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ABSTRACT

We present a parallel implementation of the friends-of-friends algorithm and an innovative technique for reducing complex-shaped
data to a user-friendly format. This code, named pFoF, contains an optimized post-processing workflow that reduces the input data
coming from gravitational codes, arranges them in a user-friendly format and detects groups of particles using percolation and merging
methods. The pFoF code also allows for detecting structures in sub- or non-cubic volumes of the comoving box. In addition, the code
offers the possibility of performing new halo-findings with a lower percolation factor, useful for more complex analysis. In this paper,
we give standard test results and show performance diagnostics to stress the robustness of pFoF. This code has been extensively
tested up to 32768 MPI processes and has proved to be highly scalable with an efficiency of more than 75%. It has been used for
analysing the Dark Energy Universe Simulation: Full Universe Runs (DEUS-FUR) project, the first cosmological simulations of the
entire observable Universe, modelled with more than half a trillion dark matter particles.

Key words. dark matter — large-scale structure of Universe — methods: numerical

1. Introduction

Owing to the huge volume of forthcoming cosmological surveys
(e.g. LSST, EUCLID or SKA), the need for larger and larger
cosmological N-body simulations is greater than ever. With the
ever-increasing memory and computing power of supercomput-
ers, recent simulations are able to handle as many as one tril-
lion particles or resolution elements (Alimi et al. 2012; Habib
et al. 2012). While this provides access to new scientific ques-
tions, a drawback lies in the generation of petabytes of data. The
large amount of data produced during such runs is thus becom-
ing a critical problem and needs a highly scalable efficient post-
processing workflow. An effective physically motivated way of
reducing those data is to detect structures in the underlying con-
tinuous dark matter (DM) density field and save properties of
those groups of particles instead of saving all of the numerical
information. Obviously, this reduction requires the use of an op-
timized and flexible tool to avoid the complete loss of valuable
cosmological information near under-dense or unstructured re-
gions. Moreover, a very generic method is needed to perform
such a detection since it represents a major issue in gravitational
physics: indeed, no unique way of defining collapsed objects in
the sampling of a continuous matter field in a reasonable time
has been found.

Although many different methods have been proposed in the
past decades (for an extensive review see Knebe et al. 2011, 2013
and references therein), those detection techniques are usually
divided into two main families:

— Methods based on an integrated density criterion. Those
methods are related to the spherical overdensity (SO)
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algorithm introduced by Press & Schechter (1974) and fur-
ther developed by Lacey & Cole (1994).

— Methods related to local density estimation. Those ap-
proaches derive from the friends-of-friends (FoF) algorithm
introduced in astrophysics by Davis et al. (1985).

Since those classes of algorithm are complementary, the choice
of algorithm is mainly driven by the physics we want to probe.
For instance, SO haloes have a spherical geometry that is
closely related to the observational definition of haloes, whereas
FoF haloes are unstructured. From a purely algorithmic point of
view, each method has its advantages and drawbacks. FoF is a
local algorithm and is thus more adapted to a distributed paral-
lelization than SO, which uses integrated densities over a spher-
ical volume to identify dark matter haloes. Finally, FoF avoids
the overlapping of DM haloes and may enclose all the particles
of a simulation in haloes.

In order to analyse the very large data sets produced by the
DEUS consortium, we have developed an MPI-based parallel
halo-finder code built on the FoF algorithm: pFoF. One of the
reasons for this choice is that a halo detection based upon FoF
grants a better following of the non-linear dynamics of the mat-
ter field and thus tends to improve the universality of the mass
function that is expected in Einstein-de-Sitter for scale-free or
nearly scale-free cosmologies (Courtin et al. 2011).

In principle, pFoF can be applied to any cosmological
code, such as ART (Kravtsov 1999), GADGET (Springel 2005),
CUBE-P3M (Harnois-Deraps et al. 2013), etc. The generality of
the implementation makes it very easy to perform a halo-finding
analysis to any of those dynamical codes, provided their data
are distributed in a compact form. In the scope of this paper,

A13,page 1 of 5


http://dx.doi.org/10.1051/0004-6361/201322555
http://www.aanda.org
http://www.edpsciences.org

A&A 564, A13 (2014)

the gravitational code following the dynamics of the dark matter
particles in an expanding Universe is RAMSES (Teyssier 2002).

In Sect. 2, we introduce the basics of the FoF algorithm and
develop the parallelization strategy. We also describe the format
of the I/O data, stressing the simplicity of the outputs, and some
additional features implemented in the code. In Sect. 3, some re-
sults and several performance diagnostics up to a large number
of cores are described. Finally, we conclude and discuss perspec-
tives in Sect. 4.

2. Friends-of-friends algorithm and parallel
implementation

pFoF is a fully distributed code which relies on a domain de-
composition: the simulation box is divided into p cubic domains,
where p is the number of processes used by pFoF'. The code first
finds groups of particles in parallel in each domain, each process
using a FoF algorithm on its local cubic data and then merges
haloes that extend across multiple cubes.

2.1. RAMSES data and reading strategy

Optimizing the reading strategy is a critical step for two main
reasons: (1) the input data are usually ordered along a space-
filling curve which is not user-friendly; (2) in state-of-the-art
simulations, large amount of data has to be read which can be
prohibitive in terms of computing time.

To overcome those problems, we chose to implement two
different reading methods that can be used equally. Particles
must be distributed between the pFoF processes so that each pro-
cess knows the properties of each particles located in the cubic
domain it deals with. The first strategy implies that each pFoF
process reads every RAMSES output file that contains at least
one of its particles. In the second strategy, one RAMSES output
file is read by one pFoF process which then uses MPI Remote
Memory Access functions to send the particle properties to the
right process in the cubic splitting.

The pFoF code can then write the particles properties dis-
tributed along the cubic domains and create one file for each
domain. These cubic domains are much more user-friendly than
the distribution along the Peano-Hilbert curve for further analy-
ses, such as fast correlation function computations.

2.2. The Friends-of-Friends algorithm and its parallel
implementation

As explained in the introduction, the FoF algorithm is widely
used to detect haloes in cosmological simulations. The principle
of FoF is to link particles that are close to each other in coordi-
nate space in its standard version. It could be extended to higher
dimensional phase spaces (Behroozi et al. 2013; Diemand et al.
2006). In the standard picture, particles p; and p; located at po-
sitions x; and x; in a simulation with mean inter-particle dis-
tance A are considered to belong to the same group of particles
if they are separated by a distance d(p;, p») less than the perco-
lation length b times A so that

d(p1, p2) = |lx1 — x2f| < bA. ey

The percolation factor value typically used for cosmological
simulations is b = 0.2, which corresponds roughly to an inte-
grated overdensity A = 200, which itself is close to the spherical

' p should be a cubic power of 2 to avoid rounding problems while

dividing the computational box into p subdomains.
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Fig. 1. Illustration of the merging procedure. Each MPI process detects
its own halo and triggers a merging process if a halo detected in the
neighbouring process is less distant than the linking length b. The par-
ticular case of a single particle at a distance less than b in one of the
process is included by calling halo a single particle before the merging
procedure.

collapse expectation in an Einstein-de-Sitter Universe. Several
authors (Luki¢ et al. 2009; Courtin et al. 2011) describe the phys-
ical processes acting on the link between the integrated density A
and the percolation factor b. Since this link poses several fun-
damental questions in cosmology and since we want to avoid
introducing new free parameters, we chose not to implement a
complex 6D phase-space halo-finder.

For a given MPI process, each halo is built through this link-
ing procedure until no additional particle is close enough to any
of the particles already linked. The construction of a new halo
then begins with a non-linked particle. The linking process is
sped up thanks to a priori knowledge of the spatial positions of
DM groups of particles using linked lists of particles distributed
in cubic cells with one list for each cell.

The parallel implementation of FoF relies on two steps. The
first step consists in a local halo detection done by each process
in their local domain. But haloes can extend across several cubic
domains and then have to be merged. This merging phase is the
second step. If a particle is separated from the face of the local
cube by a distance less than the linking length b used by FoF,
it means that there may be another particle on the other side of
this face that should be linked to it (see Fig. 1). The pFoF code
flags every particle located near one face of a cube. Each process
sends the positions of these flagged particles to its neighbours
and receives positions of flagged particles from its neighbours.
For example flagged particles located near the bottom face of a
cube are then compared with particles received from the bottom
neighbour and pairs of particles that should be linked together
(i.e. particles are separated by a distance less than the percolation
length) are saved.

Once pairs of particles representing a link between two parts
of a same halo are found for the six faces of the local cubic
domain, pFoF applies the same halo identifier to both halo parts,
using the minimum value of the two halo ID from before the
merging began. This merging process is performed iteratively
for the six faces of the cubes until no merging operation is done
during a cycle over the six faces.

2.3. Output from pFoF

Prior to halo detection, each pFoF process can generate a “cube
file” that contains the properties (position, velocity, and id) of
all the particles organized along the cubic splitting instead of the
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original space decomposition. This output format can be used as
a start for further halo detections, thus avoiding conserving both
pFoF “cube files” and RAMSES original outputs.

Two kinds of output files are produced by pFoF, thus cor-
responding to two files per process. “Mass file” contains a list
of the haloes gathered in the process and, for each halo, the id,
mass, and position of the centre of mass. “Structure file” con-
tains, for each halo gathered on the process, the mass and the
properties of all the particles inside the halo.

2.4. Additional features

The pFoF code could also be run on “structure files” pre-
computed with a given value of the percolation length using a
lower value. It uses the convenient property of an FoF halo-
finder, namely that a halo detected with a given b is entirely
part of a halo detected with larger b. Eventually, this function
is able to split the initial group of particles into many haloes or
sub-haloes depending on the value of the percolation factor. The
algorithm consists in using a serial FoF algorithm for each halo
that we want to analyse with a smaller percolation length. Each
pFoF process then deals with a fraction of the total haloes to be
re-analysed.

This feature is particularly interesting for probing smaller
linking length and therefore higher enclosed overdensity. A
physical application of this option can be found in Bouillot et al.
(2014) with the study of the occurrence of closely interacting
massive DM halo pairs. In this analysis, the requirement is to
obtain the same virial mass at z = 0 as derived from a SO over-
density A = 200 at redshift z = 0.5. Such a requirement imposes
the use of a b = 0.15 percolation factor.

Another specific feature of pFoF consists in detecting groups
of particles in complex volumes, going from cubic sub-volumes
of the computational box to cone-shaped or spherical volumes.
The former shapes are ideal for building up merger trees,
whereas the latter geometries are considered to mimic the ge-
ometry of observational surveys in redshift space. RAMSES pro-
vides those two types of outputs ordered along a convolution of
the space-filling curve and the desired complex shape. In both
cases, since we are handling sub-volumes of the original com-
putational box, we require that there are no periodic boundary
conditions.

3. Results and performance
3.1. Numerical results

The pFoF code has been widely tested on reference data sets.
Results have been compared to those produced by the sequential
algorithm. The haloes are identical, with one noteworthy excep-
tion: if two halo parts are linked through two particles separated
by an edge or a vertex separating two domains dealt with by
two different pFoF processes, then these two parts are not linked
by pFoF, while they would have been linked using the sequen-
tial algorithm. We choose not to correct this difference because
we consider that a halo consisting of two “sub-haloes” linked
through a single bridge between two particles is not a physically
justified halo. It could arise just because of the Poisson noise and
therefore these fine bridges would be cut by any unbinding pro-
cess. Moreover, an upper bound on the fraction of missing DM
haloes is 1.7 x 107 in the case of a simulation of 1024° par-
ticles sliced by 32768 processes (i.e. the most penalizing case
dealt with in this paper). This shows that the increased time con-
sumption of going from six (only through faces) to twenty-six

communications (through faces, edges, and vertices) per cycle
between a pFoF process and its neighbours to handle this situa-
tion is not counterbalanced by the gain in accuracy.

The pFoF code has been compared to other halo-finder codes
during the Haloes Going Mad Workshop (Knebe et al. 2011,
2013). In this context, a reference N-body simulation was used
to detect collapsed structures in the DM field using numerous
halo-finders and to verify their consistency through the deriva-
tion of four main cosmological observables. The conclusion is
that the main properties of pFoF haloes are statistically in good
agreement with the ones issued from other codes. More in de-
tail, pFoF haloes give competitive measurements of the DM halo
mass function with a maximum difference of 8.5% on the entire
mass range. The measured halo two-point correlation function
and the cumulative v, function have a maximum difference of
~10%. Finally, the bulk velocities of pFoF-detected haloes dif-
fer by a 3.7% factor. These differences are not related to some
errors of implementation; on the contrary, they are related to the
various halo definitions considered by each halo-finder.

The pFoF code also proved to be a highly efficient analy-
sis tool, for instance, it has been used to analyse the DEUS-
FUR (Alimi et al. 2012) simulations (8192 particles) using
32768 processes, showing good scalability and low memory use
during the “Grand Challenge” test phase of the Curie supercom-
puter. Finally as seen in the following, the I/O step is efficient but
could probably be optimized. The pFoF code has been designed
as a post-processing tool for organizing the data in the most
user-friendly manner, and the I/O step has been implemented to
favour this characteristic. However, we could probably improve
the I/O performance by gathering the output data on a subset of
the processes and writing fewer files.

3.2. Strong scaling

We have analysed the output of a 10243 particles 2625 h~' Mpc
box ACDM RAMSES simulation with 64, 512, 4096, and
32768 pFoF processes on the Curie Thin Nodes supercomputer
in a strong scaling configuration. The data was read from 64 cu-
bic domain files, not from the RAMSES output files. The results
of this strong scaling test, normalized against the perfect linear
case, are plotted in Fig. 2.

A general remark is that the speed-up is linear up to
4096 processes for the initialization, the local FoF, and the MPI
merging phases. The speed-up drops slightly for 32768 pFoF
processes for each phase and for 4096 processes for the output
phase.

The speed-up of the MPI merging process is linear from 64
to 4096 pFoF processes, but it drops strongly for 32768 pro-
cesses. This poor performance can be explained by the ratio be-
tween the mean radius of the haloes detected by pFoF for this
precise simulation and the size of the pFoF cubic domains with
32768 processes. Indeed, in the latter case, the mean radius of
the haloes and the size of the domains have the same order of
magnitude. The reason for that sudden decrease is thus linked
with the numerous haloes extending over several cubic domains.
It triggers an increase in the volume of communications required
by the merging phase in the case of 32 768 processes compared
to the one needed with fewer processes.

The output phase of the code also presents lower perfor-
mances for 4096 and 32768 processes. Results of the DEUS-
FUR simulations show that the I/O bandwidth of the CuriEg su-
percomputer is saturated by 4096 processes writing at the same
time (Alimi et al. 2012). This supercomputer-dependent feature
explains the low speed-up for high number of processes.
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Fig. 2. Strong scaling performance test on a 1024°> DM particles simu-
lation using from 64 to 32 768 pFoF processes. The normalized com-
puting time (speed-up) is plotted against the number of pFoF processes
used. The computing times for 64, 512, and 4096 processes are the me-
dian computing times issued from 20 different runs. The pFoF analysis
with 32 768 processes was performed only once.

Table 1. Characteristics of the test run simulations in weak-scaling
configuration.

Volume

(Mpc/hy? 1296 2625 5250 10500 21000
Particles 512°  1024° 2048 4096° 81923
MPI process 8 64 512 4096 32768

Notes. The simulations are in the standard A cold dark matter cosmol-
ogy calibrated on the cosmological microwave background measured
by WMAP after 7 years of mission(Komatsu et al. 2011). The mass
resolution is equal to 1.2 x 10'2 A~! My, and the spatial resolution is
40 h~' kpc.

3.3. Weak scaling

In the same spirit, we performed a weak scaling performance test
using 8, 64, 512, 4096, and 32 768 processes. Table 1 shows the
numerical characteristics of each simulation used for this weak-
scaling test. The cosmological simulations are done in a standard
A cold dark matter framework, where dark energy is supposed
to be a cosmological constant with an equation of state w = —1.

The efficiency of the different phases of pFoF for this test is
plotted in Fig. 3.

The efficiency for the initialization, the local FoF, and the
MPI merging phases are very good (more than 75%) even with
32768 processes. The slow performance degradation can be ex-
plained by the increasing number of communications implied by
the increasing number of processes. Concerning the local FoF ef-
ficiency, the reason of the slow deterioration of the performance
comes from a slight increase in the number of particles dealt with
by some pFoF process compared to the reference case.

The efficiency for the output phase is much lower. However,
such a measurement depends on many parameters inherent to
the supercomputer. Indeed, since the I/O bandwidth of the Curie
file system is almost saturated for more than 512 processes writ-
ing at the same time, and since the size of our output files
was not specifically tuned to this file system, the efficiency de-
creases when the number of processes increases. With 4096 and
32768 processes, a ticket system is triggered to achieve better
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Fig. 3. Weak scaling performance test from 5123 particles on 64 pFoF
processes to 8192 particles on 32 768 processes. The efficiency is plot-
ted against the number of pFoF processes used. Due to the low num-
ber of communications, the performance of the halo detection remains
above 75%. An effort should be made on the outputs. The computing
times for 8, 64, 512, and 4096 processes are the median values of 20 dif-
ferent runs. The error bars are related to the dispersion of the timings
of the 20 different runs. The pFoF analysis with 32768 processes was
performed only once.

efficiency: only a fraction of the total number of processes writes
its output files at any given time. As expected, this allows better
use of the total I/O bandwidth and results in increased efficiency.
However, this step could be improved by gathering data before
the writing step.

4. Conclusion and perspectives

To reduce, manage, and analyse petabytes of data generated by
upcoming N-body cosmological simulations, we develop an ef-
ficient halo-finder named pFoF. This code built on a standard
three-dimensional Friends-of-Friends algorithm allows to de-
tect haloes. It is parallelized using a domain decomposition and
making numerous calls to local FoF halo detection followed
by the merging of the haloes extending across several domains.
Particular attention has been paid to optimize the reading meth-
ods and tune it according to the performance of the supercom-
puter. Effort will be needed to further optimize the outputs of
the code (e.g. using MPI/IO) without impacting their simple
and compact forms. We present several additional features of
the code, such as the detection of structures performed on halo
previously detected with another percolation factor or the halo-
finding in non-cubic geometries (e.g. light-cones).

The pFoF code has been tested against a sequential version
of FoF for single haloes and has successfully detected the same
structures. The results of pFoF have been statistically proved
against other halo-finder techniques and agree with usual cos-
mological quantities up to 10%. The code demonstrates a good
scalability for large number of processes (up to 32768 with an
efficiency above 75%). The conclusion is that pFoF allows us to
analyse large sets of data in a quick and efficient manner.

In the future, we plan to merge pFoF and the RAMSES code
to avoid I/O problems, both time and disk consuming. Moreover,
the integration of pFoF into RAMSES would allow us to find
haloes at many more different cosmological times. A major mo-
tivation for such a call is to acquire DM haloes merger trees
on the fly. We also plan to implement an unbinding process to
remove particles that are not gravitationally linked with the de-
tected haloes.
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