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Estimation of Variance and Spatial Correlation
Width for Fine-Scale Measurement Error

in Digital Elevation Model
Mikhail L. Uss, Benoit Vozel , Vladimir V. Lukin , and Kacem Chehdi

Abstract— In this article, we borrow from the blind noise
parameter estimation (BNPE) methodology early developed in
the image processing field an original and innovative no-reference
approach to estimate digital elevation model (DEM) vertical
error parameters without resorting to a reference DEM. The
challenges associated with the proposed approach related to the
physical nature of the error and its multifactor structure in DEM
are discussed in detail. A suitable multivariate method is then
developed for estimating the error in gridded DEM. It is built on a
recently proposed vectorial BNPE method for estimating spatially
correlated noise using noise informative areas and fractal Brown-
ian motion. The new multivariate method is derived to estimate
the effect of the stacking procedure and that of the epipolar line
error on local (fine-scale) standard deviation and autocorrelation
function width of photogrammetric DEM measurement error.
Applying the new estimator to Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) GDEM2 and
Advanced Land Observing Satellite (ALOS) World 3D DEMs,
good agreement of derived estimates with results available in the
literature is evidenced. Adopted for TanDEM-X-DEM, estimates
obtained agree well with the values provided in the height error
map. In future works, the proposed no-reference method for
analyzing DEM error can be extended to a larger number of
predictors for accounting for other factors influencing remote
sensing (RS) DEM accuracy.

Index Terms— Advanced Land Observing Satellite (ALOS)
World 3D (AW3D), Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) GDEM2, blind noise parameter
estimation (BNPE), digital elevation model (DEM), DEM accu-
racy, elevation measurement error, multivariate noise context-
dependence, TanDEM-X-DEM.

I. INTRODUCTION

GRIDDED digital elevation models (DEMs) have found
applications for disaster and crisis-management sup-

port [1], urban growth monitoring and planning [2], and
remote sensing (RS) image processing [3]. A DEM is subject
to error that may impair its quality. This error originates from
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various sources, including elevation measurement method
(traditional optical stereo matching, radar interferometry
(IfSAR), or light detection and ranging (LiDAR) [4]), instru-
ment, terrain structure, vegetation cover, and DEM interpola-
tion [5], making both theoretical and experimental analyses of
its properties a complicated task [6]. Only vertical DEM error
is of interest in this article. In what follows, the multifactor
nature of DEM error is referred as multivariate context-
dependence.

DEM error leads to uncertainty in the calculation of terrain
attributes such as terrain slope, aspect, or roughness. Even par-
tial knowledge of DEM error properties and its spatial pattern
is valuable [6]–[8] in such areas as DEM fusion [9], [10],
filling voids [11], DEM filtering [8], [12]–[14], DEM inter-
polation [15], modeling of DEM error propagation [16] in
hillslope erosion/failure analysis, land slide risk estimation,
and hydrological modeling. Improving knowledge of DEM
error was identified as a major research direction in digital
terrain modeling domain [17].

The basic DEM error characteristic [8] is its RMSE =
((1/n)

�n
i=1 (zDEM.i − zRef.i )

2)1/2, where zDEM.i is an ele-
vation measurement from the DEM, zRef.i is the reference
elevation measurement of significantly higher accuracy, and
n is the number of available measurements. RMSE can be
decomposed as RM SE = (σ 2

e + M2
e )1/2, where mean error

or bias Me = (1/n)
�n

i=1 (zDEM.i − zRef.i ) and standard devi-
ation (SD) σe = ((1/n)

�n
i=1 (zDEM.i − zRef.i − Me)

2)1/2 [6].
The σe and Me terms characterize the random and sys-
tematic error components, respectively. Spatial properties
of DEM error are characterized by its spatial correlation
function [16].

To measure DEM error characteristics, a high-quality ref-
erence DEM (e.g., created using LiDAR) or point elevation
measurements (obtained by geodetic surveys) are typically
utilized [7], [18], [19]. Comparison between DEMs is a com-
plicated task. Both analyzed and reference DEMs should have
the same spatial resolution, cover the same area, and share
approximately the same acquisition date. The reference DEM
should have significantly better accuracy than the analyzed
DEM. Acquisition of such data can be expensive and is not
always possible. Direct DEM comparison is further compli-
cated for vegetation cover that can yield different elevation
measurements for different instruments (optical, IfSAR, and
LiDAR) [20]–[22].
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Abovementioned tight requirements on the reference
DEM can be relaxed for featureless flat terrain. For a
local DEM patch representing a flat terrain, zRef =
const and DEM SD can be directly accessed as σe =
((1/n)

�n
i=1 (zDEM.i − (1/n)

�n
i=1 zDEM.i )

2)1/2. In this case,
reference DEM is not needed to estimate σe (however, it is still
needed to estimate the DEM bias). Having enough flat patches
allows collecting many local σe estimates for DEM accuracy
characterization. Importantly, using flat DEM patches, SD of
DEM error can be estimated in the no-reference fashion. This
approach was leveraged by Becek [22]. He proposed to use
runways as flat patches and estimated the bias and SD of
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) global DEM2 [23], [24] (later referred to
as GDEM2) and Shuttle Radar Topography Mission (SRTM)
DEM [25] error.

Usage of flat terrain encounters several problems. First,
flat areas are unknown beforehand (with narrow exception
exploited by Becek [22]). Second, absolutely flat areas are
hard to find. Let us consider the estimation of σe value locally
from a DEM patch of 15 × 15 pixels. For GDEM2, one pixel
corresponds to 30 m on the ground; the patch is, thus, 450
× 450 m2. The mean σe value for GDEM2 has been shown
in [22] to vary from 2 to 6 m as mean stacking number
reduces from 25 to about 5. SD of a DEM patch representing
a mixture of terrain elevation with SD σtr and random noise
with SD σe is σnoisy.terrain = (σ 2

e + σ 2
tr)

1/2. To use σnoisy.terrain
as an unbiased estimate of σe, the value of σtr should be a
magnitude smaller than σe. For example, for σtr < 0.2σe,
the value of σnoisy.terrain < 1.02σe. For a low value of σe,
such as σe = 2 m for GDEM2, σtr should be of the order of
0.2 · 2 m = 0.4 m. This implies maximum elevation variation
±1.2 m (±3sigma) within the patch. This restriction severely
reduces the number of flat patches available for no-reference
DEM error characterization, as well as their variability.

The process of estimation of DEM error SD from feature-
less flat terrain has a direct counterpart in image processing
domain, namely, blind noise parameter estimation (BNPE)
approach [26], where the goal is to estimate image sensor noise
characteristics (variance or autocorrelation function) from a
mixture of true signal and noise. The common solution is
to find and use image homogeneous areas (HAs), where true
signal is negligible as compared to sensor noise [27]. The
link between no-reference DEM error characterization and
BNPE problem is that flat terrain for DEM corresponds to
HA for images, DEM error to sensor noise, and true signal
to error-free DEM. The problem of automatic HA search is
the core of BNPE approach, and many efficient solutions
have been proposed. Furthermore, BNPE methodology moved
beyond searching HA areas only: moderately heterogeneous
areas could be used for noise parameters estimation by
assuming spectral differences between noise and the true
signal [26]. Therefore, BNPE methodology provides suitable
approaches to two main barriers to no-reference DEM error
characterization discussed above: automatic search of HA
(flat DEM patches) and usage of moderately heterogeneous
patches (DEM patches corresponding to moderately undulat-
ing terrain).

Going through obvious similarities underlined above, adapt-
ing key ideas from the BNPE methodology so as to make
them fit the issues and problems to solve for gridded DEM
is the main contribution of this article. The main difficulty
lies in multivariate context-dependence of DEM error com-
pared to the univariate dependence of sensor noise on image
intensity widely considered in the BNPE domain. (This issue
is discussed more in detail in Section II). To the best of
authors’ knowledge, the only blind noise parameter estimator
designed to deal with the multivariate context-dependent error
was proposed by Uss et al. [28] and called multivariate, vector
estimator of spatially correlated noise using noise informa-
tive (NI) areas and fractal Brownian motion (mvcNI+fBm).
Therefore, in this article, we modify and evolve mvcNI+fBm
estimator to make it adjusted to DEM data and apply it to
two global photogrammetric gridded DEMs: GDEM2 and
Advanced Land Observing Satellite (ALOS) Global Digital
Surface Model “ALOS World 3D” (AW3D) with a 5-m
spacing [29] and 30-m spacing (AW3D30) [30], and IfSAR
DEM TanDEM-X-DEM [31]. In regard to the complexity of
DEM error as compared to pure sensor noise, we devote
significant efforts to explain and interpret the meaning of
estimates obtained with the proposed approach.

The remainder of this article is structured as follows.
In Section II, we start by discussing possible sources of
error in DEM. Then, we establish that sensitivity to fine-scale
error offered by BNPE methodology is fully beneficial to
fine-scale elevation measurement error. Section III introduces
the mathematical model of the DEM measurement error and
several bivariate regression models for the measurement error
variance and spatial correlation width. Section IV details
the necessary information on the mvcNI+fBm estimator.
In Section V, the experimental section, the mvcNI+fBm is
used to select the most relevant DEM measurement error
model and estimate its coefficients using GDEM2, AW3D30,
AW3D, and TanDEM-X-DEM data. It is demonstrated that
obtained DEM error models are physically adequate and in
good agreement with the respective DEM accuracy analysis
published in the literature. On the basis of these promising
results, concluding remarks and future work are given.

II. DEM ERROR MODEL

An instrument (sensor) measures elevation at discrete, pos-
sibly irregular spaced points on the earth surface. To form
a gridded DEM, discrete measurements are interpolated at
nodes on a regular grid: Ẑgrid(xt , ys) = Ẑgrid(t, s), where
xt = x0 + t · rDEM, ys = y0 + s · rDEM, rDEM is the grid
step or DEM spatial resolution, and (x0, y0) is the grid origin.

The measured elevation is a coarsened representation of the
actual terrain because of the finite instrument spatial resolution
(correlation window support in photogrammetric DEM and
sounding beam footprint in IfSAR and LiDAR). Elevation
measurement process is subject to measurement errors (Fig. 1).
For bare soil, the instrument introduces error related to its
positioning/orientation accuracy, disparity estimation errors,
higher or lower correlation between stereo images, stack-
ing number, epipolar line error in photogrammetric DEM,
phase unwrapping errors in IfSAR, and the time-of-delay
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Fig. 1. Illustration of the DEM error structure.

measurement accuracy in LiDAR [6], [7], [22], [32], [33]. This
error source was called instrument-induced in [22]. The bias
and SD of this error could depend on terrain morphological
attributes such as slope, aspect, and roughness [8]. Vegetation
canopy is additional source of DEM error [32]. For example,
optical sensors measure elevation at the canopy top, LiDAR
could measure both the vegetation canopy top (the first return)
and ground surface (the last return), and IfSAR measures
intermediate elevation between the vegetation canopy top and
the ground surface [8], [19]. In [4], it was demonstrated that
both bias and SD of SRTM DEM error significantly increase
in areas covered by natural forests as compared to grassland
pastures and agricultural areas. The error related to terrain
surface properties was called environment-induced in [22].
Finally, interpolation and quantization errors are added. Grid-
ded DEM error may exhibit spatial correlation that should
be taken into account as well [6], [7], [33]. In what follows,
we refer to factors/attributes influencing DEM error as error
predictors and denote them by p1, p2, . . . , pNp , where Np is
number of predictors. In the vector form, predictor vector is
defined as p = (p1, p2, . . . , pNp). Dependence of DEM error
parameters (SD in particular) on multiple predictors is the
essence of multivariate context-dependence.

Therefore, the values of gridded DEM can be represented
as Ẑgrid(t, s) = Zgrid(t, s) + egrid.mes(t, s, p(t, s)), where
Zgrid(t, s) is the error-free DEM and egrid.mes(t, s, p(t, s)) is
the DEM measurement error. In this article, we treat the
difference Z true(t, s)− Zgrid(t, s) between the actual elevation
Z true(t, s) and error-free DEM not as error, but as uncertainty
[6] that depends on the relation between DEM spatial reso-
lution and terrain characteristic size and DEM interpolation
method. By DEM error analysis, we understand the study of
egrid.mes(t, s, p(t, s)) measurement error term.

To evaluate the DEM error, many researchers have used
residuals r(t, s) = Ẑgrid(t, s) − Ẑgrid.ref(t, s) between the
analyzed DEM and a more accurate reference DEM. The
drawback of this approach is that the reference DEM has
its own errors that not always could be neglected [34].
The residual r(t, s) = [Zgrid(t, s) − Zgrid.ref(t, s)] +
[egrid.mes(t, s, p(t, s))−egrid.ref.mes(t, s, pref (t, s))] comprises
two error terms. For the first term—difference between
error-free DEMs—to be negligible, both DEMs should have
the same spatial resolution and perfect spatial alignment
(the absence of planimetric errors) [35]. The second term
includes errors of both analyzed and reference DEMs.
To minimize the influence of the reference DEM error, this
DEM should be obtained with an order of magnitude accurate
instrument free from vegetation canopy and terrain surface

parameters influence. Analysis of residuals complicates
further if analyzed and reference DEMs were collected with
a time lag because of terrain dynamics, vegetation change
(leaf-on, leaf-off conditions [34]), among other factors. The
problem remains how to characterize error of an accurate
DEM when finding a sufficiently accurate reference DEM is
impossible.

In this article, we investigate the possibility of characterizing
DEM error without the use of any reference DEM, but relying
on noisy measurements Ẑgrid themselves. This problem is
known in image processing domain as BNPE problem, and
it basically aims at estimating random noise characteristics
(variance and autocorrelation function parameters) from a
mixture of noise-free image and noise, i.e., noisy image [26].
From image processing point of view, the DEM Ẑgrid is a
noisy single-component image, Zgrid is the noise-free image,
and egrid.mes is the noise term. In what follows, we analyze
what terms of DEM error are accessible by BNPE. Such
a preliminary analysis is essential to correctly interpret the
results obtained by the mvcNI+fBm estimator derived for
real DEMs.

To illustrate better the connection between DEM error
characterization and BNPE problems, let us discuss more in
detail the “runway” method proposed by Becek [22], [36].
According to it, if we assume that for a particular DEM patch,
the reference DEM is flat, the variance of residual between
analyzed and reference DEMs is composed of instrumental
(σ 2

I ) and environmental (σ 2
e ) components and undesirable

target-induced component σ 2
T that is caused by the unac-

counted terrain roughness: σ 2
Z = σ 2

I + σ 2
e + σ 2

T . The value
σ 2

T can be approximated as σ 2
T = (1/12)r2

DEM tan2(α) +
(1/12)q2, where α is the terrain root mean square slope and
q is the quantization step [22]. For a flat terrain (e.g., run-
way), α ≈ 0 and target-induced term becomes negligible.
In the above introduced terms, for flat terrain, Zgrid(t, s) =
Zgrid = const, Ẑgrid.ref(t, s) == Zgrid.ref(t, s) = Zgrid.ref =
const, egrid.ref.mes(t, s, pref (t, s)) = 0, and r(t, s) simplifies to
[Zgrid − Zgrid.ref ] + egrid.mes(t, s, p(t, s)). Even not knowing
the actual evaluation Zgrid.ref , variance of DEM error can be
directly estimated as follows:
Var(egrid.mes(t, s, p(t, s)))

= Var(Ẑgrid(t, s) − Zgrid.ref) = Var(Ẑgrid(t, s)). (1)

This idea directly corresponds to the so-called HA approach,
which is the simplest BNPE approach [27]. The limiting
factors of the “runway” method is that: 1) it still relies on
reference data to locate flat terrain patches; 2) number of flat
patches provided by this method is limited; 3) these patches
represent only one particular terrain class—concrete surfaces,
and cannot, in principle, be extended to other terrain classes;
and 4) (1) requires absolutely flat patches that is hard to satisfy.
These limitations have been overcome in advanced BNPE
methods that provide means for automatic search of HA and
ability to deal with moderately heterogeneous patches. Thus,
for global DEMs, BNPE could potentially rely on a larger
amount of data for analyzing DEM error and cover larger
variety of DEM error predictors.
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BNPE has seen fast development in the last decade and
now provides a mature set of methods applicable to a vari-
ety of scenarios [26]: single channel [37], multispectral (or
color) [38], and hyperspectral images [39], [40]; optical [41]
and radar [42] images; signal-independent (additive) [37],
Poisson [43], multiplicative noise [42], or their mixture in
the form of general model with signal-dependent noise vari-
ance [38], [44]–[46]; methods with ability to characterize only
noise variance [37]–[45] as well as noise spatial correlation
properties [46], [47]. Accuracy of these methods is high
enough to consider them as an alternative to direct sensor
calibration [38]–[40], [43], [45].

The BNPE problem is ill-conditioned and requires addi-
tional a priori information on noise and noise-free image
properties to be solved reliably. Such additional informa-
tion could originate from either spatial [27] or spectral [48]
domains leading to two main groups of BNPE methods
working in spatial or spectral domain, respectively. Spatial
a priori information assumes that noise and noise-free image
could be separated in image HA, where noise-free image level
variation is negligible as compared to noise. Spectral a priori
information assumes that noise-free image and noise difference
in spectral domain could help their separation. The state-
of-the-art methods typically utilize both spatial and spectral
information; the mvcNI+fBm method also belongs to this
group. Irrespectively from a priori information used, BNPE
methods operate by finding image patches where noise-free
image and noise can be separated in the best way and locally
estimating noise variance from such patches [26].

To illustrate how moderately heterogeneous patches can be
used for BNPE problem and which components of DEM error
can be estimated by this approach, it is useful to represent
BNPE as a high-pass filter. The value of Var(Ẑgrid(t, s)) =
(1/N2)

�i, j≤N
i, j=1 (Ẑgrid(t, s) − (1/N2)

�i, j≤N
i, j=1 Ẑgrid(t, s))2 is

the local variance of residuals Ẑgrid(t, s) − (1/N2)�i, j≤N
i, j=1 Ẑgrid(t, s) between DEM Ẑgrid(t, s) and its low-pass

filtered version (1/N2)
�i, j≤N

i, j=1 Ẑgrid(t, s). Here, N is the

linear patch size. The difference between signal and its
low-pass filtered version is equivalent to a high-passed
filter applied to the signal. The error-free elevation has
multiscale property and possesses fine-, meso-, as well as
macroscale-variations [49]. In contrast, instrument-induced
error has slow-varying bias component caused by instrument
calibration errors (orientation error and jitter noise) and
exhibits random fluctuations at the fine scale. Environment-
induced error is related to the terrain surface and could
borrow at some extent its multiscale structure. High-pass
filter suppresses constant term and large-scale elevation
variations and keeps only fine-scale details. This procedure
partly removes error-free DEM variations making some
of moderately heterogeneous patches almost homogeneous
and suitable for estimating DEM error through BNPE; the
error-free DEM and error bias terms are also removed as well
as low-frequency calibration error; large-scale environment-
induced variations of DEM error (bias between bare soil DEM
and terrain with vegetation cover) are likewise filtered-out.
In contrast, fine-scale random variations of DEM error

Fig. 2. Illustration of the local DEM error structure. Heterogeneous areas
are marked by gray fill.

(both instrument- and environment-induced) pass through
the high-pass filter. This is illustrated in Fig. 2 where a
terrain surface and DEM error are simulated. After high-pass
filtering, HA areas represent fine-scale component of DEM
error. Heterogeneous areas (shown by gray in Fig. 2) do not
represent DEM error, should be detected, and removed from
further consideration. In other words, BNPE can be viewed as
a filtering process that separates a DEM error from the actual
DEM using difference in their autocorrelation functions.

Let us summarize BNPE properties important for under-
standing effect of their application to gridded DEM: 1) it does
not require any reference image (DEM); 2) it characterizes
image noise (DEM error) locally; 3) it employs spatial (HAs)
and spectral (different autocorrelation functions of the true
signal and noise) separability of true signal (error-free DEM)
and noise (DEM error); 4) it performs automatic search of
image patches where the true signal (error-free DEM) and
noise (DEM error) are separable at an extent allowing noise
(DEM error) parameters estimation; and 5) it estimates only
fine-scale random noise (DEM error) component, and bias and
large-scale components cannot be estimated. Therefore, BNPE
methods are able to estimate local SD of fine-scale component
of DEM measurement error. This error is similar to the residual
error or leveled error introduced in [50] that indicates the
best possible DEM error with no instrument orientation error
affecting the result.

In the majority of BNPE methods, noise can be represented
as the sum of two terms: a signal-independent or additive and
signal-dependent one. In RS applications, the additive noise
is sensor noise (e.g., thermal noise), and it does not depend
on the sensed image. The signal-dependent noise is due to the
physical nature of measured quantity (e.g., photon-counting or
Poisson noise in optical images, and coherent speckle noise in
synthetic aperture radar images), and its variance is a linear or
nonlinear function of sensed image intensity [51], [52]. There-
fore, this observation noise model is univariate. In contrast,
DEM error depends on many predictors both instrument- and
environment-related. To the best of authors’ knowledge, the
only BNPE method able to deal with the multivariate noise
model is the recently proposed mvcNI+fBm (see Section IV
for details). This property has determined our choice in favor
of this estimator for characterizing the DEM error.

Including all significant predictors selected for analysis
in predictor vector p, one expects DEM error to exhibit
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the same statistical properties for all patches with the
same predictor vector. However, not all predictors could
be observed, identified, or considered in a particular study.
Therefore, predictor vector is split into observable and
not-observable, latent, parts: p = (pobserved, platent). The
mvcNI+fBm is designed to estimate measurement error SD
σe for patches with similar observable predictors pobserved.
However, latent predictors are not controlled leading to vari-
ations of the estimates SD: σ̂ 2

e.i = σ̂ 2
e (pobserved, platent.i ),

where i = 1 . . . Npt, Npt is the number of patches. In the
simplest case, final SD estimates are obtained as average
over all patches: σ̂ 2

e = N−1
pt

�Npt
i=1 σ̂ 2

e.i (pobserved, platent.i ) ≈
σ̂ 2

e (pobserved, p̄latent), where p̄latent = N−1
pt

�Npt
i=1 platent.i . The

mvcNI+fBm estimates error parameters for a fixed value of
observable predictors and an average value of the latent ones.

Significant limitation of BNPE resides in its operation
principle. As DEM error SD is estimated from homogeneous
or moderately heterogeneous DEM patches representing low
relief terrain, predictor vector values that correspond to high
relief terrain are inaccessible. Primarily, DEM error parameters
for patches with high-slope SD cannot be estimated using the
no-reference approach. Homogeneity level required for reliable
DEM error SD estimation is related to the DEM error SD
itself: the lower the DEM error is, the more homogeneous
patches are needed to access it. The DEM error component
accessible by the BNPE methods can be finally formulated as
fine-scale measurement error SD in low-relief areas averaged
over latent, unobservable predictors. In what follows, we refer
to this DEM error component simply as measurement error or
even error, omitting other qualifiers.

III. ELEVATION MEASUREMENT ERROR MODEL

A. Mathematical Model of DEM Error

Following the discussion in Section II, for an (2Nh + 1) ×
(2Nh + 1) DEM patch, we assume the following model:

Ẑgrid(t, s) = Zgrid(t, s) + egrid.mes(t, s, p) (2)

where t, s = −Nh , . . . , Nh denote pixel coordinates within
the patch, Nh is the patch half size, N = 2Nh + 1 is the patch
linear size, Ẑgrid(t, s) and Zgrid(t, s) are affected by errors
and error-free DEMs, and egrid.mes(t, s, p) is a zero-mean
spatially correlated random error that models the fine-scale
measurement error. For a particular patch, the predictor vector
p is assumed constant but changing its value from patch
to patch. Model (2) resembles DEM modeling in geostatis-
tics when a DEM patch is split into zero-mean error term
and spatially autocorrelated random field modeling error-free
DEM [8].

It is assumed that error is uncorrelated with the error-
free DEM. By this, we mean that only error parameters are
dependent on DEM structure and not error realization itself,
i.e., error and error-free elevation values in the same pixel
have no linear relationship with each other. The Gaussian
distribution is the most natural assumption for DEM error,
which is generated by a complex mixture of many factors.
The validity of this distribution has been reported in many
sources [4], [6], [7], [10], [33].

In addition, the semivariogram analysis of DEM error indi-
cates the presence of spatial autocorrelation [7], [33]. At the
lag distances considered in this article (below 100–200 m),
isotropy of DEM errors is also typically assumed. (Anisotropy
of DEM errors was reported in [33] for lag distances
exceeding 500 m.) With this, no strong evidence support-
ing a particular spatial autocorrelation function shape is
present in the available literature. We performed experiments
with two widely used correlation function shapes: expo-
nential Re(t1, s1, t2, s2) = σ 2

e (p) exp(−(|d|/σCorr(p))) [16]
and Gaussian Re(t1, s1, t2, s2) = σ 2

e (p) exp(−(d2/2σ 2
Corr(p))),

where d = ((t2 − s1)
2 + (t2 − s1)

2)1/2, σ 2
e (p) is the noise

variance, and σ 2
Corr(p) is the parameter that characterizes

unknown error spatial correlation width (σCorr is the distance in
pixels where error correlation drops to a certain value, 0.6 for
Gaussian shape, and 0.37 for exponential shape). It was found
that the Gaussian shape is more adequate than exponential
one (in terms of regression quality measured by R-square,
see Section V) for GDEM2 and AW3D30 global DEMs, but
exponential model is more suitable for TanDEM-X-DEM.

The DEM error properties accepted in the mvcNI+fBm
can be summarized as follows: normal distribution, stationary
fine-scale error with Gaussian isotropic spatial correlation
function, and uncorrelated with the error-free DEM. The
goal of the mvcNI+fBm estimator is to evaluate types and
coefficients of regression functions σ 2

e (p) and σ 2
Corr(p) using

the large number of Ẑgrid patches.
The error-free DEM is modeled as a fractal surface, namely,

nonstationary 2-D fBm [53]. The fBm model is suitable for
describing the earth surface that was shown to fulfill the
multiscale, fractal properties [49], [54], [55]. According to
the fBm model, the error-free DEM increments �Z(t, s) =
Z(t, s) − Z(0, 0) with respect to the patch central pixel
Z(0, 0) represent a nonstationary random Gaussian process
with covariation matrix

RZ (t1, s1, t2, s2) = ��Z(t1, s1) · �Z(t2, s2)�
= 0.5σ 2

x

��
t2
1 + s2

1

�Hq + �
t2
2 + s2

2

�Hq

− ((t1 − t2)
2 + (s1 − s2)

2)Hq
�
.

where Hq ∈ (0,1) is the Hurst exponent describing fBm-field
roughness (Hq → 0 relates to a rougher terrain, Hq → 1 to a
smoother one), and σx describes the fBm amplitude as SD of
elevation increments on unit distance. The covariation matrix
of measured increments �Ẑ(t, s) = Ẑ(t, s) − Ẑ(0, 0) can be
shown to have the following form:
RẐ (t1, s1, t2, s2) = ��Ẑ (t1, s1) · �Ẑ(t2, s2)�

= RZ (t1, s1, t2, s2) + Re(t1 − t2, s1 − s2)

+ Re(0, 0) − Re(t1, s1) − Re(t2, s2). (3)

B. Bivariate Model of Measurement Error
Variance and Correlation

Among the multitude of factors influencing the DEM
error, in this article, we have considered only two
instrument-induced factors valid for photogrammetric DEMs:
the stacking number and epipolar line error.
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Fig. 3. Illustration of epipolar line error.

Stacking is aggregation of data obtained from multiple
passes of the instrument. Stacking number, Nstk, is the number
of image stereo pairs used to estimate elevation. It is selected
here as the first predictor of DEM error: p1 = Nstk. Concep-
tually, measurement error variance should decrease as N−1

stk
due to averaging over stack of DEM images. According to
this model, σ 2

e should converge to zero with Nstk approaching
infinity, which is not realistic due to finite correlation ker-
nel (window) size [56]. Therefore, we consider more adequate
model σ 2

e = 1+N−1
stk (in what follows, we represent regression

models in simplified form by setting model coefficients to
unity).

In stereovision and photogrammetry, finding elevation of a
terrain object consists in 1-D search of the object image on the
left(right) image along the corresponding epipolar line at the
right(left) image. The epipolar line on one stereo pair image is
formed by projecting all 3-D points having the same projection
in the other stereo pair image [57]. The object displacement
(with respect to a reference elevation, typically Z = 0) along
the epipolar line is called disparity D, which is related to
elevation as Z = D(r/B), where B denotes the base-to-height
ratio and r is an instrument spatial resolution [58]. In Fig. 3,
elevation Z = 0 corresponds to point A and line A–B is the
corresponding epipolar line. Object E has higher elevation (and
disparity) than object C and is placed farer from point A along
the epipolar line. Position of the reference point A and orien-
tation of the epipolar line are determined from the instrument
calibration data and are subject to errors. The deviation of the
estimated epipolar line from the true one is called epipolar line
error [58]. It has been shown that camera errors propagate
to epipolar line error in a way dependent on disparity [59].
As a result, SD of distance between points on the true and
estimated epipolar lines is increasing with disparity: in average
�A − A	� < �C − C 	� < �D − D	� < �B − B 	�. The object
disparity is found by maximizing correlation between left and
right stereo images within the search window moving along

the epipolar line. As estimated epipolar line deviates from its
true position, the value of correlation drops, correlation profile
maximum smears, and disparity estimation accuracy decreases.
In this manner, σ 2

e becomes dependent on D and consequently
on elevation Z . We, therefore, select elevation Z as the second
predictor of DEM error: p2 = Z .

Obviously, the influence of epipolar line error depends
on the accuracy of an instrument onboard calibration data.
In Section V, we show that ASTER GDEM2 with calibration
data of relatively low accuracy [58] demonstrates the strong
influence of elevation on DEM error. On the contrary, for
AW3D and AW3D30 DEMs with calibration data of relatively
high accuracy [60], this dependence is not observed.

In the absence of exact model of epipolar line error influence
on σ 2

e , we propose to model it in the form 1 + Zm , where
m takes values 1 or 2 in this study (formalizing linear
and quadratic dependence hypotheses of measurement error
parameters on elevation).

Combining the two univariate terms 1 + N−1
stk and 1 + Zm ,

we get for σ 2
e a bivariate model in the form (1 + Zm) +

(1 + Zm)N−1
stk = 1 + N−1

stk + Zm + Zm N−1
stk , leading to the

following expression:
σ 2

e (p, θ e) = σ 2
Var01+σ 2

Var02 N−1
stk +cVarZ1 Zm + cVarZ2 Zm N−1

stk

(4)

where p = (Nstk, Z), Np = 2 is a 2-D predictor vector, and
θ e = (σ 2

Var01, σ
2
Var02, cVarZ1, cVarZ2) is the DEM error variance

parameter vector.
In (4), σ 2

Var01 + cVarZ1 Zm component is shared by all DEM
realizations in the stack and related to the underlying surface
properties. This error component can be viewed as measure-
ment error of DEM obtained from noise-free stereo images.
The term σ 2

Var02 + cVarZ2 Zm is the variance of component that
is uncorrelated between DEM realizations in the stack (due
to different sensor noise realizations in each stereo pair and
different viewing geometries).

For photogrammetric DEM, measurement error spatial cor-
relation width is related to the correlation peak sharpness and
should not exceed correlation window size. The value of σ 2

Corr
is supposed not to change from one stereo pair to another one.
The averaging over stereo pairs does not affect σ 2

Corr of random
components and could slightly increase it as a result of spatial
smoothing due to horizontal registration error of stereo pairs.
Therefore, σ 2

Corr could slightly increase with Nstk. As epipolar
line error smears correlation peak, σ 2

Corr is expected to increase
with elevation.

We propose to use the same model for σ 2
Corr as for σ 2

e

σ 2
Corr(p, θCorr) = σ 2

Corr01 + σ 2
Corr02 N−1

stk

+ cCorrZ1 Zm + cCorrZ2 Zm N−1
stk . (5)

where θCorr = (σ 2
Corr01, σ

2
Corr02, cCorrZ1, cCorrZ2) is the DEM

error correlation width parameter vector.
In addition to full models (4) and (5), we have also

considered two simpler submodels for both σ 2
e and σ 2

Corr. The
first submodel uses only predictor Nstk, and the second one
employs only Z . Taking into account two possible values for
m (1 or 2), we obtain a set of six alternative models to test for
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Fig. 4. Processing pipeline of the mvcNI+fBm method.

the DEM measurement error parameters: 1, 1 + N−1
stk , 1 + Z ,

1 + Z2, 1 + N−1
stk + Z + Z N−1

stk , and 1 + N−1
stk + Z2 + Z2 N−1

stk .
In what follows, we use the mvcNI+fBm both to select the
most relevant model for each considered DEM and estimate
the corresponding model coefficients.

IV. NO-REFERENCE ESTIMATION OF MEASUREMENT

ERROR PARAMETERS: THE MVCNI+FBM ESTIMATOR

A. Generalized Description of the Adapted mvcNI+fBm
Estimator of DEM Error Parameters

The main processing stages of the mvcNI+fBm method
include: 1) initialization; 2) patches homogeneity estimation;
3) grouping of image patches; 4) processing of the formed
groups; and 5) multivariate estimation of context-dependent
error parameters (see Fig. 4) [28]. In the mvcNI+fBm method,
homogeneity estimation stage depends on DEM error parame-
ters; therefore, iterative repeating of stages (2)–(5) is required.
Originally, the mvcNI+fBm was proposed for vector RS
images. In this article, it is adapted to the case of gridded DEM
images that represents single-channel data. Let us consider
each stage of the mvcNI+fBm in more detail.

To estimate each error parameter, one specific call of
sequence of stages (2)–(5) is performed. During each call,
one parameter is fixed while the other ones are estimated,
and vice-versa. For the purpose of clarity, we describe below

the proposed estimation procedure for an arbitrary error
parameter s, meaning either noise SD, s = σe, or spatial
correlation width, s = σCorr.

At the initialization stage, the image to process is split
into nonoverlapping patches. Each patch represents a group
of adjacent pixels of size N × N pixels. The patches with
known unreliable data are removed from further consideration.
This stage is application-specific and is described in Section V.
Overall number of retained patches is referred to as Npt.

In the mvcNI+fBm, homogeneity index is measured as
a ratio between lower bound on parameter s estimation
SD (Cramér–Rao lower bound, CRLB), σs , and parameter
value: rHA = σs/s. For homogeneous patches, it takes low
values. For example, for SD parameter, very homogeneous
patches represent pure DEM error, σσ 2

e
approaches to SD

of sample variance: σσ 2
e

≈ σe(2/(N2 − 1))1/2, and rHA ≈
(2/(N2 − 1))1/2. For N = 11 used in Section V,
(2/(N2 − 1))1/2 = 0.129. For heterogeneous patches, where
actual DEM and DEM errors cannot be separated, both σs and
rHA ratio increase. In extreme cases, for very rough patches
rHA → ∞. The value of rHA indicates how much information
about error parameter s can be extracted from a given patch
with patch homogeneity increasing as rHA decreasing. Cor-
respondingly, in the mvcNI+fBm, HAs with low rHA index
were called NI. Homogeneity estimation stage involves the
estimation of error-free DEM parameters, value of σs , and,
finally, the value of rHA for each patch (see Section IV-B for
details). Notice that a specific value of rHA is defined for each
considered error parameter. Therefore, homogeneity estimation
stage (and subsequent stages of mvcNI+fBm) is repeated for
each error model parameter.

Let us consider two patches with the same error parameter s
and CRLBs σs1 and σs2. The two patches considered together
provide more information on s than each of them consid-
ered individually. By joint processing of two patches, CRLB
value could be potentially reduced to σs = σs1σs2/(σs1 +
σs2) < min(σs2, σs1). Therefore, for two patches, rHA <
min(rHA1, rHA2). From this point of view, several patches
considered together are “more homogeneous” and more “NI”
than each of them. For a group of Ngroup patches with similar
DEM properties, homogeneity index decreases approximately
as 1/(Ngroup)

1/2. The mvcNI+fBm utilizes this property by
grouping homogeneous and moderately heterogeneous patches
with similar predictor values into even more homogeneous
groups. Each group is further processed as a whole. In this
manner, even moderately heterogeneous patches could form a
homogeneous group, thus relaxing requirement to actual DEM
variability and increasing number of individual error parameter
estimates.

The grouping stage splits all available patches into cells
with similar predictor values (implying similar error prop-
erties). Similarity of predictors is measured as d(p1, p2) =
(
�Np

j=1 w2
j · (p1( j) − p2( j))2)1/2, where w j is the associated

weight. Weights w j , j = 1, . . . , Np, serve two interdependent
goals: the first one is to limit the error parameter variation
within the group and the second one is to assure the desired
resolution with respect to predictors. To provide resolution
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�p j with respect to j th predictor, the weight should be set
as w j = �p−1

j (the used weight values for the DEM error
parameter estimation are specified in Section V). In each
cell, patches are sorted in the ascending order of rHA value
(from the most homogeneous to the most heterogeneous ones).
Patches are sequentially assigned to groups. The groups are
considered homogeneous when rHA drops below the threshold
value of 0.15 and Ngroup < 15. (A larger size of a homoge-
neous group means that the set of patches in the group is more
heterogeneous and consequently extracting error parameters
from such a group may become less reliable; in the tests
carried out later in Section V, we found 15 to be a reasonable
group size.) We define by NNI the number of the found NI
groups. For the i th group, mean value of predictor vector p̄i

is calculated.
At the next stage (4) of processing the formed groups,

for an i th group, a single error parameter si (σ 2
e.i or σ 2

Corr.i )
is estimated using all patches in this group. Thus, each
group provides one observation ŝi of the error parame-
ter si for a given value of predictor vector p̄i . Note that
the lower bound on ŝi estimation error, denoted by σ 2

si
,

is derived as an additional output of the estimation procedure
(see Section III-B).

The final stage (5) of estimation of multivariate context-
dependent error parameter s mathematically corresponds to
the associated robust, multivariate, heteroscedastic regression
problem so as to estimate s as a function of its predictors [28].
Multivariate linear regression (nonlinear regression can be
applied in a similar way) is, thus, used in the mvcNI+fBm
rather than simple univariate linear regression typically con-
sidered in the past for signal-dependent noise parameter esti-
mation. Robustness is needed to cope with gross DEM errors
(outliers and blunders) [6].

B. Mathematical Details of the mvcNI+fBm Estimator

Let us formally introduce the mvcNI+fBm estimator. Using
the definitions of Section III-A, the log-likelihood function of
image intensities within a single patch is given by

ln L(�Ẑ; θ) = −1

2

�
�ẐT R−1

�Ẑ
�Ẑ + ln |R

�Ẑ|� (6)

where �Ẑ is an N2 × 1 sample composed of all �Ẑ(t, s)
within the patch, kth �Ẑ element and patch pixel with
coordinates (tk, sk) are related to each other by k = tk +
Nsk + Nh (N + 1) + 1, and θ = (σ 2

x , Hq, σ 2
e , σ 2

Corr) denotes
the full parameter vector characterizing both error-free DEM
and DEM error.

The information contained in the sample �Ẑ is charac-
terized by the Fisher information matrix (FIM) Iθ with ele-
ments Iθiθ j = (1/2)tr(R−1

�Ẑ
(∂R�Ẑ/∂θi )R

−1
�Ẑ

(∂R�Ẑ/∂θ j )), i,
j = 1, . . . , 4 [61].

Before estimating error parameters, we first need to deter-
mine error-free DEM parameters, σ 2

x and Hq , using the
following estimator:�

σ̂ 2
x , Ĥq

� = arg min
σ 2

x ≥0,0<Hq<1,σ 2
e =σ̂ 2

e ,σ 2
Corr=σ̂ 2

Corr

[ln L(�Ẑ; θ)]. (7)

In (7), we specify that error parameters are fixed at this
stage at their current estimated values σ̂ 2

e and σ̂ 2
Corr. Error-free

DEM parameter estimates are only reliable for patches with
ratio σ 2

x /σ 2
e that can be understood as local signal-to-noise

ratio (SNR) within the given DEM patch. High SNR patches
with σ 2

x /σ 2
e > 2 are called texture informative (TI). For

other patches, Hurst exponent estimation is not reliable and is
evaluated using the inverse distance interpolation method [62]
based on reliable estimates Ĥq from TI patches. In this
manner, the interpolated Hurst exponent values Ĥq.interp are
obtained for each patch. To characterize interpolation error,
we sequentially exclude one TI patch and interpolate Hurst
exponent value for this patch using remaining TI patches.
The interpolation error SD σ̄Hq.interp is calculated as SD of
difference Ĥq.interp − Ĥq for all TI patches.

Two estimators for the error variance σ 2
e and spatial corre-

lation width σ 2
Corr can now be defined in the following form:�

σ̂ 2
x , Ĥq, σ̂ 2

e

� = arg min
σ 2

x ≥0,0<Hq<1,σ 2
e ≥0,σ 2

Corr=σ̂ 2
Corr

×
[

ln L(�Ẑ; θ) − (Hq − Ĥq.interp)
2

2σ̄ 2
Hq.interp

]

(8)�
σ̂ 2

x , Ĥq, σ̂ 2
Corr

� = arg min
σ 2

x ≥0,0<Hq<1,σ 2
e =σ̂ 2

e ,σ 2
Corr≥0

×
[

ln L(�Ẑ; θ) − (Hq − Ĥq.interp)
2

2σ̄ 2
Hq.interp

]
.

(9)

In (8) and (9), we have taken into account the prior on the
Hurst exponent as the additional term in the optimized log-
likelihood function. This prior has maximal effect for the very
homogeneous patches with low SNR, for which reliable Hurst
exponent estimation is impossible. The effect becomes less
pronounced with SNR increase.

FIMs I(σ 2
x ,Hq ,σ 2

e ) and I(σ 2
x ,Hq ,σ 2

Corr)
for the estimators (8)

and (9), respectively, are obtained from general matrix Iθ

by eliminating row and column corresponding to the missing
parameter and adding prior information on Hq by substituting
IHq Hq component with IHq Hq + σ̄−2

Hq.interp
.

CRLBs on σ 2
e and σ 2

Corr estimate error are obtained by
inverting I(σ 2

x ,Hq ,σ 2
e ) and I(σ 2

x ,Hq ,σ 2
Corr)

. The last elements of

these matrices, σ 2
σ 2

e
and σ 2

σ 2
Corr

, are CRLBs on σ 2
e and σ 2

Corr

estimate errors, respectively.
Taking into account error-free DEM and error independence

between patches, estimators for the group of Ngroup patches
can be straightforwardly formulated using (8) and (9)�

D̂x , Ĥq , σ̂ 2
e

�
= arg min

Dx ≥0,0<Hq<1,σ 2
e ≥0,σ 2

Corr=σ̂ 2
Corr

×
⎡
⎣Ngroup∑

v=1

(
ln L(�Ẑv ; θv ) − (Hq.v − Ĥq.interp.v )

2

2σ̄ 2
Hq.interp

)⎤
⎦
(10)
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�
D̂x , Ĥq , σ̂ 2

Corr

�
= arg min

Dx ≥0,0<Hq<1,σ 2
e =σ̂ 2

e ,σ 2
Corr≥0

×
⎡
⎣Ngroup∑

v=1

(
ln L(�Ẑv ; θ v ) − (Hq.v − Ĥq.interp.v )

2

2σ̄ 2
Hq.interp

)⎤
⎦
(11)

where �Ẑv is the sample for vth patch, θv = (σ 2
x .v , Hq.v ,

σ 2
e , σ 2

Corr), σ 2
x .v , Hq.v , and Ĥq.interp.v are σ 2

x , Hq , and Ĥq.interp

for vth patch, Dx = (σ 2
x .1, σ

2
x .v , . . . , σ

2
x .Ngr

), and Hq =
(Hq.1, Hq.2, . . . , Hq.Ngr). Note that the same error parameters
are assumed for all patches in the group.

For nonoverlapping patches, error parameter estimates are
independent. Therefore, CRLBs on σ 2

e and σ 2
Corr using a group

of patches are given by σ 2
σ 2

e
= 1/

�Ngroup
v=1 (σ−2

σ 2
e.v

) and σ 2
σ 2

Corr
=

1/
�Ngroup

v=1 (σ−2
σ 2

Corr.v
), respectively.

Let us provide R�Ẑ derivatives with respect to θi ,
i = 1, . . . , 4

∂R�Ẑ(k1, k2)

∂σ 2
x

= σ−2
x R�Z(tk1 , sk1 , tk2 , sk2 ) (12)

∂R
�Ẑ(k1, k2)

∂ Hq

= 0.5σ 2
x

�
log

�
t2
k1

+ s2
k1

��
t2
k1

+ s2
k1

�Hq

+ log
�
t2
k2

+ s2
k2

��
t2
k2

+ s2
k2

�Hq

− log((tk1 − tk2 )
2 + (sk1 − sk2 )

2)

×((tk1 − tk2)
2 + (sk1 − sk2 )

2)Hq
�

(13)
∂R�Ẑ(k1, k2)

∂σ 2
e

=

⎛
⎜⎜⎝

1 + exp

�
− d2

0

2σ 2
Corr



− exp

�
− d2

1

2σ 2
Corr


− exp

�
− d2

2

2σ 2
Corr


⎞
⎟⎟⎠ (14)

∂R�Ẑ(k1, k2)

∂σ 2
Corr

= σ 2
e

2σ 4
Corr

⎛
⎜⎜⎝

d2
0 exp

�
− d2

0

2σ 2
Corr



−d2
1 exp

�
− d2

1

2σ 2
Corr


− d2

2 exp

�
− d2

2

2σ 2
Corr


⎞
⎟⎟⎠
(15)

where d0 = ((tk1 − tk2)
2 + (sk1 − sk2 )

2)1/2 and d1 =
(t2

k1
+ s2

k1
)1/2, d2 = (t2

k2
+ s2

k2
)1/2.

Finally, DEM measurement error parameters estimation
algorithm is detailed in Algorithm 1.

V. APPLICATION OF ADAPTED MVCNI+FBM ESTIMATOR

TO REAL DEMS ERROR ANALYSIS

In this section, we apply the proposed mvcNI+fBm method
to two global DEMs with 1 arc second (30 m at equator)
spatial resolution: GDEM2 and AW3D30. More attention is

Algorithm 1 Estimation of DEM Measurement Error
Parameters

Input: A number of a raster DEM tiles;
Output: DEM context-dependent error parameters (error
variance σ 2

e and spatial correlation width σ 2
Corr dependence

on predictor vector);

1. Split DEM tiles into non-overlapping patches; Reject
unreliable patches (as described in subsection 5.1);

2. Set iteration number k = 1;
3. For each of Npt selected patches, calculate predictor

vector (e.g. stacking number, elevation) pi , i = 1 . . . Npt;
4. For each patch, calculate fBm field parameters vector

according to (7). Interpolate Hurst exponent for low SNR
patches (NI) using high SNR patches (TI);

5. For each patch, calculate Cramer-Rao lower bounds on
σ 2

e or σ 2
Corr estimate error using (12) - (15); Calculate

patch homogeneity index;
6. Group patches into NI groups using homogeneity index

(as described in subsection 4.1); For each NI group cal-
culate mean value of predictor vector p̄ j , j = 1 . . . NNI,
NNI is number of NI groups;

7. For each NI group, estimate error parameter s j using (10)
or (11);

8. Apply robust heteroscedastic regression to (p̄ j , s j )
pairs to refine DEM context-dependent error parameter
vector:θe.k or θCorr.k ;

9. Repeat 4-8 for both error variance σ 2
e and spatial corre-

lation width σ 2
Corr;

10. Increase iteration number: k = k + 1;
11. Repeat the steps from 4 to 10 till convergence defined as

||θe.k − θe.k−1|| < ε and ||θCorr.k − θCorr.k−1|| < ε, where
ε is small constant;

paid to GDEM2 as it reveals the most complex measurement
error behavior. To prove the mvcNI+fBm scalability, we test
it on a sample granule of AW3D DEM with a 5-m spatial res-
olution. In addition, radar DEM TanDEM-X-DEM is analyzed
to compare mvcNI+fBm results with theoretically predicted
random noise SD. The obtained results for each DEM are
compared with respective DEM accuracy analysis available in
the literature.

A. Experimental Settings

For GDEM2 and AW3D30 DEMs, 59 tiles were used to
estimate σ 2

e and σ 2
Corr model coefficients with the following

lower left (southwest) corner pixels: N27–28E086–087, N30–
32E035, N33–35E076, N47–48W001–002, N48–49E001–003,
N48–49E031–032, N49–50E036–037, N50E099, N50E103,
N51–52E099, N52E101–102, N53E103, and S23–28W067–
070. Here, hyphen defines range of tiles with respect to
latitude, longitude, or both; N and S denote the north and
south latitudes, respectively; W and E denote the west and
east longitudes, respectively.

Each tile has fixed latitudinal and longitudinal spatial res-
olution of 1 arc second (approximately 30 m at the equator)
but expressed in meters, and resolution with respect to image
rows and columns differs. To compensate for this effect, tiles
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Fig. 5. Illustration of GDEM2 gross errors related to the stack-
ing procedure. (a) GDEM2 patch, (b) GDEM2 stacking number, and
(c) AW3D30 patch. Black corresponds to the elevation of 65 m and Nstk = 0,
and white corresponds to 290 m and Nstk = 11.

were resampled to coarser 90-m resolution cell with respect to
both spatial coordinates. For each tile, 10 000 nonoverlapping
patches of 11 × 11 pixels were selected on a regular grid.
The selected size of the patch is an experimentally found com-
promise between accuracy of error parameters estimates (that
increase with patch size) and DEM patch homogeneity (that
decreases with patch size). The stacking number for each pixel
of these patches was obtained using quality assessment (QA)
files supplied for each tile (the QA file has the same number
of rows and columns as DEM tile with each pixel representing
the corresponding Nstk value. QA file has extension.num for
GDEM2 and suffix “STK” for AW3D). QA files were also
interpolated to 90-m grid to match DEM tiles.

We set two criteria to decide whether a patch is reliable for
measurement error parameter estimation: 1) it contains data
provided by the “normal” workflow for the particular DEM
and 2) patch is not significantly affected by GDEM2 stack-
ing procedure artifacts (see the next paragraph). The first
criterion for photogrammetric DEM excludes pixels where
disparity measurement procedure fails, primary from lack of
data (e.g., caused by clouds), water body (that are typically
masked out), and low correlation areas (e.g., deserts). Those
pixels are substituted from different sources (e.g., other DEMs)
or remain as voids and do not characterize measurement error.
Such pixels can be identified by a negative stacking number for
GDEM2 and from mask information file (marked by “MSK”
suffix) for AW3D, and from water indication mask (“WAM”)
files of Tan-DEM-X DEM.

The second criterion is for handling another problem caus-
ing gross elevation error is related to GDEM2 stacking pro-
cedure: it produces false elevation discontinuities if stacking
number changes severely. This problem is illustrated in Fig. 5,
where a GDEM2 DEM patch, the corresponding stacking
number map, and the AW3D30 patch from the same location
are shown. The false elevation discontinuity correlated with
the stacking number discontinuity is clearly visible, while at
AW3D30 patch, this feature is missing. To avoid this source
of gross errors, the minimum Nstk.min and maximum Nstk.max
numbers of stereo pairs were calculated for each patch. The
patch was rejected if Nstk.max/Nstk.min > 2, thus limiting stack-
ing number variability. All patches that were found reliable are
further processed by the mvcNI+fBm estimator.

Predictor weights were set as w1 = 1 and w2 = 0.01 m−1

for Nstk and Z , respectively. Required homogeneity index for
NI groups was experimentally set to 0.125. We found that
in all cases, mvcNI+fBm converged in less than 15 iterations.
Computational complexity of mvcNI+fBm is moderate: single
iteration of mvcNI+fBm for 59 tiles takes about 5 h on Intel

Core i5-7200U CPU. The algorithm can be significantly sped
up by parallel processing of groups of fragments on GPU.

We use classical tools of linear regression to characterize
regression models: generalized determination coefficient, par-
tial residual plot, and significance test for predictor values
using t-statistic [63], [64]. The generalized determination
coefficient [65]: R2 = 1 − exp(−(2/NNI)(lR − lU )), where
lR is the log-likelihood for regression model restricted only
with intercept, lu is the log-likelihood of the unrestricted
regression model, and NNI is the number of estimates (num-
ber of NI groups). Assuming normal distribution of error
parameter estimate errors provided by the mvcNI+fBm and
omitting constants shared by both lR and lu , the log-likelihoods
for restricted and unrestricted models take the following
quite simple form: lR = −(1/2)

�NNI
i=1 ((ŝi − sconst)

2/σ 2
si
) and

lu = −(1/2)
�NNI

i=1 ((ŝi − spr.i)
2/σ 2

si
), where spr.i is the para-

meter prediction for i th measurement.

B. ASTER GDEM2 Experiment

The ASTER global DEM version 2 was released by
the National Aeronautic and Space Administration (NASA),
Washington, DC, USA, and the Ministry of Economy, Trade,
and Industry (METI) of Japan in 2011 [23], [24]. Experimental
assessment of the GDEM2 has been published in numerous
articles including [22], [23], [66] among others.

The ASTER GDEM2 was produced from data collected by
the ASTER sensor on board of the NASA Terra spacecraft,
which is capable of collecting in-track stereo pairs using
nadir- and aft-looking near-infrared cameras [67], [68]. The
procedure for the GDEM2 generation is described in [58].
According to this procedure, elevation estimates are obtained
via correlation-based registration with 5 × 5 pixel window.
Curve fitting approach [69] is used to reach the subpixel reg-
istration accuracy. The search is performed in the along-track
direction neglecting a small cross-track shift component
appearing due to the contribution of earth rotation effects
during the stereoscopic observation period. Multiple stereo
pairs (stacking number up to 50) are used to obtain elevation
estimates for a given area.

1) Measurement Error Variance Analysis: The results
obtained for error parameter σ 2

e are presented in Table I. It was
found that models with quadratic dependence on elevation are
more significant according to R2 coefficient (R2 is 0.4335 and
0.6298 for models 1 + Z and 1 + Z2; 0.7717 and 0.8954 for
models 1 + N−1

stk + Z + Z N−1
stk and 1 + N−1

stk + Z2 + Z2 N−1
stk ,

respectively). Using only Nstk predictor, we get a low determi-
nation coefficient R2 = 0.1221 (model 1 + N−1

stk ). The second
Z predictor notably increases R2 to 0.6298 (model 1 + Z2).
Using all terms in the model (4) increases R2 even further to
the value of 0.8954. Therefore, the influence of both predictors
on σ 2

e is significant. The estimated model for the GDEM2
elevation measurement error variance is given as follows:
σ 2

e = 1.0293 m2 + 25.6667 m2 N−1
stk

+ 4.8991 · 10−7 Z2 + 6.1069 · 10−6 Z2 N−1
stk . (16)

The partial residual plots for components of the model
(16) with the highest R2 (Fig. 6) reveal significance of
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TABLE I

RESULTS OF THE ELEVATION MEASUREMENT ERROR PARAMETER ESTIMATION OBTAINED WITH THE mvcNI+fBm FOR THE ASTER GDEM2

each component. Note the practical absence of outliers among
mvcNI+fBm estimates (outliers percentage is about 0.1%
for σ 2

e ).
Let us validate further the selected model (16) both quali-

tatively and quantitatively in comparison with GDEM2 analy-
sis results provided in the available literature. For the
ASTER instrument, B = 0.6 and r = 15 m. The ratio
(r/B) = 15 m/pixel is conversion ratio between pixel and
meter units. It is systematically used in the analysis below
where conversion between measurement units is involved.

The value of σe at the sea level (Z = 0) and for one
stereopair (Nstk = 1) is given as (σ 2

Var01 + σ 2
Var02)

1/2 =
5.1668 m. This value was estimated by Fujisada et al. [58]
(see [58, Fig. 10], kernel size 5 × 5 pixels) to vary from
0.2 to 0.3 pixels or, equivalently, from 5 to 7.5 m, depending
on the terrain. One can conclude and underline good agree-
ment between these two estimates.

The value of σe introduced in this article corresponds to
the SD of elevation bias in [22]. Therefore, we can directly
compare model (16) with the results by Becek [22]. The
reported results of the dependence of SD of bias on Nstk
make this comparison even more informative. The majority
of 96 runways considered in [22] are situated at low altitudes
near the sea level with the mean elevation of 234.7 m.
We simplify model (16) by substituting Z = 234.7 m getting
the reduced model σ 2

e = 1.0563 + 26.0031N−1
stk . The results

obtained with the reduced model were compared to those
shown in [21, Fig. 10]. Both estimates are shown in Fig. 7 for
Nstk varying from 0 to 50.

The results of the mvcNI+fBm and runway methods are
highly consistent for Nstk > 20. For Nstk < 20, σ 2

e estimates
obtained by the mvcNI+fBm are up to two times smaller than
those provided by the runway method. The possible reason
of this difference is the better robustness of mvcNI+fBm to
gross GDEM2 errors and outliers that affect the GDEM2 for
low stacking numbers as indicated by Becek [22].

The estimates of cVarZ1 and cVarZ2 related to epipolar line
error show very significant influence of elevation on σ 2

e :

σe at Z = 6000 m increases by 1.9…3.4 times as compared
to this value at Z = 0 m making elevation influence the
predominant error source at high elevations. The epipolar line
error SD is measured in [58] to be about 0.15 pixels or 3.75 m
for elevation about 4000 m (Mount Elbert). According to
model (16), σ 2

e at elevation Z = 4000 m and typical number of
stereo pairs Nstk = 10 increase by 4.899 · 10−7(4000 m)2+
6.107 · 10−6(4000 m)2/10 = 17.61 m2. This additional SD
of (17.61 m2)1/2 = 4.2 m is very close to the value
reported in [58].

2) Measurement Error Correlation Width Analysis: For the
correlation width parameter (Table I), significant dependence
on elevation can be observed (determination coefficient is
about 0.85–0.9 for the models 1 + Z and 1 + Z2) revealing
epipolar line error influence on measurement error correlation
function. Similar to what occurs for modeling σ 2

e , models
depending on Z are less relevant than models depending
on Z2 for modeling σ 2

Corr. Joint usage of two predictors,
Nstk and Z , cannot definitely confirm or discard hypothesis of
Nstk influence on correlation width: t-stats for terms dependent
on Nstk have rather small values (less than 10; see partial
regression plots in Fig. 6). Therefore, we consider model
1 + Z2 as the most relevant one for the GDEM2 measure-
ment error spatial correlation width (numeric values are in
90-m pixels)

σ 2
Corr = 0.1937 + 1.7786 · 10−8 Z2. (17)

The constant term of correlation width estimate obtained
by the mvcNI+fBm method for Z = 0 is about 0.44 pixels at
the resolution of 90 m that corresponds to 2.64 pixels at the
ASTER resolution of 15 m. This value is about the half-size
of 5 × 5 pixels correlation window, what is reasonable. For
Z = 5000 m, correlation width increases almost twice to
σCorr = 0.8 or 4.8 ASTER pixels. The value of correlation
width estimate close to the correlation window size indicates
that the measurement error correlation function shape could
deviate from Gaussian one at least for high elevation values.
Additional research is needed to clarify this hypothesis.
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Fig. 6. Partial regression plots for (a), (c), and (e) σ2
e and (b), (d), and (f) σ 2

Corr model coefficients.

Fig. 7. Comparison of the mvNI+fBm results for the GDEM2 with the
results obtained by Becek [22].

C. ALOS Experiment (5-m Resolution)

AW3D is a recent global DEM that is derived from the data
generated by Panchromatic Remote-sensing Instrument for
Stereo Mapping (PRISM), one of the onboard sensors carried
in the ALOS. It has a high spatial resolution of 0.15 arc second
(approximately 5 m at equator) and target vertical accuracy
of 5 m (RMSE). The low-resolution version (30-m spacing) is
generated by averaging the original one [70] and is provided
free of charge. Elevation is estimated by correlation coeffi-
cient maximization according to the triplet image matching
algorithm with correlation window size optimization [71].

For the PRISM instrument, B = 0.5 (between nadir and
forward/aft-looking sensors) and r = 2.5 m. The ratio
(r/B) = 5 m/pixel is conversion ratio between pixel and meter
units.

Sample AW3D tile for the area of Yushan mountain, Taiwan,
(central coordinates are 23◦28	08.4		 N 120◦57	36.0		 E,
4336 × 4702 pixels) were kindly provided by NTT DATA.
As for the GDEM2, the AW3D tile was downscaled three times
to a 15-m spatial resolution. For the AW3D, experiments do
not reveal significance of elevation predictor on measurement
error parameters (both σ 2

e and σ 2
Corr, see Table II). This result

indicates negligible epipolar line error for AW3D that can
be related to higher accuracy of ALOS satellite ephemeris
data [60] as compared to Terra satellite [58]. Similar to
GDEM2, measurement error variance is strongly dependent on
stacking number. Restricted amount of data available covers
only the limited range of Nstk change from about 4 to 7. There-
fore, σ 2

e for infinite number of Nstk cannot be estimated with
high precision. Surprisingly, σ 2

e for AW3D and GDEM2 for
sea level elevation is of the same order: σe is about 5 m for
Nstk = 1. Converted to disparity error in sensor pixels, 5-m SD
corresponds to about 0.2 pixels for GDEM2 [5 m/25(m/pixel)]
and 1 pixel for AW3D [5 m/5(m/pixel)]. Such an elevated
error SD may be related to peculiarities of stereo-matching
algorithm implementation for AW3D. Measurement error cor-
relation width for the AW3D is about 0.39 pixels at the
resolution of 15 m.
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TABLE II

RESULTS OF THE ELEVATION MEASUREMENT ERROR PARAMETER ESTIMATION OBTAINED WITH THE mvcNI+fBm FOR THE ALOS 3D WORLD, 5 m

TABLE III

RESULTS OF THE ELEVATION MEASUREMENT ERROR PARAMETER ESTIMATION OBTAINED WITH THE mvcNI+fBm FOR THE ALOS 3D WORLD, 30 m

D. ALOS Experiment (30-m Resolution)

For the AW3D30 (Table III) as for AW3D, the experiments
reveal the significance of stacking number predictors for σ 2

e .
For σ 2

Corr, both predictors are not significant. Measurement
error variance for the AW3D30 is lower than the one for the
GDEM2 even in the best settings (large stacking number and
sea level elevation): σVar01 = 0.6140 m for the AW3D30 as
compared to σVar01 = 1.0145 m for GDEM2. Taking into
account that the AW3D30 is obtained by averaging AW3D
pixels by six times with respect to both coordinates, σe for
the AW3D30 should be six times lower than for the AW3D.
This is actually observed for Nstk = 1: σe.AW3D(1)/6 ≈ 0.83 m
as compared to σe.AW3D30(1) ≈ 0.78 m. For large values of
Nstk, measurement error SD for the AW3D30 is comparable to
the quantization error. In this extreme case, the mvcNI+fBm
might not reveal decay of σ 2

e with stacking number. Mea-
surement error correlation width for the AW3D30 is about
0.2556 pixels at the resolution of 90 m.

E. TanDEM-X-DEM Experiment (90-m Resolution)

In the next experiment, we apply the mvcNI+fBm to the
open 90-m resolution version of TanDEM-X-DEM—DEM
created by interferometric processing of data from the two
twin SAR satellites TerraSAR-X and TanDEM-X [31]. The
unique feature of TanDEM-X-DEM important for this study is
that it contains estimates of the DEM random error SD called
height error map (HEM). The HEM is derived by rigorous

error propagation on the basis of TanDEM-X platform char-
acteristics, interferometric coherence, and geometrical con-
siderations [31], [72]. HEM is provided for each DEM tile
as auxiliary files with “HEM” suffix and contains pixel-wise
estimate of TanDEM-X-DEM random error SD. For TanDEM-
X-DEM, random error is understood in the same manner
as in this work: “random errors are high-frequency errors
with low spatial correlation contributing to both the point-
to-point relative vertical accuracy and the absolute vertical
accuracy” [72]; therefore, we consider HEM as σe estimate.

Random error for a DEM generated by a radar platform
is dependent on many factors. The goal of this experiment is
not to analyze these factors, but to verify agreement of HEM
and mvcNI+fBm estimates. For this, we consider regression
model in the form 1 + HEM2

σ 2
e = σ 2

Var01 + cVarHEMHEM2. (18)

Assuming HEM is a correct estimate of TanDEM-X-DEM
random error SD and mvcNI+fBm provides accurate estimates
of σe, one expects σ 2

e = HEM2 and coefficients of model (18)
should be σ 2

Var01 = 0 and cVarHEM = 1.
For TanDEM-X-DEM, we used the same DEM tiles and the

same experiments settings as for the ASTER GDEM2 exper-
iment. The complexity of TanDEM-X-DEM analysis exceeds
that of ASTER GDEM2 because random noise SD is two
orders of magnitude lower. For the considered tiles, HEM
varies from 0.018 (0.01% quantile) to 3.5 m (99.99% quantile)
with the mode equal to 0.05 m as compared to 2 . . . 6 m for
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TABLE IV

RESULTS OF THE ELEVATION MEASUREMENT ERROR PARAMETER ESTIMATION OBTAINED WITH THE mvcNI+fBm FOR THE TANDEM-X-DEM, 90 m

Fig. 8. Partial regression plots for σ2
e model HEM component.

ASTER GDEM2. Measurement error estimation results are
summarized in Table IV.

Both σ 2
Var01 and cVarHEM coefficients of the model (18) are

significant. For values of HEM exceeding 0.2 m, σ̂e estimated
with the mvcNI+fBm is close to HEM and exceeds it by
about 1.68 times. For HEM < 0.2, ratio between σ̂e and
HEM increases and reaches 2.2 for HEM equal 0.05. This
result means that estimates provided by the mvcNI+fBm are
close to theoretically predicted ones in the wide range of
HEM. Discrepancy between the mvcNI+fBm estimates and
HEM might be in part attributed to the fact that HEM is an
optimistic estimate of TanDEM-X-DEM error; random noise
with SD higher than HEM was reported in [73]. Significance
of the HEM component is illustrated by the partial residual
plots (Fig. 8).

VI. CONCLUSION

In this article, we have proposed and investigated appli-
cation of the blind noise parameter estimator to characterize
gridded DEM vertical error, specifically fine-scale elevation
measurement error.

While BNPE is a well developed area, the new appli-
cation scenario has not been covered by existing methods:
the elevation measurement error SD is dependent on several
predictors, while existing methods deal with signal-dependent
noise model with only one predictor, namely, image intensity.
Therefore, the recently proposed mvcNI+fBm estimator that
is able to deal with multivariate noise signal-dependence has
been modified and used to estimate both SD and spatial
correlation width of DEM measurement error.

In Section V, the mvcNI+fBm has been applied to build
bivariate models of ASTER GDEM2 and AW3D (both with

5- and 30-m spatial resolution) elevation measurement error.
The two predictors in these models are the number of stereo
pairs (responsible for stacking procedure influence) and eleva-
tion itself (responsible to epipolar line error influence). These
models have been found consistent with the accuracy analysis
results published in the available literature for GDEM2 and
AW3D data. Not previously reported in the literature, our
analysis reveals the epipolar line error as a very important
factor responsible for the GDEM2 quality degradation for
high elevations. The derived regression models for GDEM2,
AW3D30, and AW3D can be used to predict elevation mea-
surement error parameters for low relief areas (with elevation
SD from 0 to about 15 m).

Experiment with TanDEM-X-DEM (90-m resolution) shows
that estimates of the mvcNI+fBm closely follows theoretically
predicted SD (HEM) provided by the German Aerospace
Center (DLR). It is important to mention that the mvcNI+fBm
was validated in very wide range of measurements error SD,
from about 5 m for ASTER GDEM2 down to 0.05 m for
TanDEM-X-DEM.

While the proposed no-reference approach to DEM accuracy
analysis cannot provide information on DEM bias, the detailed
study of DEM measurement error SD and correlation width
can see variety of applications including the analysis of
LiDAR or RADAR-derived raster DEMs, direct efficiency
comparison of different approaches for stereo matching or
interferometric phase reconstruction, and the analysis of
sensor-related (e.g., jitter causing the epipolar line error of
GDEM2) components in elevation measurement error. Future
work is seen in the direction of using additional observable
predictors (especially related to vegetation cover). Another
direction is to overcome the inability of characterizing DEM
error in high relief areas.
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