t3 1 ∞ 0 ∞
t4 2 2 ∞ 0

L̄ t1 t2 t3 t4

t1 0 2 ∞ 1

t2 2 0 ∞ 1

t3 2 4 0 3

t4 1 1 ∞ 0

Example 3 Table 2 reports the matrices L and L̄ of the model TPN3 at Fig.3. For

instance, the value 2 of l̄21 is a lower bound of the firing delay of t2, relatively to

the firing date of t1, in case t2 is not enabled when t1 is fired. It corresponds to the

potential situation where t1 enables t4, which, in turn, enables t2 (i.e., l̄21 = l24+ l41 =
↓ Is(t2)+ ↓ Is(t4)). Note that a lower bound of the enabling delay of t2 relatively to

the firing date of t1, in case t2 is not enabled when t1 is fired, is l̄21 −↓ Is(t2) = 1.

4.2 Computing a partial order generator G

Several algorithms have been proposed in the literature to compute partial order gen-

erator G for the RSCG preserving different kinds of properties such as deadlocks and

LTL−X properties. In general, these algorithms infer G from the static structure of the

model, without taking into account the timing information.

This section proposes an algorithm for computing G inspired from the stubborn

sets method [25,27], but does not use the notion of truth parent [27]. As in [8], it

uses the notion of effect-independent transitions and the (static and dynamic) timing

information of the model. Its purpose is to weaken, by considering firing order time

constraints, the selection conditions provided in [8], so as to achieve further reduc-

tions.

16 Hanifa Boucheneb, Kamel Barkaoui

Formally, let α = (M,F) be a state class, D the canonical form of F (i.e., di j =
Max(ti − t j|F), for ti, t j ∈ En(M)). The set G(α) is the smallest set of transitions of

En(M) that satisfies all the following conditions:

C0: Fr(α) 6= /0 ⇔ G(α)∩Fr(α) 6= /0.
C1: ∀ti ∈ G(α)∩Fr(α),∀t j ∈ En(M),

((t j ∈ Fr(α)∧¬ti || t j)∨(t j /∈ Fr(α)∧di j ≥ 0∧t j ∈CFS(ti))) ⇒ t j ∈ G(α).
C2: ∀ti ∈ G(α)∩Fr(α),∀t j ∈ Fr(α),

∀tk ∈CFS(ti)−En(M), l̄k j ≤ di j ⇒ t j ∈ G(α),
C3: ∃ti ∈ G(α)∩Fr(α),∀t j ∈ G(α)−Fr(α), t j /∈CFS(ti)∨di j < 0.
We denote by SC the conjunction C0∧C1∧C2∧C3.

Intuitively, C0 ensures that G(α) is empty only for deadlock state classes. This

condition is necessary to preserve the deadlock property.

Note that, for ti, t j ∈ En(M),di j ≥ 0 means that for some delay valuation of F , the

firing delay of ti is larger or equal to the firing delay of t j. So, t j can be fired before

ti from α or from a successor (direct / indirect) of α . In case di j < 0, it means that t j

cannot be fired before ti from α or from a successor (direct / indirect) of α , unless ti
is disabled by a conflicting transition. Condition C1 means that all firable transitions

of G(α) are effect-independent of transitions Fr(α)−G(α) and not structurally in

conflict with the transitions of En(M)−Fr(α)−G(α). Therefore, the firing of any

transition of G(α) will not disable the transitions of En(M)−G(α) and vice-versa.

Condition C2 ensures that during the enabledness of any firable transition ti of

G(α), no transition t j outside G(α) may enable directly/indirectly a transition tk that

is structurally in conflict with ti and firable before ti (see Fig. 4). The precondition

l̄k j ≤ di j means that the firing delay of transition tk relatively to the firing date of t j

can be smaller ou equal to the maximal delay between the firing dates of transitions

t j and ti. In other words, after firing t j, tk can occur before ti. In case this precondition

is not satisfied, it means that, after firing t j, tk cannot occur as long as ti is enabled.

Conditions C1 and C2 imply that the enabledness of ti will not be affected by firing

the transitions outside G(α).

Condition C3 prevents to loose sequences with no equivalent sequence starting

with a transition of G(α)∩ Fr(α). For instance, suppose that there is a maximal

sequence ωt j of α s.t. all transitions of ω do not belong to G(α), t j belongs to

G(α)−Fr(α) and is in conflict with all transitions of G(α). The firing of t j after

ω disables all transitions of G(α). In case G(α) does not satisfy Condition C3, no

sequence equivalent to ωt j is represented in the reduced graph. Otherwise, if t j is

fired after ω , at least a transition ti of G(α)∩Fr(α) is still firable and not in conflict

with t j. Therefore, sequences ωt jti and ωtit j are both firable from α. Conditions C1,

C2 and C3 ensure that tiωt j is also firable from α . As we will show, they also ensure

that succG handles all equivalent sequences resulting from permuting transitions of

G(α) with the other firable transitions.

Delay-dependent partial order reduction for real time systems 17

firing date of t j earliest firing date of tk latest firing date of ti0

l̄k j

di j

Fig. 4 Condition C2 of SC: l̄k j ≤ di j for ti ∈ G(α),t j ∈ En(M),tk ∈CFS(ti)

4.3 Does G preserve the non-equivalent firing sequences of N ?

The proof that G preserves the non-equivalent firing sequences of N is stated in The-

orem 1. It is based on some useful properties established in Lemma 2. The notation

G |= SC is an abbreviation of ∀α ∈ CS,G(α) |= SC.

Lemma 2

(i) G |= SC ⇒ ∀α ∈ CS,∀ω ∈ (T − (G(α)∩Fr(α)))+,
succ(α,ω) 6= /0 ⇒∃ti ∈ G(α)∩Fr(α), (i) succ(α,ωti) 6= /0∧ (ii) succ(α, tiω) 6= /0.
(ii) G |=C1 ⇒ ∀α ∈ CS,∀ω ∈ T+, succG(α,ω) 6= /0 ⇒∃ω ′ ≡ ω ,succ(α,ω ′) 6= /0.

Proof (i): By C3, there is at least a transition ti of G(α)∩Fr(α) s.t. t j /∈ CFS(ti)∨
di j < 0, for each t j ∈ G(α)−Fr(α). Let us show that for such a transition ti, it holds

that: ∀ω ∈ (T − (G(α)∩Fr(α)))+,

succ(α,ω) 6= /0 ⇒ (i) succ(α,ωti) 6= /0∧ (ii) succ(α, tiω) 6= /0.

Each transition t j of ω belongs T − (G(α) ∩ Fr(α)). Let us consider four cases:

t j ∈ Fr(α)− G(α), t j ∈ G(α)− Fr(α), t j ∈ (En(M)− Fr(α))− G(α) and t j ∈
T −En(M).
a) if t j ∈ Fr(α)−G(α) then, by C1, ti||t j, which implies that t j /∈CFS(ti).
b) If t j ∈ G(α)− Fr(α) then di j ≥ 0, as t j can be fired before ti. By assumption,

t j /∈CFS(ti).
c) If t j ∈ (En(M)−Fr(α))−G(α) then di j ≥ 0. By C1, t j /∈CFS(ti).
d) If t j ∈ T −En(M) then t j is enabled directly or indirectly by some transition of

Fr(α)−G(α) before firing ti. By C2, t j /∈CFS(ti).
All transitions of ω are not structurally in conflict with ti. Therefore, succ(α,ω) 6= /0

implies that succ(α,ωti) 6= /0 and succ(α, tiω) 6= /0.
(ii) (by induction on the length of ω):

a) For ω = t1, by definition, succG(α)(α, t1) 6= /0 iff succ(α, t1) 6= /0.

b) For ω = t1t2, succG(α, t1t2) 6= /0 iff succ(succG(α)(α, t1), t2) 6= /0. If t2 ∈ G(α) or

t2 /∈ Fr(α), by Lemma 1, succ(succG(α)(α, t1), t2) = succ(α, t1t2) 6= /0. Otherwise,

from C1 of SC and Lemma 1, it follows that t1||t2, sequences t1t2 and t2t1 are firable

from α , and succ(succG(α)(α, t1), t2) = succ(α, t1t2)∪ succG(α)(succ(α, t2), t1).
c) For ω = t1...tn of length n > 2, succG(α,ω) 6= /0 iff succ(succG(α, t1...tn−1), tn) 6=
/0. Let αn−1 = succG(α, t1...tn−2).
If tn ∈G(αn−1) or tn /∈Fr(αn−1), according to Lemma 1, succ(succG(α, t1...tn−1), tn)=
succ(succG(α, t1...tn−2), tn−1tn).

18 Hanifa Boucheneb, Kamel Barkaoui

Otherwise, using C1 of SC and Lemma 1, we can state that tn−1||tn, sequences tn−1tn
and tntn−1 are firable from succG(α, t1...tn−2), and succ(succG(α, t1...tn−1), tn) =
succ(succG(α, t1...tn−2), tn−1tn)∪ succG(αn−1)(succ(succG(α, t1...tn−2), tn), tn−1).
Now, it suffices to repeat the same process for succ(succG(α, t1...tn−2), tn−1) and all

derived terms, until reaching terms where succ is directly applied on α . As G |=
C1, each time two adjacent transitions are permuted, they are firable in both order

and effect-independent. Otherwise, they are at least firable in one order. Therefore,

succG(α,ω) 6= /0 ⇒ ∃ω ′ ≡ ω ,succ(α,ω ′) 6= /0. ⊓⊔

Theorem 1 Let N be a TPN with no unbounded static firing intervals. Then:

G |= SC ⇒ the RSCG preserves non-equivalent sequences of the CSCG.

Proof Let M be a marking and ω a firing sequence of M (i.e., M[ω >). The sequence

ω of M is maximal iff it is infinite or leads to a deadlock marking. Let Ω(M) be a

set of maximal firing sequences of M. The RSCG preserves the non-equivalent firing

sequences of the CSCG if: ∀α = (M,F) ∈ CS,
(i) ∀ω ∈ Ω(M),succ(α,ω) 6= /0 ⇒∃ω ′ ∈ T+,ω ≡ ω ′∧ succG(α,ω ′) 6= /0 and

(ii) ∀ω ∈ Ω(M),succG(α,ω) 6= /0 ⇒∃ω ′ ∈ T+,ω ≡ ω ′∧ succ(α,ω ′) 6= /0.

(i): By assumption, ω is a maximal sequence of M and succ(α,ω) 6= /0.

Then, Fr(α) 6= /0. By C0 of SC, G(α)∩Fr(α) 6= /0. From the fact that the TPN has

no unbounded intervals, the non-zenoness, assumed here, guarantees that each en-

abled transition will eventually fire in the future, unless it is disabled by another

firing. Conditions C1 and C2 ensure that the transitions outside G(α) cannot dis-

able any transition of G(α). By C3 and Lemma 2, ∃t f ∈ G(α)∩Fr(α),∃ω1 ∈ (T −
(G(α)∩Fr(α)))∗,∃ω2 ∈ T ∗, ω = ω1t f ω2 ∧ succ(α,ω1) 6= /0∧ succ(α,ω1t f) 6= /0∧
succ(α, t f ω1) 6= /0. Since succ(α, t f ω1) ⊆ succ(succG(α)(α, t f),ω1), it follows that

succ(succG(α)(α, t f),ω1ω2) 6= /0.

Let α1 = succG(α)(α, t f) = (M1,F1). The sequence ω1ω2 is a maximal sequence of

M1. We repeat the same process for α1 and ω1ω2 until reaching a deadlock or a state

class already processed. Therefore, ∃ω ′ ∈ T+,ω ′ ≡ ω ∧ succG(α,ω ′) 6= /0.

(ii): is immediate from Lemma 2. ⊓⊔

For a TPN with unbounded firing intervals, the non-zenoness, assumed here, guaran-

tees that each enabled transition will become firable in the future, unless it is disabled

by another firing. However, the firing of a transition, with an unbounded static firing

interval, may be delayed indefinitely to lead in the reduced graph to some cycle such

that the transition is firable from all state classes of the cycle but does not belong

to their G (unfair sequence). The fairness criterion (we must not indefinitely neglect

some transition) is not guaranteed by SC. To deal with the fairness criterion, G has

to satisfy, in addition to SC, the Cycle closing condition, i.e., for every cycle in the

reduced state class graph, there is at least one state class s.t. its G is equal to its set

of firable transitions (fully expanded node) considered in [22] to address the same

problem. With this additional condition, Theorem 1 is also valid for TPNs with un-

bounded static firing intervals.

Delay-dependent partial order reduction for real time systems 19

Table 3 Some experimental results

TPN RSCG RSCG’ CSCG TPN RSCG RSCG’ CSCG

KB(1) KB(2)
NSC 32 40 61 NSC 102135 ? > 236977 ? > 207685

NCSC 38 54 107 NCSC 133764 > 457101 > 551187

CPU (s) 0 0 0 CPU (s) 269 > 3600 > 3600

HC(1) HC(2)
NSC 19 31 70 NSC 133 289 1743

NCSC 18 33 110 NCSC 165 455 4603

CPU (s) 0 0 0 CPU (s) 0 0 0

HC(3) HC(4)
NSC 497 1714 23299 NSC 2895 11524 ? > 138335

NCSC 682 2633 84184 NCSC 4362 17279 > 590080

CPU (s) 0 0 45 CPU (s) 0 14 > 3600

HC(5) HC(6)
NSC 10239 75251 ? NSC 16846 ? > 221731 ?

NCSC 16831 112606 NCSC 27210 > 338461

CPU (s) 3 381 CPU (s) 9 > 3600

FMS(2) FMS(3)
NSC 928 12668 82665 NSC 84176 ? > 284319 ? > 227052

NCSC 1201 19337 233208 NCSC 109930 > 430854 > 618528

CPU (s) 0 8 413 CPU (s) 170 > 3600 > 3600

Table 4 Static firing intervals of HC,FMS and KB

Is of HC Is of FMS Is of KB

t1[1,2] t p1[1,2] tsynch4−23[1,3]
t2[2,3] t p2[1,2] tsynch1−23[3,5]
t3[3,3] t p3[1,2] tredo1[2,2]
t4[1,1] tm1[1,1] tok1[3,4]
t5[1,2] tm2[3,4] tback1[1,3]
t6[1,2] t p3m2[4,4] tout1[3,5]
t7[3,3] t p3s[1,2] tredo2[2,2]
t8[2,2] t p1m1[1,1] tok2[3,4]
t9[1,1] t p2m2[3,3] tback2[1,3]
t10[1,1] t p1e[5,5] tredo3[3,5]
t11[1,2] t p1 j[3,4] tok3[2,2]
t12[2,3] t p2 j[1,1] tback3[3,4]
t13[1,1] t p2e[1,1] tin4[1,3]
t14[1,1] t p1s[3,3] tredo4[3,5]
t15[1,1] t p12[2,2] tok4[2,2]
t16[1,2] t p2s[4,4] tback4[3,4]
t17[1,1] tm3[1,2]
t18[1,4] t p12m3[1,1]

t p12s[2,2]
tx[5,5]

5 Experimental results

We have tested the partial order technique, proposed here, on several small TPNs,

the extension with static firing intervals of three models taken from the MCC (Model

Checking Contest) held within Petri Nets 201311: HouseConstruction (HC in short),

FMS and Kanban (KB in short) (see Table 3 for their static firing intervals). Table 4

reports the number of state classes (NSC), the number of computed state classes

11 http://mcc.lip6.fr

20 Hanifa Boucheneb, Kamel Barkaoui

(NCSC) and the CPU time in seconds of the RSCG, RSCG’ and CSCG for HC and

FMS and KB. The column RSCG’ is the reduced graph of the approach proposed in

[8]. Note that for a state class α , G(α) is computed by choosing randomly a firable

transition t f from Fr(α), then applying recursively, C1, C2 and C3 until a fix point is

reached. Its size is dependent on the first selected transition.

The models HC(n) and KB(n) are free-choice and connected TPNs12. For HC(n),
n is the initial marking of the source place p1. For KB(n), n is the initial marking of

places p1, p2, p3 and p4. The model FMS(n) is a strongly-connected TPN13, n being

the initial marking of places p1, p2 and p3.

For all tested models, the RSCG shows a significant reduction in time and number

of computed state classes, compared to the CSCG and the RSCG’. The gain (in time

and space) of the RSCG over the CSCG and RSCG’ is much more significant for the

connected TPNs (HC(n)) and (KB(n)) than the strongly-connected TPN (FMS(n)).
The reason is that in the strongly-connected TPN, several transitions are in conflict

or not effect-dependent. Furthermore, we obtain further reduction, when we increase

the marking, as it results in increasing the number of concurrent enabled transitions.

6 Conclusion

In this paper, we have considered the TPN model and proposed, using its CSCG, a

partial order reduction technique, which preserves non-equivalent firing sequences of

the TPN.

Our technique is inspired from the stubborn sets [25,27] but is based on the no-

tion of effect-independent transitions, instead of the notion of truth parent used in

[27]. The notion of truth parent involves to keep, in each abstract state, in addition to

time constraints of the enabled transitions, those of their parents. All possible parents

of the enabled transitions are considered separately when computing successors of

abstract states. Moreover, as in [8], our technique takes into account the (static and

dynamic) timing information of the model.

For the tested models, our technique allows a significant gain in time and space,

in comparison with the RSCG of [8] and the CSCG.

References

1. Belluomini, W., Myers, C.J.: Timed state space exploration using POSETs. IEEE Transactions on

Computer-Aided Design of Integrated Circuits 19(5), 501 – 520 (2000)

12 A free-choiceTPN is a TPN, where for every transition t, pre(t) ≤ P and post(t) ≤ P and the sets of

input places of any pair of transitions are either equal or disjoint. In a strongly-connected TPN, there is a

directed path between every two nodes (places or transitions).
13 In a connected TPN, there is an undirected path between every two nodes.

Delay-dependent partial order reduction for real time systems 21

2. Bengtsson, J.: Clocks, DBMs and States in Timed Systems. PhD thesis, Dept. of Information Tech-

nology, Uppsala University (2002)

3. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: 9th

international conference on Concurrency Theory (CONCUR), LNCS, vol. 1466, pp. 485 – 500 (1998)

4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: The expressive power of time Petri nets.

Theoretical Computer Science 474, 1–20 (2013)

5. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of time Petri nets. In:

9th International Conference of Tools and Algorithms for the Construction and Analysis of Systems,

LNCS, vol. 2619, pp. 442–457 (2003)

6. Boucheneb, H., Barkaoui, K.: Reducing interleaving semantics redundancy in reachability analysis

of time Petri nets. ACM Transactions on Embedded Computing Systems (TECS) 12(1), 259 – 273

(2013)

7. Boucheneb, H., Barkaoui, K.: Stubborn sets for time Petri nets. ACM Transactions in Embedded

Computing Systems (TECS) 14(1), 11:1 – 11:25 (2015)

8. Boucheneb, H., Barkaoui, K., Weslati, K.: Delay-dependent partial order reduction technique for time

Petri nets. In: 12th International Conference on Formal Modeling and Analysis of Timed Systems,

LNCS, vol. 8711, pp. 53 – 68 (2014)

9. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets. Logic and Com-

putation 19(6), 1509–1540 (2009)

10. Boucheneb, H., Hadjidj, R.: CTL* model checking for time Petri nets. Theoretical Computer Science

TCS 353/1-3, 208227 (2006)

11. Boucheneb, H., Lime, D., Roux, O.H.: On multi-enabledness in time Petri nets. In: 34th International

Conference on Application and Theory of Petri Nets and other models of concurrency (ICATPN),

LNCS, vol. 7927, pp. 130 – 149 (2013)

12. Boucheneb, H., Rakkay, H.: A more efficient time Petri net state space abstraction useful to model

checking timed linear properties. Fundamenta Informaticae 88(4), 469–495 (2008)

13. Boyer, M., Diaz, M.: Multiple-enabledness of transitions in time Petri nets. In: 9th IEEE International

Workshop on Petri Nets and Performance Models, pp. 219 – 228 (2001)

14. Chatain, T., Jard, C.: Complete finite prefixes of symbolic unfoldings of safe time Petri nets. In: 27th

International Conference on Applications and Theory of Petri Nets and Other Models of Concurrency

ICATPN, LNCS, vol. 4024, pp. 125 – 145 (2006)

15. Delfieu, D., Sogbohossou, M., Traonouez, L.M., Revol, S.: Parameterized study of a time Petri net.

In: Cybernetics and Information Technologies, Systems and Applications: CITSA, pp. 89 – 90 (2007)

16. Godefroid, P.: An approach to the state-explosion problem. In: Partial-Order Methods for the Verifi-

cation of Concurrent Systems, LNCS, vol. 1032, pp. 1–142 (1996)

17. Hakansson, J., Pettersson, P.: Partial order reduction for verification of real-time components. In: 5th

international conference on Formal Modeling and Analysis of Timed Systems (FORMATS), LNCS,

pp. 211 – 226 (2007)

18. Lilius, J.: Efficient state space search for time Petri nets. In: MFCS Workshop on Concurrency Algo-

rithms and Tools, ENTCS, vol. 8, pp. 113–133 (1998)

19. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem

of timed automata. Theoretical Computer Science TCS 345(1), 2759 (2005)

20. Minea, M.: Partial order reduction for model checking of timed automata. In: 10th international

conference on Concurrency Theory (CONCUR), LNCS, vol. 1664, pp. 431 – 446 (1999)

21. Peled, D.: All from one, one for all: on model checking using representatives. In: Computer Aided

Verification, LNCS, vol. 697, pp. 409–423 (1993)

22. Peled, D., Wilke, T.: Stutter invariant temporal properties are expressible without the next-time oper-

ator. Information Processing Letters 63 issue 5, 243–246 (1997)

23. Salah, R.B., Bozga, M., Maler, O.: On interleaving in timed automata. In: 17th international confer-

ence on Concurrency Theory (CONCUR), LNCS, vol. 4137, pp. 465 – 476 (2006)

24. Semenov, A., Yakovlev, A.: Verification of asynchronous circuits using time Petri net unfolding. In:

33rd annual conference on Design automation (DAC), pp. 59 – 62 (1996)

25. Valmari, A., Hansen, H.: Can stubborn set be optimal. In: 3st International conference on Application

and Theory of Petri Nets and Concurrency (Petri Nets), LNCS, vol. 6128, pp. 43 – 62 (2010)

26. Yoneda, T., Ryuba, H.: CTL model checking of time Petri nets using geometric regions. EICE Trans.

Inf. & Syst. E99-D(3), 297–306 (1998)

27. Yoneda, T., Schlingloff, B.H.: Efficient verification of parallel real-time systems. Formal Methods in

System Design 11(2), 187–215 (1997)

