
HAL Id: hal-02475775
https://hal.science/hal-02475775v1

Submitted on 12 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Xfor: Semantics and Performance
Eric Violard, Philippe Clauss, Imen Fassi

To cite this version:
Eric Violard, Philippe Clauss, Imen Fassi. Xfor: Semantics and Performance. [Research Report] Team
ICPS (ICube Laboratory). 2014. �hal-02475775�

https://hal.science/hal-02475775v1
https://hal.archives-ouvertes.fr

Xfor: Semantics and Performance

Éric Violard1, Philippe Clauss1, and Imen Fassi1,2

1 Team CAMUS, INRIA - University of Strasbourg, France,
2 University of Tunis El-Manar, Tunisia

{Eric.Violard,Philippe.Clauss,Imen.Fassi}@inria.fr

Abstract. This paper introduces a new programming control structure called ”xfor” as an
extension of the classical ”for” construct in C. It is designed to help one programmer to
improve data locality on multi-core architectures by allowing him to express the schedule
of instructions in an abstract way. This schedule is defined geometrically by mapping the
iteration domains relatively to each other onto a unique referential by using specific param-
eters called grain and offset. A semantic framework is presented which associates a precise
meaning with this syntactic construct and serves as a base for applying reliable xfor code
transformations and programming strategies. These issues are illustrated with the Red-Black
algorithm. Performance measurements carried out with benchmarking programs rewritten by
using the xfor construct show significant execution times speed-ups.

1 Introduction

While parallel architectures are more and more complex and unpredictable, many researches focus
in proposing new languages supposed to facilitate their programming [1–4]. However, most of these
languages imply to change drastically programmers habits and have weak chances to be adopted by
the software industry [5]. An interesting idea to bypass this problem is to gradually extend main-
stream languages with new programming control structures that are derived from already existing
ones, thus giving developers the opportunity to enlarge their way of reasoning while programming.

Efficient implementations for challenging programs require a combination of high-level algorith-
mic insights and low-level implementation details. Deriving the low-level details is a natural job for
the compiler-computer couple (CCC), but it can not replace the human insight. Therefore, one of
the central challenges for programming languages is to establish a synergy between the programmer
and the CCC, exploiting the programmer’s expertise to reduce the burden on the CCC. However,
programmers must be able to provide their insight effortlessly, using programming structures they
can understand. In order to reach simultaneously low-level efficiency and programmability, a solu-
tion is to assist programmers with automatic code transformations that translates into an efficient
program what they express at their level of understanding. In the last decades, many efforts have
been made in providing automatic program optimization and parallelization software tools that
analyze and transform source codes. However, such approaches address three major challenges:
fully automatic analysis and transformation is highly complex and can never surpass the human
insight, programming control structures of current mainstream languages are almost never address-
ing directly the main performance issues of current computers, while super effective codes cannot
reasonably be written by programmers due to their very convoluted shapes.

Following this idea, we propose a computer-assisted control structure called “xfor”, allowing
programmers to address directly and accurately a main issue regarding performance: the locality
of data accessed in compute-intensive loops. Two parameters in this structure, the “offset” and the

“grain”, afford to adjust precisely data reuse distances in a natural programming context, while
a source-to-source translator, called IBB for Iterate-But-Better, is in charge of generating the fi-
nal convoluted, but very efficient, code. The IBB xfor support tool takes additionally advantage
of optimizations implemented in the polyhedral code generator CLooG [6] which is used by IBB
to generate from xfor-loops equivalent for-loop code. However, such an assisted programming ap-
proach requires complete confidence on the performed translation that must express exactly what
programmers have in mind while writing their source codes.

Thus, computer-assisted control structures, as xfor, must be associated with a precise and un-
ambiguous meaning. Obviously, reasoning on such a syntactic construct, i.e., transforming it in
order to obtain an equivalent but more efficient version, suppose there exists a way to prove that
two versions have the same effect where as a different behaviour. Therefore, a semantics definition
is presented that resolves all such semantic issues.

The paper is organized as follows. Section 2 provides an intuitive description of the xfor con-
struct. The underlying concepts are presented and illustrated with the Gauss-Seidel Red-Black
problem implemented using the xfor loop structure. This section also introduces the general syntax
definition of well-formed xfor statements. Section 3 presents the mathematical meaning of these
well-formed statements by using a denotational approach. This denotational semantics formally
defines the instructions’ scheduling which is used in a xfor code. Section 4 presents the proof of se-
mantic equivalence for the xfor codes of section 2. Based on this semantics, we describe the relevant
xfor-programming strategies in section 5. Significant performance improvements are also reported
in this section using a set of benchmarks built from re-writing codes of the polybench benchmark
suite [7]. Conclusions are given in section 7.

2 An intuitive description

The xfor control structure allows one programmer to gather several nested for loops. Since any
loop nest of a given depth can be transformed into a loop nest of deeper level by inserting some
one-iteration loops, without loss of generality, we consider from now on a set of loop nests having
all the same depth: later on we refer to as k, the number of used loop nests and as n, the depth of
these loop nests. Instead of writing such k loop nests one after the other, thus defining a schedule
by default of the instructions inside the loop nest bodies, the programmer can write a single xfor
statement and then focus on expressing in abstract way an adequate schedule amongst all the ones
that can be defined by using xfor specific parameters called grain and offset.

This schedule is defined geometrically: each instruction is mapped onto a point in a n-dimensional
geometric space such that this point can be specified as an element of Zn. The elements of Zn

corresponding to instructions compose a domain called the referential domain. The schedule of the
instructions is induced from the lexicographic total order on Zn: the instructions are executed in
the lexicographic increasing order of the corresponding elements of Zn.

The instructions are mapped onto Zn in two steps and for each original loop nest separately:
first, the instructions of the loop nest are mapped onto its iteration domain, which is a subset of
Nn; then, the elements of the iteration domain are ”moved” across Zn, i.e, scattered and shifted –
according to the geometric interpretation – by using the grain and offset in order to define their
final locations and consequently, their schedules.

Let us consider the two loop nests on the left of Fig. 1. They compose the standard code for the
Red-Black Gauss-Seidel problem and describe the computation of the elements of a N×N matrix

(omitting the border elements initialization). We will next refer to these loop nests as the first and
the second loop nest implemented by the xfor structure shown on the right of Fig. 1.

// Red phase
for(i0=1;i0<N-1;i0+=1) {
for(j0=1;j0<N-1;j0+=1) {
if((i0+j0)%2==0) u[i0][j0] = f(u[i0][j0+1],

u[i0][j0-1],u[i0-1][j0],u[i0+1][j0]); }}
// Black phase
for(i1=1;i1<N-1;i1+=1) {
for(j1=1;j1<N-1;j1+=1) {
if((i1+j1)%2==1) u[i1][j1] = f(u[i1][j1+1],

u[i1][j1-1],u[i1-1][j1],u[i1+1][j1]); }}

// code xfor1 (Red and black together)
xfor(i0=1,i1=1; i0<N-1,i1<N-1; i0+=1,i1+=1; 1,1; 0,1) {
xfor(j0=1,j1=1; j0<N-1,j1<N-1; j0+=1,j1+=1; 1,1; 0,0) {
0 : if((i0+j0)%2==0) u[i0][j0] =

f(u[i0][j0+1],u[i0][j0-1],
u[i0-1][j0],u[i0+1][j0]);

1 : if((i1+j1)%2==1) u[i1][j1] =
f(u[i1][j1+1],u[i1][j1-1],

u[i1-1][j1],u[i1+1][j1]); }}

Fig. 1. Loop nests implementing the Red-Black algorithm (left) embedded into one xfor code (right)

Fig. 2 shows a geometric representation of this standard code in which each instruction of
one loop nest is represented by a point in a sub-domain of N2, i.e., the iteration domain. In this
interpretation, the point of coordinates (i, j) identifies the instruction executed at iteration (i, j),
i.e., at the (i+1)-th iteration of the outer loop and the (j+1)-th iteration of the inner one. We will
later denote an instruction of the first (resp. the second) loop nest by S1[(i, j)] (resp. S2[(i, j)]). Each
red (resp. black) point represents an instruction of the first (resp. second) loop nest. An instruction
depicted as a light point is equivalent to a NOP instruction, i.e., no operation, whereas any of the
other instructions depicted as a dark point performs actual computations: it computes a value and
assigns it to element (i+1, j+1) of matrix u after having read its North-South-East-West neighbors.

Note that, for each of the two loop nests, the iteration domain, i.e, {(i, j) | 0 ≤ i, j < N − 2},
is different from the domain of the index variables’ values, i.e, {(i, j) | 1 ≤ i, j < N − 1}. Indeed,
the iteration domain does not depend on the values of the index variables. It only depends on the
number of iterations in each of the nested loops. We thus have two domains denoted by D1 and D2,

i
j

iteration domain D1 iteration domain D2

i
j

: instruction S1[(i,j)] (S[i+1,j+1])

: instruction S1[(i,j)] (nop)

: instruction S2[(i,j)] (S[i+1,j+1])

: instruction S2[(i,j)] (nop)

Fig. 2. Iteration domains for N = 8

one for each of the loop nests. It is then possible to define a schedule of the instructions by indicating
how these two geometric domains are located one relatively to the other. This can be achieved by
mapping these domains onto a common domain called the referential domain. For example, the
black domain could be placed right beside the red one as drawn on the left of Fig. 3. In this case,
the instructions are executed in the same order as the standard code since this order corresponds
to the lexicographic order on Z2 represented by a dotted line. For example, for N = 8, instruction
S2[(0, 0)] at point (6, 0) in the referential domain is executed just after instruction S1[(5, 5)] at
point (5, 5). Another more interesting arrangement – because it has an impact on correction and
performance as well – is obtained from the previous one by moving the black domain to the left so
that it is shifted by one position to the right relatively to the red domain as drawn on Fig.3 (right).

In this case, a red instruction and a black one may be mapped onto the same point in the referential
domain and we state, as the xfor semantics formally says, that the instruction of the first loop nest,
i.e., the red one, is executed before the other one.

: instruction S2[(k-1,l)]

referential domain
k

l

: instruction S1[(k,l)]

: instruction S1[(k,l)];S2[(k-1,l)]

: lexicographic order

referential domain
k

l

Fig. 3. Referential domains and lexicographic order

The xfor allows one programmer to specify such a mapping of each iteration domains onto the
referential domain by using one grain and one offset for each dimension. The grain and offset denote
integer numbers that are respectively multiplied by and then added to the coordinate of each point
in the iteration domain to give the coordinate in the referential domain. A positive grain dilates
the iteration domain and an offset shifts it onto the referential domain as depicted on Fig. 4.

grain (1,1) grain (2,2) offset (0,0) offset (2,1)
k

l

Fig. 4. Grain and offset

The mapping of Fig. 3 (right) relates to the xfor code in Fig. 1, while the other mapping on
Fig. 3 (left) relates to the same code except that underlined 1, i.e., the i-axis offset, has to be
replaced by N-2. The xfor syntactic construct matches the following general form:

xfor((v1i =a
1
i)i=1..k;(v1i <b

1
i)i=1..k;(v1i +=c

1
i)i=1..k;(g1i)i=1..k;(o1i)i=1..k) {

xfor((v2i =a
2
i)i=1..k;(v2i <b

2
i)i=1..k;(v2i +=c

2
i)i=1..k;(g2i)i=1..k;(o2i)i=1..k) {

. . .
xfor((vni =a

n
i)i=1..k;(vni <b

n
i)i=1..k;(vni +=c

n
i)i=1..k;(gni)i=1..k;(oni)i=1..k) {

0 : S1

1 : S2

. . .
〈k−1〉 : Sk } . . . } }

where the index range 1..k is the same all across the construct, k, n ∈ N∗ are respectively the number
of original loop nests and the loop nest depth, vli (i = 1..k, l = 1...n) are the index variables. They
are all distinct and of type int, while ali, b

l
i, c

l
i, g

l
i and oli are expressions of type int. Each Si

is any statement – eventually containing a xfor construct – not containing a break or continue

statement, and whose nearest enclosing statement is a xfor. Statement Si is labelled by an integer
literal denoted by 〈i〉 which indicates that Si is the body of the so called i-th loop nest. Each gli

(resp. oli) is called a grain (resp. an offset). Since the xfor construct is designed as an extension of
C, the current typing mechanism of C is used to check that all these sub-expressions have the right
type. Note that, for now, the IBB compiler does not accept non-affine offsets or grains, i.e., each of
these expressions must be a linear (affine) function of the surrounding index variables.

Now, let us show how the xfor construct can be used. When handling several iteration domains,
the first step is to identify dependences that are occurring between them. The Red-Black example
obviously defines two dependent iteration domains: the red and the black domains. Each black point
depends on its four North-South-East-West red neighbors. Both domains can be scheduled such that
any black point can be computed as soon as all four red points from which it depends have been
computed. It comes that according to the lexicographic order, any black point can be computed as
soon as its eastern neighbor is available. Hence, the corresponding xfor code, i.e., xfor1 in Figure 1,
is equivalent to the standard code where data reuse distances have been minimized. However, the
xfor code of Fig. 1 contains useless guards to test the parity of (i + j). These conditionals yield
empty iterations that can be removed by translating the conditionals into 2-grain parameters, 2-
increments and convenient offsets, and by splitting each of the red and black domains into two red
and two black domains, defined respectively by i modulo 2 = 0 and i modulo 2 = 1. The resulting
xfor code, i.e., xfor2, is shown in Figure 5 (left), where statement blocks 0 and 1 are associated
with the red domain.

// code xfor2 (without guards)
xfor(i0=1,i1=2,i2=1,i3=2; i0<N-1,i1<N-1,i2<N-1,i3<N-1;

i0+=2,i1+=2,i2+=2,i3+=2; 2,2,2,2; 0,1,1,2) {
xfor(j0=1,j1=2,j2=1,j3=2; j0<N-1,j1<N-1,j2<N-1,j3<N-1;

j0+=2,j1+=2,j2+=2,j3+=2; 2,2,2,2; 0,1,0,1) {
0 : u[i0][j0] = f(u[i0][j0+1],u[i0][j0-1],

u[i0-1][j0],u[i0+1][j0]);
1 : u[i1][j1] = f(u[i1][j1+1],u[i1][j1-1],

u[i1-1][j1],u[i1+1][j1]);
2 : u[i2][j2] = f(u[i2][j2+1],u[i2][j2-1],

u[i2-1][j2],u[i2+1][j2]);
3 : u[i3][j3] = f(u[i3][j3+1],u[i3][j3-1],

u[i3-1][j3],u[i3+1][j3]); }}

// code xfor3 (flexible offset)
xfor(i0=1,i1=2,i2=1,i3=2; i0<N-1,i1<N-1,i2<N-1,i3<N-1;

i0+=2,i1+=2,i2+=2,i3+=2; 2,2,2,2; 0,1,k+1,k+2) {
xfor(j0=1,j1=2,j2=1,j3=2; j0<N-1,j1<N-1,j2<N-1,j3<N-1;

j0+=2,j1+=2,j2+=2,j3+=2; 2,2,2,2; 0,1,0,1) {
0 : u[i0][j0] = f(u[i0][j0+1],u[i0][j0-1],

u[i0-1][j0],u[i0+1][j0]);
1 : u[i1][j1] = f(u[i1][j1+1],u[i1][j1-1],

u[i1-1][j1],u[i1+1][j1]);
2 : u[i2][j2] = f(u[i2][j2+1],u[i2][j2-1],

u[i2-1][j2],u[i2+1][j2]);
3 : u[i3][j3] = f(u[i3][j3+1],u[i3][j3-1],

u[i3-1][j3],u[i3+1][j3]); }}

Fig. 5. A xfor code without useless guards (left) and the same one but with variable offset (right)

For sake of performance, one programmer can also make his code more flexible, thus allowing the
compiler to balance different goals according to specific architecture features. Since the programmer
knows that programs are equivalent whatever is the mapping, provided the black domain is located
shifted by at least one position to the right, he can rewrite its code and get the xfor code in Fig. 5
(right) in which a positive variable k is used to define the i-axis offset.

Thanks to the abstraction it provides, a xfor code is easier to transform than its equivalent
code written using classical for-loops. For example, the length of the for-loop code generated by the
source-to-source translator IBB from the xfor code in Figure 5 (left) is about 30 lines of code to be
compared with the 6 lines in the xfor version.

3 Xfor denotational semantics

Amongst the approaches to define the meaning of programs using mathematics (operational or
axiomatic semantics as examples), denotational semantics [8, 9] is particularly well-suited for de-
signing code transformations. From our point of view, although an operational semantics could give

some insight, a denotational semantics is better suited to the xfor construct because the purpose
of this construct is mainly to define a function that maps instructions onto a geometric domain. It
is clear that the operational behaviour consists in executing these instructions in the lexicographic
order on Zn. Moreover, this denotational approach does not require to specify the steps for building
this mapping, which enables various implementations.

3.1 Some preliminaries

Memory states We define memory states in a classic way, excepting that we introduce an access
permission: a memory state is defined by an environment that maps each declared identifier to a
memory location, and a store that maps each used location to a value. We assume some properties
about the store that make it an abstraction of the physical memory of a computer: namely, each
location is large enough to contain any storable value and the set of locations is infinite, which means
that we do not deal with the edge-case of running out of memory. Formal semantics is usually not
impacted by implementation restrictions. In addition, we associate each location with an access
permission indicating if it is read-only. This is used to restrict accesses to index variables and to
prevent some instructions inside a loop nest body to access the memory locations corresponding to
an index variable of another loop nest inside a xfor structure.

In the following, we denote by ID the non-empty set of all identifiers, LOC the non-empty and
totally ordered set of locations3, VAL the non-empty set of values, ENV the set of environments,
STORE the set of stores, ACCESS the set of access permissions, and finally STATE the set of
memory states. The sets are defined as follows:

ENV ≡ ID ⇀ LOC STORE ≡ LOC ⇀ VAL×ACCESS

STATE ≡ ENV×STORE ACCESS ≡ {ro, rw}

where ⇀ builds a set of partial functions.
A memory state, say s, is then a pair (envs, stos) where the environment envs is a partial

function from ID to LOC whose domain, dom(envs), is the set of declared identifiers. The store
stos is a partial function from LOC to VAL×ACCESS whose domain, dom(stos), is the set of used
locations. If the store maps a location to the access permission ro, it means that this location is
being marked as read-only.

Moreover, the following shorthands are used for describing some memory states. We denote:

– s∅, the empty memory state with no declared identifiers, i.e., (⊥,⊥) where ⊥ is the well-known
nowhere defined function,

– s⊕ id, the memory state obtained from state s by declaring a new read-only variable id of type
int, i.e., (envs[id 7→ l], stos[l 7→ (uninitialized value, ro)]), where l is the smallest location that
is not in domain of stos.

4

– s	id, the memory state obtained from state s by freeing the variable named id, i.e., (env′s, sto
′
s),

where env′s (resp. sto′s) is the partial function whose domain is dom(envs)\{id} (resp. dom(stos)\
{envs(id)}) and is equal to envs (resp. stos) on this domain,

– (s | id 7→ v), the same memory state as s except that id is associated with value v (irrespective
of the access permission), i.e., (envs, stos[envs(id) 7→ (v, ro)]),

3 We restrict the set of locations to be totally ordered because we want to uniquely determine what the
used locations will be after a memory allocation.

4 f [x 7→ y] stands for the partial function whose domain is dom(f) ∪ {x}, and that maps x to y, and any
z ∈ dom(f) \ {x} to f(z).

– (s |D s′), where D ⊆ ID , the same memory state as s, except that it equals to state s′ for every
identifier in D (for any such identifier, its corresponding location, its value and its access per-
mission in the resulting state are the same as in s′), i.e., (envs[D envs′], stos[envs′(D) stos′]).

5

Semantic function Our semantic definition of the xfor statement is built from semantic functions
that we assume to be known for all the other constructs of the C programming language. We
classically denote by [[S]] : STATE ⇀ STATE , the denotational semantics of any statement S, and
[[e]] : STATE ⇀ VAL×STATE , the denotational semantics of any C expression e. Note that this
latter function returns a memory state, since an expression in C may change the memory state
as a side effect. Moreover, since statements or expressions may use previously declared functions,
all these semantic functions are parametrized by a global environment. However, since this global
environment is not altered during the run of a xfor, it remains implicit.

Domain of the semantic function Here, we informally describe what are the necessary condi-
tions for the partial function [[M]], the semantics of the xfor construct M , to result in a defined
memory state. These conditions refer to the syntactic elements defined on page 4. The resulting
memory state is defined only if all these conditions hold:

– expressions ali, b
l
i, c

l
i, g

l
i and oli (i = 1..k, l = 1..n) do not have any side effect, i.e., each of these

expressions, say e, is such that ∀s ∈ dom([[e]]), ∃v ∈ V AL, [[e]](s) = (v, s). In this case, we will
denote by [[e]](s) the value of e (i.e., v) in memory state s,

– expressions ali, b
l
i, c

l
i, g

l
i and oli (i = 1..k, l = 1..n) do not depend on any index variable of inner

loops, i.e., any of these expressions does not depend on a vl
′

i with l′ ≥ l (but may depend on
the other index variables of the i-th loop nest),

– expressions cli and gli do not evaluate to zero whatever are the values of the index variables,
– statement Si and expressions ali, b

l
i, c

l
i, g

l
i and oli (l = 1..n), do not contain any occurrence of

an index variable vlj where j 6= i (j = 1..k, l = 1..n),
– no index variables are modified within statements Si (i = 1..k).

3.2 Semantics definition

Let s0 be the so called initial memory state given as argument to function [[M]]. Let V be the set
of all index variables, i.e., {vli, i = 1..k, l = 1..n}. We also need to define the memory state, say s′0,

obtained from s0 by declaring all the index variables. It can be defined by s′0
def
= ((s0 |V s∅) ⊕ V)

where (s⊕ V) is a shortcut for (. . . ((((. . . ((s⊕ v11)⊕ v12) . . .)⊕ v1k)⊕ v21)⊕ v22) . . .)⊕ vnk .

Iteration domains We first define the iteration domain Di of each original loop nest (i = 1..k).
This domain is a subset of Nn, where n is the loop nest depth. It can be defined incrementally,
starting from the outermost level, i.e, l = 1, to the innermost one, i.e., l = n, of the loop nest, and
adding a dimension at each level. We denote by Dl

i (l = 1..n) the subset of Nl related to level l.

The domain Di is thus defined as Di
def
= Dn

i .
Each element z of the domain Dl

i (l = 1..n) is obtained by evaluating expressions ali, b
l
i and cli in

a memory state where the outer index variables vl
′

i (with l′ < l) are declared and associated with the
values corresponding to z. We denote this memory state by sl−1i [z]. It comes that, in this memory
state, the other index variables, i.e., the inner loops index variables (with l′ ≥ l) and the index

5 f [D g] stands for the partial function whose domain is (dom(f) \D) ∪ (D ∩ dom(g)), and that maps x
to f(x) if x 6∈ D, and to g(x) if x ∈ D.

variables of the other loop nests, are thus not associated with any location. Therefore, expressions
ali, b

l
i and cli cannot use any of these other index variables. Memory states sli[z] (z ∈ Dl

i, l = 1..n)

are defined by recurrence as follows, from memory state s0i [()]
def
= (s′0 |V s∅) where some locations

are used to store the values of the index variables, however these variables are not associated with
their location:

sli[z]
def
= ((s′ |{vl

i} s
′
0) | vli 7→ [[ali]](s

′) + zl×[[cli]](s
′)) with s′ = s

(l−1)
i [(z1, ..., zl−1)]

where () is the unique element of N0 and z` (` = 1..l) stands for the `-th component of the l-
dimensional vector z of Nl. In the previous definition, memory state sli[(z1, ..., zl)] is obtained from

s
(l−1)
i [(z1, ..., zl−1)] by associating one more index variable, i.e., vli, with its location in memory state
s′0, and by assigning the value corresponding to element (z1, ..., zl) in the iteration domain to this
variable. This value is expressed by using zl and the values of expressions ali and cli. Domains Dl

i

(i = 1..k, l = 1..n) can then be defined by:

Dl
i

def
= {z ∈ Nl | (z1, ..., zl−1) ∈ Dl−1

i ∧ 0≤zl<d [[b
l
i]](s

′)−[[al
i]](s

′)

[[cli]](s
′)

e} with s′ = s
(l−1)
i [(z1, ..., zl−1)]

where D0
i

def
= {()} and dxe is the integer ceiling of x. As said in section 3.1, [[M]](s0) is not defined

if there exists a previously defined memory state s′ such that [[cli]](s
′) = 0.

Instructions To each element, say z, of the iteration domain Di (i = 1..k), we attach an instruction
denoted by Si[z]. Note that we are not interested here in defining the syntax of this instruction,
but its semantics only. By definition, this instruction is equivalent to the statement Si in the case
where the index variables are declared and associated with the values corresponding to z, i.e., in a
memory state where the index variables have the same locations and values as in sni [z]. Therefore,
assuming that, in a memory state s, no identifier is associated with the same location as an index
variable in s′0, then

[[Si[z]]](s)
def
= ([[Si]](s |V sni [z]) |V s)

and the assumption about the memory state s formalizes as dom([[Si[z]]])
def
= {s ∈ dom([[Si]]) |

envs(ID) ∩ envs′0(V) = ∅}.
Note that this definition means that the statement Si executes in an environment where only

the index variables of the i-th loop nest can be accessed to get their value. This statement cannot
access the other index variables. Moreover, since the locations of the index variables are marked as
read-only, the instruction semantics is undefined if Si contains an assignment of an index variable.

Schedule The schedule of instructions is defined by using grains and offsets, namely gli and oli
(i = 1..k, l = 1..n). These expressions define an injection from iteration domain Di to Zn. This
injection, called mapi, can be formalized as follows, for any z ∈ Di:

mapi(z)
def
= (zl×[[gli]](s

l−1
i [z]) + [[oli]](s

l−1
i [z]))l=1..n

where zl is the l-th component of the n-dimensional vector z of Nn. By definition, the referential

domain is the domain D
def
= ∪ki=1mapi(Di). The lexicographic order on Zn, denoted by �, induces

the schedule of instructions. Instruction Si[z] is executed before Sj [z
′] if mapi(z) � mapj(z

′) ∨
(mapi(z) = mapj(z

′) ∧ i < j).
The semantics of the xfor construct is the composition of all the instructions’ semantics in the

previously mentioned order. Formally, let us denote by ∆[z] (z ∈ D) the partial function obtained

by composition of all the partial functions [[Si[z
′]]], such that i ∈ {1..k}, z′ ∈ Di and mapi(z

′) = z,
in the decreasing order of i. Then,

[[M]](s0)
def
= (((∆[zm] ◦∆[zm−1] ◦ ... ◦∆[z1])(s′0)	 V) |V s0)

where z1, ..., zm is the sequence of all elements of D sorted by the lexicographic order on Zn and
(s	 V) is a shortcut for (. . . ((((. . . ((s	 vnk)	 vnk−1) . . .)	 vn1)	 vn−1k)	 vn−1k−1) . . .)	 v11 .

Note that, after the xfor statement has been executed, the index variables are deallocated and
the environment of the initial memory state is restored so that an identifier having the same name
as an index variable retrieve the value it had just before the xfor execution.

4 Equivalence proof

In this section, we use the denotational semantics to show that the Red-Black xfor codes in Fig. 1
(right) and Fig. 5, i.e., xfor1, xfor2 and xfor3, are equivalent. For sake of conciseness, we only write
the main steps of the proof. In order to distinguish the different instructions and domains, we put the
xfor code number in superscript: for example, the referential domain for xfor1 will be denoted by
D1. We also denote by S the statement u[i][j]=f(u[i][j+1],u[i][j-1],u[i-1][j],u[i+1][j]); and
S[i, j] the statement S in which variables i and j have been substituted by literals, i.e., 〈i〉 and 〈j〉
respectively. For example, S[1, 1] is the statement u[1][1]=f(u[1][2],u[1][0],u[0][1],u[2][1]);.

Proof (Equivalence between xfor1 and xfor2 codes). The instructions and the referential domains
are not the same in xfor1 and xfor2, but we show that the referential domain of the xfor2 code,
i.e., D2, is included in D1, and that at every point z in D2, ∆1[z] = ∆2[z], and for any other point
in D1, ∆1[z] is an identity, i.e., a neutral element with respect to function composition, which is a
sufficient condition for the two codes to be equivalent.

For xfor1, we have n = 2, k = 2 and thus there are two iteration domains. By definition:

D1
1 = {(i, j) ∈ N2 | () ∈ {()} ∧ 0≤i<d [[N-1]](s

′)−[[1]](s′)
[[1]](s′) e ∧ 0≤j<d [[N-1]](s

′′)−[[1]](s′′)
[[1]](s′′) e}

with s′=s01[()] and s′′=s11[(i)]. It comes that D1
1 = D1

2 = {(i, j) ∈ N2 | 0≤i, j<N − 2} where
N = [[N]](s0). The injections into the referential domain are map11(i, j) = (i, j) and map12(i, j) =
(i + 1, j). The referential domain D1 is thus equal to map11(D1

1) ∪ map12(D1
2) = {(k, l) ∈ Z2 |

0≤k<N − 1 ∧ 0≤l<N − 2}.
For xfor2, we have n = 2 and k = 4, and there are four iteration domains, i.e., D2

1, D2
2, D2

3, D2
4.

The injections into the referential domain are map21(i, j) = (2i, 2j), map22(i, j) = (2i + 1, 2j + 1),
map23(i, j) = (2i+ 1, 2j) and map24(i, j) = (2i+ 2, 2j + 1). The referential domain D2 is thus equal
to {(k, l) ∈ Z2 | 0≤k<N − 1 ∧ 0≤l<N − 2 ∧ (k + l) mod 2 = 0}.

Hence, we have D2 ⊆ D1. Moreover, assuming s is a memory state such that no identifier is
associated with the same location as an index variable in s′0, i.e., envs(ID) ∩ envs′0(V) = ∅, then
for any (i, j) in the iteration domain, i.e, D1

1 or D1
2, [[S1

1[(i, j)]]](s) is equal to [[S[i+ 1, j + 1]]](s) if
(i+ j) mod 2 = 0, and [[{}]](s) (= s) else, and similarly [[S1

2[(i, j)]]](s) is equal to [[S[i+ 1, j + 1]]](s)
if (i+ j) mod 2 = 1, and [[{}]](s) else. Hence, for any (k, l) ∈ D1,

∆1[(k, l)](s) =

[[S[k + 1, l + 1]]](s), if (k + l) mod 2 = 0 ∧ k = 0
([[S[k + 1, l + 1]]] ◦ [[S[k, l + 1]]])(s), if (k + l) mod 2 = 0 ∧ 0 < k < N − 2
[[S[k, l + 1]]](s), if (k + l) mod 2 = 0 ∧ k = N − 2
[[{}]](s), otherwise

Similarly, we have, for any (i, j) in the iteration domain, i.e, D2
1 or D2

2 or D2
3 or D2

4, [[S2
1[(i, j)]]](s) =

[[S[2i+ 1, 2j + 1]]](s), [[S2
2[(i, j)]]](s) = [[S[2i+ 2, 2j + 2]]](s), [[S2

3[(i, j)]]](s) = [[S[2i+ 1, 2j + 1]]](s),
and [[S2

4[(i, j)]]](s) = [[S[2i+ 2, 2j + 2]]](s). Hence, for any (k, l) ∈ D2, ∆1[(k, l)](s)=∆2[(k, l)](s). ut

Proof (Equivalence between xfor2 and xfor3 codes). In this case, instructions are the same but
their schedules are different. Thus the proof consists in showing that the composition of instructions’
semantics in each of the two orders gives the same result. We prove a sufficient condition that falls
into these three parts: (1) The instructions are the same in the two codes: only the position
of the instructions in the sequence is different. This is obvious because the two codes only differ
from their respective offsets. Thus, the instruction set and the iteration domains are the same,
i.e., D3

i = D2
i and S3

i [z] = S2
i [z] (i ∈ {1..4}). Moreover, grains and offsets define injections, i.e.,

map2i and map3i (i ∈ {1..4}) are injections onto the referential domain. Therefore, no instruction
can be deleted or duplicated. (2) In the instructions’ sequence of xfor3, red (resp. black)
instructions are set in the same order as with xfor2. This is also trivial because modifying
offsets does not change this order. The reason comes from the following property of the lexicographic
order on Zn: ∀o ∈ Zn,∀z, z′ ∈ Zn, z � z′ ⇒ (z + o)� (z′ + o). (3) The dependencies between
red and black instructions are preserved, i.e., given two instructions, a red one and a black
one that depends on the red one, if this black instruction is located after this red one in the
sequence of xfor2, then it is the same for xfor3. The proof of this assertion can be done by
considering every case, since a red instruction is either S1[(i, j)] or S2[(i, j)], and a black instruction
is either S3[(i′, j′)] or S4[(i′, j′)]. For example, let us consider the case where the red instruction is
S1[(i, j)] and the black one is S3[(i′, j′)] and assume that S3[(i′, j′)] is after S1[(i, j)] in xfor2, i.e.,
map21(i, j) = (2i, 2j)� map23(i′, j′) = (2i′ + 1, 2j′). By definition of the lexicographic order on Zn,
if k ≥ 0 where k = [[k]](s0), then we have (2i′ + 1, 2j′) � (2i′ + k + 1, 2j′). Since � is an order
relation, it is transitive and therefore (2i, 2j) � (2i′ + k + 1, 2j′), which means that S3[(i′, j′)] is
after S1[(i, j)] in xfor3. Note that, in this case, the proof does not require to use the assumption
saying that S3[(i′, j′)] depends on S1[(i, j)]. If required, this assumption could be formalized in the
previously presented semantic framework as: | (2i+ 1)− (2i′ + 1) | + | (2j + 1)− (2j′ + 1) | ≤ 1.
This formula can be deduced from Bernstein’s conditions [10] which state when two instructions
depend on each other. From the three previous properties, the sequence of instructions is the same
for xfor2 and xfor3, except that in xfor3 a black instruction can be set after a red one when they
do not depend on each other. In this case, it is possible to swap these instructions in the sequence
without changing the semantics, i.e., the partial functions commute under composition. Starting
from the sequence of xfor3 and performing this exchange whenever possible terminates and gives
exactly the same sequence as for xfor2. ut

5 Xfor programming

In this section, we describe programming strategies for inter and intra data reuse distance minimiza-
tion, i.e., reuse between statements belonging originally to separated loop bodies, and reuse between
statements belonging originally to a single loop body, respectively. We consider reuse distance as
being the number of iterations between two successive accesses to a same memory location.

Minimizing inter-data-reuse distance: This strategy is the one used for the Red-Black prob-
lem. As previously said, the first step is to identify data dependences, i.e., relations between
points of the different iteration domains of types RAW (Read-After-Write), WAR, WAW, but
also RAR, since it also implies data reuse. All data-dependent domains have then to be scheduled
by overlapping them using shifting (offset) and dilatation (grain), with the goal of minimizing
data reuse distances while respecting data dependences, according to the lexicographic order
on the referential domain. The final schedule can then be described by a xfor-loop nest.

Minimizing intra-data-reuse distance: In this strategy, an iteration domain is split into several
domains, each being associated with a subset of the original loop body, or a partial computation
of an original arithmetic expression, if such a decomposition is allowed regarding mathematical
properties and arithmetic precision. Thus, statements can be re-scheduled by overlapping these
domains as described in the previous strategy.

Experiments Experiments have been conducted on an Intel Xeon X5650 6-core processor 2.67GHz
running Linux 3.2.0-35. Our set of benchmarks has been built from the the Polyhedral Benchmark
suite [7], from which representative codes exhibiting data reuse and allowing simple transformations
have been selected. These are most of the codes included in the benchmark suite. Every code has
been rewritten using the xfor structure and the programming strategies previously described, and
is available following the link indicated in [11]. Original and xfor versions have been compiled using
GCC 4.6.3 with options O3 and march=native, and their outputs have been compared to ensure
correctness of the xfor codes. In the graphs of Figure 6, speed-ups for the main loop kernels and
obtained thanks to the xfor codes are given (original time/xfor time). The grains are always set
to 1, excepting for the Red-Black code whose grain is 2.

Fig. 6. Speed-ups of sequential (left) and OpenMP-parallel (right) xfor codes compared with the original
sequential and parallel versions

For the first set of measurements regarding sequential executions (Figure 6, left), automatic
vectorization has been applied when allowed by GCC, and by setting the offsets of the innermost
xfor-loops conveniently when necessary. Some benchmark codes could not take advantage of vec-
torization due to access patterns detected as too complicated by GCC. Notice that both original
and xfor codes are always simultaneously affected since they have similar access patterns. OpenMP
parallelization has been turned on in GCC using option fopenmp. According to the dependences,
the outermost possible xfor-loops and original for-loops have been parallelized. Some xfor codes
have been slightly modified in order to exhibit slices of parallel outermost xfor-loops, by increasing
offset values and tiling the outermost xfor-loops. Codes have been run using 12 parallel threads
mapped on the 6 hyperthreaded processor cores of the Xeon X5650 processor. Speed-ups repre-
sented in Figure 6 (right) are given by comparison between the parallel original and the parallel
xfor code versions. Every benchmark code has been easily parallelized, excepting seidel which both
xfor and original code versions could not be parallelized due to dependences carried by every loop.
A more advanced loop transformation is required by this code (skewing). One can observe that xfor
codes are always faster than original codes, mostly providing significant, and sometimes dramatic,
execution times speed-ups.

6 Related work

To our knowledge, there is no similar proposal in the literature. New looping features have been
proposed in PGAS (Partitioned Global Address Space) languages, such as zippered iterators in
Chapel [12] or sequential iteration over points in region in canonical lexicographic order in X10
[13]. Regions in X10 can be defined from composing arrays which are 2-dimensional at maximum,
and whose composed shapes are limited to rectangles and triangles. Some xfor structures may
be translated into PGAS languages’ loop structures. However, it would require the programmer
to define domains compositions and handle related code modifications, as indices substitutions
and scheduling of the statements. Moreover, these languages compilers do not take advantage of
polyhedral modeling and optimizations, and weak performance of the code generated by their
compilers has been reported, compared to standard parallel languages as OpenMP or MPI.

7 Conclusion

We have presented a new programming control structure, xfor, whose purpose is to provide pro-
grammers a concise and direct way to control the locality and reuse distances of accessed data, while
preventing them of writing complicated and convoluted code thanks to the automatic translator
and code generator IBB. Thanks to the given denotational semantics, reliable transformations of
xfor statements can be defined. The xfor construct provides one programmer with an abstract geo-
metrical viewpoint. Experiments carried out with the Polyhedral Benchmark suite show the benefits
from using it in order to obtain significant speed-ups in practice. The xfor construct appears to be
a convenient tool allowing to pass down know-how between programmers and compilers.

References
1. Leiserson, C.E.: The Cilk++ Concurrency Platform. In: Proceedings of the 46th Annual Design

Automation Conference. DAC ’09, New York, NY, USA, ACM (2009) 522–527
2. Marlow, S., Maier, P., Loidl, H.W., Aswad, M.K., Trinder, P.: Seq no more: Better Strategies for

Parallel Haskell. In: Proc. of the 3rd ACM SIGPLAN Symp. on Haskell, Baltimore, MD, USA, ACM
Press (September 2010) 91–102

3. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Series. Artima Press (2011)
4. Sagonas, K.F.: Using Static Analysis to Detect Type Errors and Concurrency Defects in Erlang Pro-

grams. In: FLOPS. (2010) 13–18
5. Christadler, I., Erbacci, G., Simpson, A.D.: Performance and productivity of new programming lan-

guages. In Keller, R., Kramer, D., Weiss, J.P., eds.: Facing the Multicore-Challenge II. Springer-Verlag
(2012) 24–35

6. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: Proc. of the 13th
Int. Conf. on Parallel Architectures and Compilation Techniques. PACT ’04, IEEE Computer Society
(2004) 7–16

7. PolyBench: The Polyhedral Benchmark suite. cse.ohio-state.edu/~pouchet/software/polybench
8. Scott, D.S.: Outline of a Mathematical Theory of Computation. Technical Report PRG–2, Programming

Research Group, Oxford, England (November 1970)
9. Tennent, R.D.: The denotational semantics of programming languages. Com of ACM 19(8) (1976)

10. Bernstein, A.J.: Analysis of Programs for Parallel Processing. IEEE Transactions on Electronic Com-
puters EC-15 (1966) 757–763

11. IBB: The IBB Compiler. www.team.inria.fr/camus/ibb
12. Chamberlain, B.L., Choi, S.E., Deitz, S.J., Navarro, A.: User-Defined Parallel Zippered Iterators in

Chapel. In: PGAS 2011: Fifth Conf. on Partitioned Global Address Space Programming Models. (2011)
13. Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: X10 Language Specification V2.2 (2012)

