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Abstract In this paper, an M/M/1 retrial queue with collisions and transmission errors is
considered. The collision may occur when a primary arriving customer finds the server busy
while the transmission errors usually occur due to an erroneous packet or due to a non-ideal
channel condition. We apply the generating function method to derive the joint distribution
of the server state and the orbit length in steady state and we obtain important system char-
acteristics. Finally, we present numerical examples to show the applicability of the model.

Keywords Retrial queue · Collisions · Transmission errors · Classical retrial rate · Generating
function.

1 Introduction

Queues with repeated attempts are characterized by the feature that arriving customers who
find the server busy join a virtual group of blocked customers, called orbit, to try again for
their requests in a random order and at random time intervals. Queues in which customers
are allowed to conduct retrials have been widely used to model many practical problems in
telephone switching systems, telecommunication networks and computers competing.

For the retrial queues, it is necessary to define the mechanism of retrials. The most usual
mechanism described in the classical theory of retrial queues is the so-called classical retrial
policy in which each source (packet, call, etc.) in orbit seeks service independently of each other
after an exponentially distributed time with mean 1

η . Thus, in this policy the intervals between
successive repeated attempts are exponentially distributed with rate jη, when the orbit size
is j [1]. Another type of retrial policy, well known for the modeling of ALOHA protocol
in communication networks, in which the time between two successive repeated attempts is
controlled by an electronic device and consequently is independent of the number of customers
applying for service. This type of retrial is named constant retrial policy, whose rate is (1 −
δj,0)v, where δj,0 denotes Kronecker’s delta and j the number of repeated customers [11]. In
[5], Artalejo and Gómez-Corral treat both models in a unified way by defining a linear retrial
policy with rate (1− δj,0)v + jη. The detailed overviews for retrial queue can be found in the
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bibliographies of Artalejo [2]-[4], the surveys paper of Yang and Templeton [18], Falin [9], Choi
and Chang [7] and Kim and Kim [14], the books of Falin and Templeton [10] and Artalejo and
Gómez-Corral [6].

Retrial queues are widely discussed by researchers for modeling communication problems.
However there are few who are interested in the problem of collisions. This phenomenon very
widespread in telecommunications and whose management resolves many problems linked to
the quality of service (QoS). Concretely, a collision occurs when two (or more) stations try
to emit at the same time on the same channel. In the terminology of retrial queue, this
phenomenon is translated by the fact that a customer arrives and finds the server busy, then
the two customers (the arriving customer and the customer in service) join the orbit with a
certain probability.

Queues with repeated attempts is found specifically in communication protocols modeling,
such as CSMA/CD. Choi et al [8] have discussed a retrial queuing model with collision
and constant retrial rate arising from unslotted CSMA/CD (Carrier Sense Multiple Access
with Collision Detection) protocol. They have derived the generating function of the limiting
distribution of the number of customers in the retrial group when the channel is available. In
[8], the service time of the customer consists of two consecutive phases and the collision occurs
when the arriving customer finds the channel busy with the first phase of a customer’s service
time. Kim [13] has considered the M/M/1 retrial queue with collision and impatience. Kumar
et al [15] have analyzed the feedback retrial queuing system with collisions and linear retrial
policy. Kvach and Nazarov [16] have considered the M/M/1//N retrial queue with collision.
In [12], a performance analysis of an M/G/1 retrial queue with general retrial time, modified
M-vacations and collision has been considered. For those systems [12][13][15][16], if an arriving
customer finds the server busy, then the collision occurs between the arriving customer and
the customer in service resulting in both being shifted to the retrial group. In [15], the authors
have considered that the probability that primary customers accede to the service when it is
either free or busy is the same. However, this is not realistic. This shows the necessity of taking
two different probabilities in our work and more details will be given in the rest of the paper.

Several results have been reported on retrial queues with collision by considering a specified
retrial policy depending on each particular application. However, the study of retrial queueing
systems taking into consideration both the collision and transmissions errors is interesting, and
we do not find much work in this respect in the literature. Based on this observation, we have
investigated retrial queueing system with collisions, transmissions errors and classical retrial
rate. In this paper, we consider the case where probabilities of joining the server by primary
customer when the server is idle and busy respectively are different. It is equal to p when the
server is free and (1− θ) when the server is busy.

In this paper:

• At the customer’s arrival from outside the system, if the channel is free, this customer
accedes to the server with probability p or joins the orbit with probability (1− p). In practice,
for example, in the distributed coordination function (DCF) mode of IEEE 802.11, even if the
channel is idle, the station doesn’t transmit immediately, but transmits only if the server is
idle for a period of time equal to DIFS (Distributed InterFrame Space). So, we have considered
that the customer arriving from outside the system and finding an idle server accedes to the
server with probability p;

• If the server is busy on the arrival of the primary customer, this customer collides with
the customer in service and both will join the orbit with probability (1− θ), or joins alone the
orbit with probability θ;

• In addition to collisions, transmission errors are also taken into account. We have considered
that the customer in service gets served without transmission error and leaves the system with
probability γ or joins the retrial group for another attempt with probability (1− γ).

In this study, we consider a retrial queue with collisions and transmission errors. The
collision may occur when a primary arriving customer finds the server busy. In this case, both
the primary customer and the customer in service will join the orbit, while transmission errors
usually occur due to an erroneous packet or due to a non-ideal channel condition. This retrial
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queueing system can be applied for the modeling of the distributed coordination function
(DCF) mode of IEEE 802.11 basic access scheme, where the loss and the re-transmission of
packets can be due to either collisions or transmission errors. In IEEE 802.11, a station can
not detect collisions or transmission errors while transmitting a packet, so the station can not
interrupt its transmission. In order to notify the sender that the packet has been received
successfully, a positive acknowledgment ACK is sent after receiving the packet.

The remainder of the paper is organized as follows. Section 2 presents the mathematical
model description. Section. 3 provides the steady-state probabilities of the orbit size and the
server status, and the stability condition of the system. In Section 4, we obtain interesting
performances using steady-state analysis, while in Section 5, we give numerical examples to
illustrate the theoretical results. Section 6 gives concluding remarks .

2 Model description

We consider an M/M/1 retrial queue with collisions and transmission errors. Primary cus-
tomers arrive from outside the system according to a Poisson process with rate λ. Upon the
arrival of the primary customer, if the server is free, this customer accedes to the server with
probability p or joins the orbit with probability (1−p). The inter-retrial time of each customer
in the orbit is exponentially distributed with parameter η, i.e. we assume that the repeated
attempts follow the classical retrial policy. The customer that enters in service (the primary
customer/the customer from the orbit) gets served successfully (without transmission error)
and leaves the system with probability γ (0 < γ ≤ 1) or joins the retrial group due to trans-
mission error with probability (1 − γ). If the server is busy, the arriving customer (primary
customer) collides with the customer in service resulting in both being shifted to the orbit
with probability (1− θ) or joins immediately alone the orbit with probability θ.

We assume that the service times of customers are independent, follow an exponential dis-
tribution with mean 1/µ and the stochastic processes involved in the system are independent.

The state of the system at time t can be represented by the pair (C(t), X(t)), where X(t)
denotes the number of customers in the orbit and C(t) equals 1 if the server is busy and 0 if the
server is free . It is clear that the process {C(t), X(t); t ≥ 0} is a continuous time Markov chain,
irreducible, aperiodic and time-homogeneous with state space S = {(0, j), (1, j)/j = 0, 1, ...}.

3 Analysis of the steady-state distribution

Let Pj = lim
t→∞

P{C(t) = 0,X(t) = j} and Qj = lim
t→∞

P{C(t) = 1, X(t) = j}, j ≥ 0. They

represent the joint distributions of the server state and the orbit length (i.e., the number of
customers in the orbit) at steady state.
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Fig. 1 Transition diagram of an M/M/1 retrial queue with collisions, transmission errors and classical retrial
policy.
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Using the balance equations of the Markovian system illustrated in Fig. 1, we obtain

λP0 = γµQ0, (1)

(λ+ η)P1 = λ(1− p)P0 + (1− γ)µQ0 + γµQ1, (2)

(λ+ jη)Pj = (1− p)λPj−1 + (1− θ)λQj−2 + (1− γ)µQj−1 + γµQj , j = 2, 3, ..., (3)

(λ+ µ)Q0 = λpP0 + ηP1, (4)

(λ+ µ)Qj = λpPj + (j + 1)ηPj+1 + λθQj−1, j = 1, 2, 3, .... (5)

The condition for the system stability is

λ < γµ. (6)

We use the partial generating functions method defined below to solve Eqs. (1)-(5)

P (z) =
∞∑
j=0

Pjz
j and Q(z) =

∞∑
j=0

Qjz
j , z ∈ [0, 1], (7)

where P (z) (respectively Q(z)) is the PGF (Probability Generating Function) of the number
of customers in the orbit when the channel is idle (respectively busy).

By multiplying both sides of Eqs. (1)-(5) by zj and summing, we obtain these following
two first order linear differential equations

ηzP
′
(z) + (λ− (1− p)λz)P (z) = γµQ(z) + (1− γ)µzQ(z) + (1− θ)λz2Q(z), (8)

ηP
′
(z) + λpP (z) = λQ(z) + uQ(z)− λθzQ(z). (9)

After multiplying both sides of Eq. (9) by z and subtracting from Eq. (8), we obtain

λP (z) = (γµ− λz)Q(z). (10)

For z = 1, Eq. (10) becomes

λP (1) = (γµ− λ)Q(1).

Under the stability condition (6), then P (1) +Q(1) = 1, it follows that

the probability that the server is busy is

Q(1) =
λ

γµ
, (11)

the probability that the server is idle is

P (1) = 1− λ

γµ
. (12)

By differentiating Eq. (10) with respect to z and substituting into Eq. (8), we obtain the
following differential equation

Q
′
(z) +

[(θλ2 − pλ2)z2 + (pλγµ− λη − µλ− λ2)z]

−ληz2 + ηγµz
Q(z) = 0. (13)

Resolving (13) for Q(z) and after some computations, for z ∈ (0, 1], we get

Q(z) =
λ

γµ
(γµ− λ)

η+µ+λ−θγµ
η e

(p−θ)λ

η
(1−z)

(γµ− λz)
− η+µ+λ−θγµ

η . (14)
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As z → 0+, Q(0) = Q0. Thus, from (14) and (1), we obtain

P0 = (γµ− λ)
η+µ+λ−θγµ

η e
(p−θ)λ

η (γµ)
− η+µ+λ−θγµ

η . (15)

By substituting (14) into (10), we obtain the probability generating function P (z) of the
orbit size when the server is free

P (z) =
γµ− λz

γµ
(γµ− λ)

η+µ+λ−θγµ
η e

(p−θ)λ

η
(1−z)

(γµ− λz)
− η+µ+λ−θγµ

η . (16)

The probability generating function for the number of customers in the orbit denoted K(z),
is defined as P (z)+Q(z), then

K(z) =
γµ− λz + λ

γµ
(γµ− λ)

η+µ+λ−θγµ
η e

(p−θ)λ

η
(1−z)

(γµ− λz)
− η+µ+λ−θγµ

η . (17)

The probability generating function for the number of customers in the system H(z),
defined as H(z) = P (z) + zQ(z) is given in Eq. (18)

H(z) = (γµ− λ)
η+µ+λ−θγµ

η e
(p−θ)λ

η
(1−z)

(γµ− λz)
− η+µ+λ−θγµ

η . (18)

4 System characteristics

The mean number of customers Lq (respectively Ls) in the orbit (respectively in the system)
under steady-state condition are obtained by differentiating (17) (respectively (18)) with re-
spect to z and then evaluating at z = 1

Lq = − λ

γµ
− (p− θ)λ

η
+

λη + λµ+ λ2 − λθγµ

η(γµ− λ)
, (19)

Ls = − (p− θ)λ

η
+

λη + λµ+ λ2 − λθγµ

η(γµ− λ)
. (20)

The mean number of customers Ls and Lq in the system and the orbit respectively at the
steady state are related by the following formula

Ls = Lq +Q(1),

where Q(1) is given in Eq. (11).

The probability R of the orbit being empty is obtained by summing the two probabilities
P0 and Q0 given by (1) and (15),

R =
λ+ γµ

γµ
(ηγµ− λη)

η+µ+λ−θγµ
η e

(p−θ)λ

η (ηγµ)
− η+µ+λ−θγµ

η . (21)

The mean waiting time Wq (respectively Ws) in the orbit (respectively in the system) is
related to the mean number of customers Lq (respectively Ls) in the orbit (respectively in the
system) by the Little formula [17], Lq = λWq and Ls = λWs

Wq = − 1

γµ
− p− θ

η
+

η + µ+ λ− θγµ

η(γµ− λ)
, (22)
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Ws = − (p− θ)

η
+

η + µ+ λ− θγµ

η(γµ− λ)
. (23)

The mean number of repeated attempts d by a customer given in Eq. (24) can be determined
as follows

d = ηWq,

d = − η

γµ
− p+ θ +

η + µ+ λ− θγµ

γµ− λ
. (24)

Another interesting system performance measure in this model of retrial queue is the
steady-state interrupted frequency N of the service caused by collisions. This performance
measure, given in Eq. (25), represents the collisions frequency caused when the arriving cus-
tomer from outside the system (primary customer) accedes directly to the busy server,

N = (1− θ)λQ(1). (25)

By replacing Q(1), by (11), we obtain

N =
(1− θ)λ2

γµ
. (26)

The busy period of the system L, starts with the arrival of a primary customer who finds
the system empty and ends at the first departure epoch in which the system becomes empty
again. From the theory of regenerative processes, it is easy to get the following formula for the
expectation

E(L) =
P−1
0 − 1

λ
,

using (15), E(L) is obtained as

E(L) =
1

λ
((ηγµ− λη)

− η+µ+λ−θγµ
η e

− (p−θ)λ

η (ηγµ)
η+µ+λ−θγµ

η − 1). (27)

5 Numerical illustrations

In this section, we present some numerical examples to study the effect of the input parameters
on the system characteristics.

In Figs. 2-4, to show the impact of θ
(
(1 − θ) is the collision probability

)
, we plot P0,

against η and that for three values of θ (θ = 0.2, θ = 0.6 and θ = 1). For this, we choose
λ = 0.5, µ = 1 and γ = 1 and we take different values of p (p = 0, p = 0.5 and p = 1).
We observe that P0 increases as the value of the retrial rate η increases for any value of θ,
but we observe that P0 increases further as the probability θ increases. We report the same
observation about the evolution of P0 when we increase the value of p. These results are close
to the real behavior of the system. In Fig. 5, we plot P0, against retrial rate η for three val-
ues of γ (γ = 0.5, γ = 0.7 and γ = 0.9); whereas the other parameters are fixed. When the
probability γ becomes small, the number of customers (packets) that need retransmission due
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to transmission errors becomes more important, which generates a large mass of customers in
orbit, which leads to a low probability of having an empty orbit.

Fig. 2 P0 as function of η for p = 0. Fig. 3 P0 as function of η for p = 0.5.

Fig. 4 P0 as function of η for p = 1.
Fig. 5 P0 as function of η for λ = 0.05

p = 0, θ = 1, µ = 1.

For p = 1, λ = 0.5 and µ = 1, Figs. 6-8, show how the number of customers Lq in the
orbit changes when the value of η increases. For this, we represent this impact for different
values of γ (γ = 0.6, γ = 0.8 and γ = 1). In each figure, we fixe θ (θ = 0, θ = 0.5 and θ = 1).
Lq is a decreasing function of the the parameters η, γ and θ.

Fig. 6 Lq versus η for θ = 0. Fig. 7 Lq versus η for θ = 0.5.
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Fig. 8 Lq versus η for θ = 1.

In Fig. 9, we want to illustrate how the steady-state interrupted frequency N of the ser-
vice caused by collisions vary when the value of θ increases. We do this illustration, for two
values of λ (λ = 0.5 and λ = 0.9). In Fig. 10, we give an overview of how the mean busy
period E(L) of the system changes when the value of η increases. This for different values of
the probability θ.

Fig. 9 N versus θ for η = 0, 01
µ = 1, p = 1, γ = 1.

Fig. 10 E(L) versus µ for λ = 0, 01
µ = 0.1, p = 1, γ = 1.

It can be seen from Fig. 9 that the steady-state interrupted frequency N of the service
caused by collisions decreases considerably with respect to the probability θ. However, we
observe that N = 0 when θ = 1. This is evident and consistent with our results. It is observed
also in Fig. 10 that E(L) decreases as η and θ increase.

6 Conclusion

In this work, a Markovian single server retrial queue with collisions and transmission errors has
been investigated. Using the Markov process theory, we have derived the steady-state equa-
tions. We have obtained the joint steady-state probability generating functions of the server
state and the orbit length, and we have computed some important characteristics. Finally,
to validate our model, we did some numerical illustrations. The numerical results obtained
confirm our analytical investigations. This retrial queue can be used for the modeling and
performance analysis of the Distributed Coordination Function (DCF) of IEEE 802.11 basic
broadcast mode (basic access scheme). Our model is different from those studied in the litera-
ture in the fact that the probability to join the orbit when the server is free is different when
the server is busy. The collision in this study is limited to primary customers that finds the
server busy. In future work, we plan to study both collisions due to retrial of customers from
the orbit and from outside the system.
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