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Abstract—Prognostic plays an important role in improv-
ing fuel cells’ reliability and durability performance, al-
though it is hard to realize an adaptive prognostic because
of the complex degradation mechanisms and the influence
of the operating conditions. In this paper, an adaptive data-
driven prognostic strategy is proposed for fuel cells op-
erated in different conditions. To extract a feasible health
indicator, a series of linear parameter varying (LPV) models
are identified in the sliding data segments. Then, virtual
steady-state stack voltage is formulated in the identified
model space and considered as the health indicator. To
enhance the adaptability of prognostic, an ensemble echo
state network (ESN) is then implemented given the ex-
tracted health indicator data. Long-term tests on a type
of low power-scale proton exchange membrane fuel cell
(PEMFC) stack in different operating modes are carried
out. The performance of the proposed strategy is evaluated
using the experimental data.

Index Terms—PEMFC, data-driven prognostic, model
space, adaptability, health indicator, ESN ensemble.

I. INTRODUCTION

WTHIN the last two decades, fuel cell (FC) technology
has been re-attracting more and more attention on

the worldwide scale. Several key criteria, such as FC sys-
tem overall efficiency and cost control, have been improved
significantly and supposed to reach the baseline for wide
commercial applications before 2020 [1]. Among different FC
types, the polymer electrolyte membrane fuel cell (PEMFC)
is one of the most used thanks to its wide power range
and flexibility of implementation. Especially, the PEMFC is
a promising candidate for power source in various electric
vehicles. However, the reliability and durability of current FC
technology do not satisfy the requirements for engines in most
cases [2].

Among the solutions, the research on Prognostics and
Health Management (PHM), dedicated to accessing the future
health state and mitigating system failure risks, has been
launched besides the ongoing improvements of materials and
FC designs. In the PHM framework, the objective of prognos-
tic is to predict the remaining useful life (RUL) before a failure
occurs by evaluating the current and historical conditions of a

in-service system or a class of similar systems. An effective
prognostic can provide the data to carry out condition based
maintenance (CBM). The life-cycle costs of the concerned
system can therefore be reduced by decreasing inspection,
down-time and unscheduled maintenance [3]. Specific to FCs,
prognostics can also potentially provide the information to
guide the configuration of system operating parameters and
to assist in investigating the failure mechanisms.

During the last years, different types of approaches have
been proposed for FC prognostics. Among them, model-based
approaches can be considered when a physical degradation
model is built. The authors of [4] propose to apply extended
Kalman filter (EKF) and the inverse first-order reliability
method (IFORM) to track the deviations of global resistance
and limiting current density, which are considered as the
indicators reflecting the state of health. In [5], a physics-based,
prognostic-oriented catalyst degradation model is developed
and an unscented Kalman filter is applied to predict the trend
of the electro-chemical surface area evolution. However, these
proposed model-based approaches consider some specific op-
erations and degradation factors. These models may lose their
effectiveness when a different FC system design and/or a
different operating condition is faced.

The mechanisms of FC degradation are complex. Me-
chanical, thermal and chemical degradations are involved in
different components of a FC stack, such as membrane,
gas diffusion layer, bipolar plate [6]. The effects of those
degradations are also correlated and highly dependent on the
operating conditions [7]. An analytical degradation model with
full consideration of all the degradation factors is difficult to
build. For this reason, data-driven prognostics and those hy-
bridizing data-driven and model-based principles have become
the concerns of numerous studies.

In the framework, several studies based on machine learning
techniques or other data-based techniques are proposed to
trace the stack voltage evolution. In [8], an adaptive Neuro-
Fuzzy inference approach is proposed to predict the temporal
variation of stack voltage. In [9], [10], two alternatives of
Neuro Networks (NNs), named extreme learning machine
(ELM) and echo state networks (ESN), are applied for the
same purpose. An incremental learning of a so-called key
performance indicator (KPI) is also proposed to predict long-
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term voltage prediction [11]. A modified relevance vector
machine (RVM) is proposed to predict stack voltage evolution
in the case of small training datasets [12]. Similarly, Gaussian
Process State Space Models (GPSS) are proposed in [13].
In [14], an empirical model for power ageing is proposed.
The evolution of the model parameters is tracked by jointing
a group of particle filters. To reach a more precise short-
term or medium-term prediction of stack voltage evolution,
wavelet analysis, combined with some regression methods is
also proposed [15], [16].

These attempts to predict stack voltage are meaningful con-
sidering that the research on prognostic methodologies is still
in the developing stage. However, these proposals assume that
FCs are operated in the constant nominal operating conditions.
The deviation of stack voltage in this case is considered to
be influenced only by the ageing degradation. When dynamic
or time varying operating conditions are applied, it is not
appropriate to take only the stack voltage deviation as the
health index, because the stack voltage is also influenced by
varied operating parameters and system dynamics. Another
issue lies in that most of the existing studies do not take
the diversity of FC degradations into consideration. It has
been revealed that different factors influence FC degradation
in different manners depending on FC system design and
operation [7]. To make an adaptive prediction, the prognostic
method should be able to generalize in different degradation
cases.

This study contributes to FC prognostic by proposing a
data-driven strategy. First, a health indicator (HI) formulation
and extraction are proposed to take dynamic and time varying
operating conditions into consideration, which is developed
based on a previous study in [17]. Second, the prognostic
adaptability is enhanced by proposing a multi-model structure.
Specifically, to extract the proposed HI, linear parameter
varying (LPV) model identification is implemented in a series
of sliding data segments. Virtual steady-state stack voltage
is reconstructed in the identified model space and defined
as HI. Following that, multiple ESN models are configured
with different parameters and trained using extracted HI data.
RUL prediction is then realized by iteratively implementing
ensemble ESN models. Long-term experiments are carried out
in different operating conditions. The proposed strategy is then
verified based on acquired experimental data.

The paper is organized in the following way. In Section II,
the concerned FCs and the long-term tests used to validate
the proposed approach are presented. Following a general
presentation of the strategy in Section III, Section IV and V are
respectively dedicated to the explanations of health indicator
extraction and adaptive prognostic, which serve as the two
successive phases of the strategy. Section VI demonstrates the
results of the developed strategy on the acquired experimental
data. Finally, the study is concluded in Section VII.

II. EXPERIMENTS AND DATA

A series of long-term experiments are carried out in this
study to build the database for FC durability study and to
develop PHM methodologies.

A. Fuel cell stacks
The FC stacks studied here are designed with the structure

of an open cathode and a dead-end anode. Some crucial
parameters are listed in Table I. A 24 V DC air fan, which
functions to supply air and regulate the temperature, is placed
on the FC stack.

TABLE I
PARAMENTERS OF THE INVESTIGATED FC STACK

FC type Open cathode/Dead-end anode

Active surface 33.63 cm2

Nominal pressure at hydrogen inlet 1.35 bar
Number of cells 15

Nominal output power 73.5 W
Operating temperature corresponding to current
Maximum temperature 75 °C

Maximum current 13.45 A
Lowest permitted stack voltage 7.5 V

Pressure interval at hydrogen inlet 0.10 to 0.40 bar

The references of operating temperatures are provided by
FC supplier as a function of the load current:

Tref = 2.5074I + 30.3585 (1)

where Tref denotes the optimal operating temperature, and I
is the load current.

The temperature control is realized by regulating the air fan
driving voltage. A sufficient quantity of air is guaranteed even
in the condition where the air fan is set at the lowest speed.
On the anode side, the pressure at the hydrogen inlet is fixed
near 1.35 bar. A purge action is activated each 30 s, and each
purge lasts 0.5 s. The FCs are self-humidified. No additional
humidifier is equipped at the cathode.

B. Database
Long-term experiments are carried out on different stacks

and in different experimental settings, including constant cur-
rent (CC) mode and dynamic operating mode. During each
long-term test, the stack voltage, the individual cell voltages
(cell voltages 1 to 15), the temperatures (at the positions of cell
1, cell 8, and cell 15), and the stack current are measured with
a sample frequency of 5 Hz. Additionally, one polarization
curve is collected each 168 h (one week). Notice that several
stops and restarts occur during the long-term tests because of
the problems within the test bench, such as the replacement
of the hydrogen tank, the problem of central air conditioner
of the test room.

In the CC mode test, the output current was set at 8 A, which
is the nominal value. The stack voltage measured during the
test is illustrated in Fig. 1. Four stops/restarts during the test
are marked in the figure.

In the dynamic mode test, the output current was set
according to the real application requirements thanks to the
programmable electronic DC load. In practice, the concerned
FC is installed in a battery driven light mobile vehicle and
functions as a range extender. The FC is enabled when the
battery state-of-charge is lower than a predefined threshold.
When the FC is enabled, the current increases from 0 to 8 A
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Fig. 1. Stack voltage evolution in CC experimental setting

gradually. The current data during several hours are shown in
Fig. 2. The stack voltage during the long-term dynamic test
is illustrated in Fig. 3. Three stops/restarts during the test are
marked in the figure.
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Fig. 2. Current profile in the concerned application
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Fig. 3. Stack voltage evolution in dynamic experimental setting

III. PRINCIPLE OF THE PROGNOSTIC STRATEGY

In dynamic operating conditions, single FC stack voltage
does not show good monotonic trend, which makes it hard to
make accurate prediction. Besides, to quantify the RUL, it is
also hard to define a feasible failure threshold based on stack
voltage in dynamic conditions. For these reasons, this study
proposes a two-step prognostic strategy to realize adaptive
RUL prediction even in dynamic conditions. As shown in Fig.
4, the prognostic strategy consists of health indicator extraction

and ensemble ESN prognostic. In the first step, raw measured
input and output data are gathered in sliding segments. In each
data segment, the parameters of a LPV model are identified
to fit the input and output data. Then, the HI is extracted
in the model space, constructed with the identified model
parameters. In the second step, fed with the extracted HI data,
multiple ESN models with different initializations are trained.
The RUL and its confidence interval (CI) can then be estimated
by synthesizing the trained ensemble ESN models.

t
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t
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Fig. 4. Illustration of the prognostic strategy

IV. HEALTH INDICATOR EXTRACTION IN MODEL SPACE

Inherently, the FC degradation is linked to the variation of
FC internal characteristics, which could be quantified generally
with system model parameters. Hence, the HI extraction can
be realized by learning in model space, i.e., model parameters.
In this section, the FC dynamic behavior will be revealed
in the LPV model structure. The identification of the model
parameters subject to one data segment is presented. Following
that, the virtual steady state output, which is formulated in the
model space, is defined as the HI and fed to the following
prognostic step.

A. LPV-ARX model identification

In our study, the length of time segment should be set to
cover the system dynamics. It should also be much shorter
than the ageing degradation cycle. It is assumed that the
behavior of a FC system does not vary within a time segment
and can be represented by a fixed model. In the concerned
data segment, the LPV model is selected here to describe the
nonlinear and time-varying properties of PEMFC systems. In
[18], LPV model has been demonstrated to be suitable for
modeling a commercial PEMFC system. One of the most
basic model structures in the LPV context is the so-called
auto-regressive model with exogenous input (ARX) [19]. The
model is expressed as

y(k)+

na∑
i=1

ai (p(k)) y(k−i) =

nb∑
j=0

bj (p(k))u(k−j)+bias (p(k))+e(k)

(2)
where k ∈ Z is discrete time, u and y denote the input and
output signals, p is the so-called scheduling variable, bias is
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the system bias which is also dependent on p, e is the system
noise. The coefficients ai and bj depend on the instantaneous
value of p(k). In this model, the number of time-varying
coefficients is ng = na + nb + 2. Specific to FC systems,
the time-varying property of this model lies on two aspects.
First, the system dynamics are dependent on operational points
and on the changes among different operational points. The
parameters ai (p(k)), bj (p(k)) and bias (p(k)) can be con-
sidered as the functions of the current which is varying with
time. Second, the functional dependencies of these parameters
are also time varying because of the ageing degradation.

Here, the identification of model parameters is realized by
formulating the problem in the least square support vector
machine (LS-SVM) form [20]. Without loss of generality,
the parameters ai(p(k)), bj(p(k)) and bias(p(k)) can be
reconstructed in the high-dimensional nonlinear functional
space of p(k), as

ai(p(k)) = ωT
i φi(p(k))

bj(p(k)) = ωT
j̃
φj̃(p(k)), j̃ = j + na + 1

bias(p(k)) = ωT
ng
φng

(p(k))

(3)

where φi : R → RH is a nonlinear function, ωi ∈ RH is the
vector in the H-dimensional function space. The model in (2)
is rewritten in the following form

y(k) =

ng∑
i=1

ωT
i φi (p(k))xi(k) + e(k) (4)

where
xi(k) = y(k − i), i = 1, . . . , na

xi(k) = u(k − i+ na + 1), i = na + 1, . . . , na + nb + 1

xng (k) = 1
(5)

Denoting ϕi(k) = φi (p(k))xi(k), the problem is further
written as

y(k) =

ng∑
i=1

ωT
i ϕi(k) + e(k) (6)

which is a regression formulation on ωi. Given Nc measured
samples, denoted as {u(k), y(k), p(k)|k = 1, . . . , N}, the
problem is to find the optimum of ωi to minimize e(k).
This form is similar to the LS-SVM regression formulation.
By introducing the regression regularization parameter γ and
Lagrange multipliers α = [α1, . . . , αN ]T , it can be obtained
that [21]

ωi =

N∑
k=1

αkϕi(k) (7)

The problem (6) can be converted to a problem on α, as

y(k) =

N∑
j=1

αj

ng∑
i=1

ϕi(j)
Tϕi(k) + γ−1αk (8)

Given Nc training samples, this equation can further be written
in the vector form

Y = (Φ + γ−1I)α (9)

where Y = [y(1), . . . , y(Nc)]
T ; I ∈ RNc×Nc is a unit matrix;

Φ is a positive matrix, whose element in the jth row and the
kth column is Φjk can be expressed as

Φjk =

ng∑
i=1

ϕi(j)
Tϕi(k) =

ng∑
i=1

xi(j)φi(p(j))
Tφi(p(k))xi(k)

(10)
As the key step of the SVM method, the internal product

of function φ can be expressed as the element of a Kernel
matrix, as

Ki
jk = φi(p(j))

Tφi(p(k)) (11)

The Radial Basis Function (RBF) kernel used here is defined
as:

Ki
jk = Ki(p(j), p(k)) = exp

(
−||p(j)− p(k)||2

σ2
i

)
(12)

Using the kernel function, Φ can be parameterized, and α
in equation (9) can be calculated, as

α = (Φ + γ−1I)−1Y (13)

Combining (7), the time varying parameters in (3) can be
expressed as

ai(p(t)) = ωT
i φi(p(t)) =

Nc∑
k=1

αkxiK
i (p(k), p(t))

bj(p(t)) = ωT
j̃
φj̃(p(t)) =

Nc∑
k=1

αkxj̃K
j̃ (p(k), p(t))

bias(p(t)) = ωT
ng
φng (p(t)) =

Nc∑
k=1

αkxngK
ng (p(k), p(t))

(14)
In the FC system studied, the measurable operating param-

eters are the current and stack temperature. The current is
considered as the only input here since the stack temperature
is regulated according to the current value. The dynamics
involved in the temperature control and FCs can be modeled
together. The current is also considered as the scheduling
variable. The stack voltage is considered as the output variable.

B. Health indicator extraction

In the literature, FC stack voltage in nominal operating
condition is usually considered as the HI when implementing
prognostic. However, this parameter is usually hard to obtain
in the dynamic operating conditions. In this study, the virtual
steady state output is reconstructed thanks to the identified
LPV-ARX model parameters. The extracted virtual steady state
output is thus considered as the HI in dynamic conditions.

In the virtual steady state, input, output and scheduling
variables are assumed to be constant. In the model of (2), the
delayed inputs, outputs and scheduling variables all converge
to the steady values, so that

y(k − i) = yinf , i = 0, . . . , na

u(k − j) = uinf , j = 0, . . . , nb

p(k) = pinf

(15)
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where uinf , pinf , and output yinf are respectively the input,
scheduling variable and output in steady state. Ignoring the
model error e(k), (2) can be transformed into

yinf +

na∑
i=1

ai(pinf )yinf =

nb∑
j=0

bj(pinf )uinf + bias(pinf )

(16)
Thus, the virtual steady state output can be deduced given the
input and scheduling variables, as

yinf =

∑nb

j=0 bj(pinf )uinf + bias(pinf )∑na

i=1 ai(pinf ) + 1
(17)

The extracted yinf can thus be considered as the HI and the
feature dedicated to prognosis. Notice that multiple features
can be extracted by setting different input and scheduling
values. The whole HI extraction procedure is summarized in
Algorithm 1.

Algorithm 1 Energy management
1: Get Pload, PPV

2: Calculate
P = Pload − PPv

Pmax
ch /* use equation (??)*/

;
3: Initialize parameters σi, γ;
4: Calculate matrix Φ according to (10), (11) and (12);
5: Calculate α according to (13);
6: Output: α
7: Health indicator extraction
8: Input: α;
9: Define virtual input and scheduling variable uinf , pinf ;

10: Calculate ai(pinf ) (i = 1, . . . , na) and bi(pinf ) (i =
0, . . . , nb) and bias(pinf ) according to (14);

11: Calculate virtual output yinf according to (17);
12: Output: yinf

V. ADAPTIVE PROGNOSTIC BY ENSEMBLE ESNS

Once the HI is extracted and formed as the training database,
a prognostic problem based on the HI is to be handled.
In the data-driven prognostic framework, an ensemble ESN
prognostic structure is proposed in this study to obtain an
adaptive RUL prediction and the CI.

A. ESN based multi-step prediction
Recurrent neuron networks (RNNs) have been demonstrated

to be very powerful tools for solving temporal learning tasks
[22]. ESN, known as an alternative trend of RNNs, has been
attracting increasing attention and adapted for prognostics
[10]. ESN consists of a non-trainable recurrent part (reservoir)
and a simple linear readout. Compared with conventional RNN
structures, two advantages make ESN more suitable for long
term prediction problems. First, ESN can be trained extremely
fast without local optimum. Second, conventional RNNs suffer
from the vanishing gradient problem, which makes the mem-
ory of RNNs focused only on short term properties of data
series [23]. On the contrary, longer term dependencies can be

maintained in the ESN structure by setting a sufficiently large
neuron number.

The typical update model of ESN is

x̃(k) = tanh(W in[1;u(k)] +Wx(k − 1))

x(k) = (1− α)x(k − 1) + αx̃(k)
(18)

where x(k) ∈ RNx is a vector of reservoir neuron activations
and x̃(k) ∈ RNx is its update, at time step k. W in ∈
RNx×(1+Nu) and W ∈ RNx×Nx are the input and recurrent
weight matrices, respectively. α ∈ (0, 1] is the leakage rate.
W in and W are randomly generated, subject to the so-

called “echo state property”: x(k) should be uniquely defined
by the fading history of the input u(k) [24].

The output is defined as the linear combination of current
states, inputs and an offset term, as

y(k) = W out[1;u(k);x(k)] (19)

where y(k) ∈ RNy is the network output, W out ∈
RNy×(1+Nu+Nx) is the output weight matrix.

Fig. 5. Illustration of the basic ESN structure, adapted from [24].

The classical ESN is illustrated in Fig. 5. In this structure,
only W out needs to be trained based on the training dataset.
When the training dataset is provided, denoted as Ut =
[u(1), . . . ,u(Nt)], Yt = [y(1), . . . ,y(Nt)], the corresponding
reservoir states Xt = [x(1), . . . ,x(Nt)] can be calculated
according to (18).

The output weight matrix can be realized by ridge regres-
sion, as

W out = (ΨT
t Ψt + λI)−1ΨT

t Yt (20)

where I is Nx order unit matrix; λ is the regulation parameter;

Ψ =
[
1;Ut;Xt

]
=

 1 1 . . . 1
u(1) u(2) . . . u(Nt)
x(1) x(2) . . . x(Nt)


In this study, the prognostic on FCs would require modeling

the trend of HI as a function of the time. The input-output of
ESN is organized as follows: the input u(k) is composed by
the accumulated running time of the FC stack t(k) and the HI
of the last two time instances, as

u(k) =
[
t(k); yinf (k − 2); yinf (k − 1)

]
(21)

while the output is the HI of the current instant, as y(k) =
yinf (k).

Based on a trained ESN model, multi-step prediction can
be realized using an iterative one-step prediction method. At
the moment t(k), the predicted HI value after H time steps
ŷinf (k + H) can be obtained by H iterations. The iterative
realization is illustrated in Fig. 6.
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Fig. 6. Illustration of iterative realization of multi-step prediction

B. Ensemble ESN prognostic

The degradation of FCs is influenced by various phenomena
with different time scales and behaviors. Some of these factors
may play a more important role on ageing in a specific period.
In order to realize an adaptive prognostic, the prognostic model
should be capable of modeling this multi-time-scale degrada-
tion mechanism. To do this, multiple prognostic ESN models
are created and the prognostic is realized by synthesizing
the ensemble ESN models. Since multiple models need to
be trained in one prognostic cycle, the advantage of the fast
training of the ESN models is amplified.

Two crucial parameters, i.e., spectral radius and leakage
rate, are concerned to realize a multi-ESN setting. The spectral
radius of the reservoir connection matrix W , denoted as
ρ(W ), is the maximal absolute eigenvalue ofW . It determines
how fast the influence of an input dies out in a reservoir with
time. When ρ is set greater, an extensive history of the input
has a more evident influence on the output. The value of leak-
age rate α highly influences the model dynamics. A smaller
α induces slower dynamics of x(k). The two parameters can
respectively determine the influence of historical input and the
model state updating. It is therefore convincing to initialize
these two parameters with different values in order to cover
different degradation trends and obtain an adaptive prognostic.

As shown in Fig. 7, M ESN models are initialized with dif-
ferent parameters, denoted as {ESNi(ρi, αi)|i = 1, . . . ,M}.
With the historical data, these ESN models are trained in
the offline phase. In the online phase, multi-step prediction
is performed, based on each trained ESN. The mean and the
standard variance of the predicted HI at k+H are calculated
as

yinf (k +H) =
1

M

M∑
i=1

ŷinf,i(k +H) (22)

σ(k +H) =

√√√√ 1

M − 1

M∑
i=1

(
ŷinf,i(k +H)− yinf (k +H)

)2
(23)

Assuming that the predictions of multiple ESN models
follows standard Gaussian distribution, the CI of prediction
can be calculated as

CI(k +H) = [yinf (k +H)− z∗σ(k +H),

yinf (k +H) + z∗σ(k +H)]
(24)

where z∗ is the critical value, which is dependent on the
confidence level. For instance, corresponding to the confidence
level of 95% and 98%, the critical value is respectively 1.96
and 2.326.

The RUL is estimated by comparing the mean prediction
yinf (k +H) with the predefined failure threshold. The CI of

Fig. 7. ESN ensemble prognostic implementation

RUL is calculated by comparing the lower and upper limits of
CI(k +H) with the same failure threshold.

VI. RESULTS AND DISCUSSIONS

In this section, the effectiveness of the proposed prognostic
strategy is demonstrated using the experimental data acquired
during the long-term tests presented in Section II.

A. Prognostic in constant current operating mode
In the case of CC operating condition, the FC stack voltage

can be considered as the HI. The health indicator extraction
step can thus be skipped. The prognostic based on ensemble
ESNs will be implemented directly on the stack voltage data
series shown in Fig. 1. After normalizing the data to the
interval [0, 1], the elements of input matrix W in are generated
randomly and uniformly between −0.5 and 0.5. The number
of recurrent neurons is set to 400. The recurrent weight matrix
W is initialized randomly. The spectral radius ρ of W and
the leakage rate α are then parameterized with different pa-
rameters, as {ρ, α|ρ ∈ [1.0 : 0.05 : 1.3], α ∈ [0.1 : 0.1 : 0.9]}.
Thus, 63 models are created by setting different parameters.
The ranges of these two parameters are set according to the
principle provided in [24].

When the first 500 h data are used to train the ensemble
ESN models, the real measured stack voltage and the estimated
results from the trained ESN models are shown in Fig. 8. It
can be seen that all the ESN models, even initialized with
different parameters, can well reflect the input-output relation
of the training data. Two sags are observed between 400 h and
480 h. During this period, the air conditioner installed in the
test room failed. Correspondingly, the FC stack was operated
with higher temperature. This may introduce more water on
the cathode side of the FCs and lower the performance of FCs.
These data have also been used for training the ESN models.
Thanks to the modeling capability of the ESN, the abnormal
degradation behavious can be well modeled.

When the prognostic is implemented by using the multiple
trained models for the rest data, the multi-step predictions and
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Fig. 8. Training results of ensemble ESN models. Grey line: measured
stack voltage evolution; Colorful lines: estimated results from the trained
ESN models.

the real measurement are shown in Fig. 9(a). The diversity
depending on parameter configurations can be seen. The mean
prediction and the CI of 95% confidence level are illustrated
in Fig. 9(b). The mean prediction can follow the degradation
trend of the seen data, although the difference between the
estimation and the real data increases as the prediction steps
accumulate and some unexpected changes occur after the
prediction moment. The prognostic can be adapted quickly
to the real degradation trend after the unexpected incident
between 400 h and 480 h.
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Fig. 9. Prognostic result by implementing ensemble ESN models with
1000 h prediction length. Blue line: data used for training ESN ensemble
models; Black line: measured voltage evolution. (a) Prediction results of
multiple models (colorful thin lines). (b) Mean predicted result (red dotted
line) and CI (green dotted line).

In this study, the failure threshold is set as the same quantity
as the last concerned measurement. The predicted RUL and

real RUL at different time points are shown in Fig. 10. The
mean of predicted RUL is consistent with the real RUL when
the prediction time is close to its end of life. However, some
unexpected and irregular changes of the data can introduce
incorrect predictions. For instance, the data between 750 h and
850 h show a higher level, and the estimated RUL made during
this period is therefore higher than the real one. Actually, the
irregular changes happening at 750 h and 850 h are related to
two stop/restart actions, marked as stop3 and stop4 in Fig. 1,
during the test.
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Fig. 10. RUL prediction at different moments in CC operating mode.

B. Prognostic in dynamic operating mode

In dynamic operation mode, the HI is firstly extracted
in LPV model space. As indicated in Algorithm 1, LPV-
ARX model identification is implemented for a series of
data segments which are generated by sliding a fixed-size
window within the whole data span. The model identification
performance in one data segment is illustrated in Fig. 11.
Fig. 11(a), Fig. 11(b) show the current, the stack voltage in
one data segment. From Fig. 11(b), it can be seen that the
input-output relation can be well described by the proposed
LPV-ARX model. Fig. 11(c) shows the details of the stack
voltage in transition. In dynamic processes, the steady-state
stack voltage cannot be measured directly.

Efforts are taken here to rebuild the steady-state stack
voltage, i.e., the HI, via the identified LPV-ARX model
parameters. In the identified model space, HI is extracted as
presented in Section IV-B. The virtual input and scheduling
variable, i.e., current, is set at 8 A. The virtual output,
i.e., stack voltage, over the whole time span is extracted
and shown in Fig. 12. Although the stack voltage is finally
reconstructed as the HI, it is not a real stack voltage, but a
virtual one which is extracted by considering both operating
conditions and system dynamics. Compared with the stack
voltage measured in the CC mode test, the extracted HI
exhibits less monotonous trend. Inherently, the degradation of
FCs in dynamic operation is uneven over the lifecycle. The
sudden drop of number 3 is linked to the stop caused by
replacing the hydrogen tank. Some sags, which are numbered
1, 2, 4, 5 and 6 in the figure, are observed in the HI data.
During these periods, the HI decreases firstly, and recovers
to a relatively high value. A compact design and a simple
control strategy are adopted for the studied FC system. The
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Fig. 11. Model identification performance in one data segment.

flow rates, the temperatures and relative humidities of both air
and hydrogen are not controlled. These operating parameters
are instable in dynamic conditions, and they are influenced
by the test environment. Some recoverable faults or abnormal
states could be encountered for the FCs operated in instable
and varying conditions. The less monotonous trend of HI data
makes the prognostic harder than in the CC condition.
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Fig. 12. Extracted HI in dynamic long-term test.

The prognostic based on ensemble ESNs is implemented
on the extracted HI. The multiple ESN models are configured
as those in the CC case. The HI prediction results obtained
by implementing the trained multiple ESN models at two
moments are shown in Fig. 13. The data acquired before the
prediction moment are used for training the ESN models. It
can be observed that even though the training data can be fitted
well with all ESN models, the predictions by different models
show different behaviors. The degradation of the FCs can be
influenced by various factors of different time scales. A single
ESN model may perform well in one degradation case, but it
may also lose its effectiveness in another case. To make the
prognostic more adaptive, the multiple prediction results are
synthesized as described in the previous section.

The prognostic results and the corresponding CIs obtained
by synthesizing ensemble ESN models at 4 different moments

are shown in Fig. 14. It can be seen that the real HI mea-
surements are generally enclosed in the CI of 95% except the
case in Fig. 14(c), which means that the diversity of ESN
models can generally cover different degradation trends. In
the multi-step long-term prediction, the predicted HI means to
trace the trend of the past data. It becomes inaccurate when a
disturbance occurs. After 750 h, two principle changes can be
observed and numbered with 5 and 6 in Fig. 14. In Fig. 14(a),
the prediction of RUL is precise because the changes after
750 h are averaged. The degradation after these two changes
just follows the mean prediction of ensemble ESNs, which
are trained based on the data before 750 h. In Fig. 14(b),
the HI is recovered after the change 5 and the prediction of
degradation becomes more positive. The degradation behavior
between 900 h and 1050 h shows a monotonous trend. The
prediction at 1050 h, shown in Fig. 14(c), generally follows the
data before this moment. The unexpected change 6 happens
at about 1050 h, and the HI degradation behavior changes
following change 6. Because of this unexpected change, the
predictions made at 900 h and 1050 h are not consistent with
the real HI degradation following change 6. Also, because of
this sudden change, the real HI goes out of the CI at 1050,
as shown in Fig. 14(c). After change 6, the degradation of
the HI becomes more traceable since the data show a more
monotonous trend. The prediction becomes more reliable at
1200 h, as shown in Fig. 14(d).

One interesting phenomenon observed is that the ensemble
prediction is able to trace the short-term and long-term trend.
For instance, in Fig. 14(a), the mean prediction (red dotted
line) shows a depression-like behavior at the beginning of the
prediction. This special trend can be related to the behavior
of the data near the prediction time. After about 150 hours,
the predicted degradation becomes monotonously decreasing,
which corresponds to the long-term trend. A similar phe-
nomenon is also observed in Fig. 14(b).

By setting the failure threshold the same as the last HI
sample, the predicted RUL and real RUL at different time
points are shown in Fig. 15. It is interesting to observe that
evolution of the predicted RUL is linked to that of the HI data.
Corresponding to the two valleys in changes 5 and 6, shown in
Fig. 14, two underestimations of RUL can be observed at about
820 h and 1100 h. Between change 5 and 6, the overestimation
is observed. The RUL prediction becomes precise after change
6 since the data become more monotonous. The prediction
made by ensemble ESN models can quickly adapt the new
degradation trend of the data. A reliable prognosis result can
be obtained when the prediction horizon is within 350 h.

C. Discussion

In this study, the concerned FC stacks are open-cathode and
dead-end ones which benefit from a compact design and ease
of use. The temperature control and air supply are fulfilled
by a single air fan. The pressures, temperatures and relative
humidities of both hydrogen and air inlets are not precisely
controlled. In other words, the functioning condition of the
stack is far from an ideal condition. For this reason, the
degradation rates of the concerned stacks are relatively high
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(a) (b)

Fig. 13. Prediction results by implementing multiple ESN models. Blue line: data used for training ESN ensemble models; Black line: measured
voltage evolution. Colorful thin lines: predicted results of multiple models. (a) Prediction result at 750 h (b) Prediction results at 1050 h.
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Fig. 14. Prognostic result by implementing ensemble ESN models. Blue line: data used for training ESN ensemble models; Black line: measured
voltage evolution. (a) Mean predicted result (red dotted line) and CI (green dotted line) at 750 h (b) Mean predicted result and CI at 900 h (c) Mean
predicted result and CI at 1050 h (d) Mean predicted result and CI at 1200 h.

compared with the records or the data in the literature. It can
also be expected that when a better equipped fuel cell system
is treated using the same approach, the HI data could be more
traceable and the prognostic result with respecting to RUL
long-term prediction could be better.

To configure the ensemble ESN models, the separation
scales in the parameter ranges and the number of ESN models
can be set differently. The final prognostic result, including the
estimations of RUL and CI, can be varied with a different set.
More detailed work is required for this analysis.

Although multiple ESN models are adopted, the computing
time of one prognostic cycle takes less than one minute in 64-
bit Matlab, 3.4-GHz and 16-G RAM environment, thanks to

the fast training of ESN model. The computing time is short
enough for estimating the ageing degradation of FCs whose
time cycle is often from hundreds to thousands of hours.

VII. CONCLUSIONS

This paper presents an adaptive data-driven prognostic strat-
egy for FCs. Virtual steady-state stack voltage is formulated as
HI and extracted in LPV model space. The adaptive prediction
of HI evolution is realized by implementing ensemble ESN
models. Long-term experiments in different operating modes
are carried out to validate the proposed approach. From the
prognostic results, the following conclusions can be made:
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Fig. 15. RUL prediction at different moments in dynamic operating
mode.

1) LPV-ARM model is suitable for modeling the studied
FC system dynamics. The virtual steady-state stack
voltage can be reconstructed in the identified model
space and considered as the HI.

2) ESN is validated to be an effective tool for long-term HI
prediction. By initializing the ESN model with different
parameter combinations, diverse degradation behaviors
can be modeled. The prognostic adaptability is thus
enhanced.

3) In the case studied, an acceptable prognostic can be
achieved when the prediction horizon is within 350
hours in both CC mode and dynamic mode.

In the future work, more long-term tests concerning different
FC system designs and controls and different failure modes
will be carried out to verify the performance of the proposed
strategy. Efforts will also be taken to improve the robustness
of the approach to the recoverable disturbances.
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[24] M. Lukoševičius, “A practical guide to applying echo state networks,”
in Neural networks: Tricks of the trade. Springer, 2012, pp. 659–686.

http://www.sciencedirect.com/science/article/pii/S0378775310020756
http://www.sciencedirect.com/science/article/pii/S0378775310020756

	Introduction
	Experiments and data
	Fuel cell stacks
	Database

	Principle of the prognostic strategy
	Health indicator extraction in model space
	LPV-ARX model identification
	Health indicator extraction

	Adaptive prognostic by ensemble ESNs
	ESN based multi-step prediction
	Ensemble ESN prognostic

	Results and discussions
	Prognostic in constant current operating mode
	Prognostic in dynamic operating mode
	Discussion

	Conclusions
	References

