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A Gaussian Uniform Mixture Model
for Robust Kalman Filtering

Mathieu Brunot

Abstract—This paper presents a Kalman-type recursive estima-
tor for discrete time systems with a measurement noise modeled
by a Gaussian-uniform mixture. The objective is to deal with data
containing outliers that degrade the performances of the regular
Kalman filter. The introduced non-Gaussian noise model takes
into account the reliability of the measurement to be robust with
respect to erroneous data. The Kalman-type estimator is based on
the Masreliez’s formulation that copes with non-Gaussian noise
models. Results in different simulated conditions are displayed
to evaluate the performances of the introduced algorithm and to
compare it to state-of-art alternatives.

Index Terms—Kalman filters, Mixture models, Noise robust-
ness, Bayesian estimation.

I. INTRODUCTION

S INCE the seminal work of R. Kalman and R. Bucy [1]–
[2], the estimation theory has received a large attention

from researchers. Consequently, a great number of algorithms
have been developed for prediction, filtering and smoothing,
for either linear or nonlinear systems. Those algorithms can
also be categorized in terms of noise assumption. If the regular
Kalman Filter (KF) assumes a Gaussian noise model, many
physical systems deviate from this assumption and follow
distributions with heavier tails leading to high intensity noise
realizations known as outliers.

Many robust approaches have been suggested to deal with
non-Gaussian measurements. An intuitive approach is to use a
regular KF by adding a detection of the outliers to reduce their
weights in the corresponding correction terms [3]– [4]. Several
methods directly deal with non-Gaussian distributions. One of
them consists in using the Student’s t-distribution and perform-
ing the statistical inference with an Expectation-Maximization
iteration [5]. That has been extended to sequential filtering and
smoothing processes [6]. Other works consider the variational
Bayes approximation to estimate non-Gaussian posterior dis-
tribution [7]– [8]. Without being exhaustive, one can also cite
the Particle Filter (PF) and Gaussian Mixture Filter (GMF).
Unlike the previously cited methods, they do not assume
that the state distribution is Gaussian after each time step.
The PF utilizes a set of weighted points, i.e. particles, to
approximate the distributions [9]. The GMF approximates of
the noise distribution by a finite sum of Gaussian terms [10].
The drawback of those two methods is that number of particles
or Gaussian components have to be large enough to insure a
good estimation accuracy, which may lead to unacceptable
computing time.
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In the case of model uncertainties, coming from model
errors, unknown input process or noise properties, the risk-
sensitive filter also represents an interesting alternative. Con-
trary to the regular KF, it minimizes an exponential cost
function, tuned by the so called risk-sensitivity parameter;
see e.g. [11]. This parameter can be constant or time-varying.
Recent works have extended that filter to a family of robust
KF parametrized by the τ -divergence family [12]— [13]. In
[14], the authors have highlighted the link between the risk-
sensitive filter and the H∞ filtering algorithm that may also
be appealing. It indeed makes no statistical assumptions on
the noise, except that it has finite energy [15]– [16].

Grandin and Marques [17] introduced a link between the
theory of Probability and the theory of Evidence. The intro-
duction of the reliability of the source in the measurement
model led to a robust fusion process. In the specific case where
the reliability is not a random variable but a known constant
probability, the model developed in [17] becomes a Gaussian-
Uniform (GU) mixture model. In [18], the authors have shown
that it is a worthwhile alternative to Gaussian mixture in case
of outlier data. Such a modelling has been considered with PF
for multiple target tracking in [19] where the uniform distribu-
tion represents ”clutter” or false alarm measurements. This PF
method is referred to as Rao-Blackwellized Monte Carlo Data
Association (MCDA) and was designed for multiple target
tracking. Few years before, the Probabilistic Data Association
Filter (PDAF) have been conceived with the same purpose and
noise assumptions [20].

In this paper, we consider the GU measurement noise
to provide a robust Kalman-type estimator. Masreliez [21]
developed a generic filter formulation to deal with non-
Gaussian observation noise. Although the formulation has the
reputation for being complex [4]– [22], our goal is to present
the calculation of this filter and to illustrate its interest with
two examples.

The paper is organized as follows. The formal definition
of the GU noise model and Masreliez filter are first given
in Section II. Section III is devoted to the development of
the filter equations by considering the GU mixture for the
measurement noise. A simple test case is firstly considered in
Section IV to illustrate the filter characteristics while Section
V tackles a more involved multidimensional case. Finally,
concluding remarks are provided in Section VI.

Notations
General notations
a, b, c = Scalars
a, b, c = Vectors
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A,B,C = Matrices
Conventions

A−1 = Inverse of matrix A
AT = Transpose of matrix A
|A| = Determinant of matrix A
x̂ = Estimated vector

xi,k = ith component of vector xk
[A]i = ith row of matrix A

[A]ij = Element at ith row and jth column of A
∂g(x)
∂x = Jacobian matrix of function g

II. PRELIMINARIES

A. Mixture noise model

To obtain a robust Kalman filter, a non-Gaussian measure-
ment noise is studied. The principle is to take into account
outliers by assuming a noise distribution with heavy tails. In
one dimension, the following distribution is considered:

G(θ, µ, σ, a) = F (θ)N (µ, σ) + (1− F (θ))U(µ, a) (1)

where F is the probability of a correct measurement
parametrized by θ, N is a Gaussian distribution (mean µ and
standard deviation σ) and U is a centered uniform law (mean
µ and half span a). As explained in [17], the idea of such
a model is that the Gaussian term expresses the precision of
the instrument, whereas F (θ) assesses if the instrument senses
what it is supposed to measure, i.e. the reliability. In case of
invalid measurement, a uniform distribution is considered to
model the error although a more complex modelling could
be applied for some sensors. In this article, the author limits
himself to the case where the instrument reliability is known in
advance to reduce the complexity of the model. In the sequel,
the reliability is a constant known parameter θ. The resulting
Probability Density Function (p.d.f.) is a one dimensional GU
mixture:

f1DG (n) = θf1DN (n) + (1− θ)f1DU (n), (2)

where

f1DN (n) =
1√
2πσ

exp

{
−1

2

(
n− µ
σ

)2
}

f1DU (n) =


0 n ≤ µ− a
1
2a µ− a ≤ n ≤ µ+ a.

0 µ+ a ≤ n

In m dimensions, a multivariate distribution could be de-
fined as follows

fmG (n) =
m∏
i=1

f1DGi (ni)

=

m∏
i=1

[
θif

1D
Ni

(ni) + (1− θi)f1DUi (ni)
]
.

Nevertheless, such a distribution assumes that the m compo-
nents are independent which may be a too strong assumption
in practice. Thus, we define the m dimensional probability
distribution G:

G(θ,µ,R,a) = F (θ)N (µ,R) + (1− F (θ))U(µ,a) (3)

Therefore, the p.d.f. is given by

fG(n) = θfN (n) + (1− θ)fU (n), (4)

with

fN (n) =
1

(2π)m/2|R|
exp

{
−1

2
(n− µ)

T
R−1 (n− µ)

}
fU (n) =

{
1
A n ∈ P (µ,a)

0 otherwise

For the uniform part, P (µ,a) is the m dimensional parallelo-
tope centered in µ with faces defined by a and volume A. By
assuming that P is a rectangular parallelotope:

A =

∫ µ1+a1

µ1−a1
. . .

∫ µm+am

µm−am
dx1 . . . dxm = 2m

m∏
i=1

ai. (5)

With (4), the covariance matrix R enables the model to take
into account correlated measurements. The price to pay is
that the probability of correct measurement F (θ) is the same
for each component. However, each component can have a
different tail for outliers incorporation by selecting appropriate
ai coefficients.

B. Masreliez filter

Like in [21], in this article, the dynamic system considered
are modelled by a linear discrete-time state-space defined as
follows

xk+1 = φkxk + qk (6)
zk = Hkxk + nk (7)

The plant noise qk is assumed white and Gaussian with
covariance matrix Qk. In the following, pZ(zk|Zk−1) denotes
the observation prediction density, i.e. the density of the
observation zk conditioned on prior observations Zk−1 =
z1, z2, ...zk−1. The predicted state is assumed to be Gaussian
with p.d.f. pX(xk|Zk−1). According to [21], this assumption
should be satisfied in many practical situations if the state
noise is Gaussian or if the state prediction variance is small
with respect to the observation variance. Its mean and covari-
ance are given by

x̄k , E
[
(xk|Zk−1)

]
= φk−1x̂k−1 (8)

Mk , E[(x̄k − xk)(x̄k − xk)T |Zk−1] (9)

= φk−1Pk−1φ
T
k−1 +Qk−1

where x̂k−1 , E
[
(xk−1|Zk−1)

]
is the estimated state vector

at time k − 1 and Pk−1 is its conditional covariance:

Pk−1 = E[(x̂k−1 − xk−1)(x̂k−1 − xk−1)T |Zk−1]. (10)

The correction step satisfies:

x̂k = x̄k +MkH
T
k gk(zk) (11)

Pk = Mk −MkH
T
k Gk(zk)HkMk (12)

Mk+1 = φkPkφ
T
k +Qk (13)

where gk(zk) is a vector valued function given by

gi,k(zk) = −
[
∂pZ(zk|Zk−1)

∂zi,k

] [
pZ(zk|Zk−1)

]−1
. (14)
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That function is called the score function in [21]. The matrix
Gk(zk) is such as

[Gk(zk)]ij =
∂gi,k(zk)

∂zj,k
(15)

In our case, we assume that nk ∼ G(θk,0,Rk,ak) without
loss of generality. The mean value µ could indeed be nonzero
and estimated in an augmented state vector as a measurement
bias. The next section is devoted to the development of gk and
Gk in closed form.

III. ROBUST KALMAN FILTERING

A. Observation prediction density and its derivative

The objective is to obtain the expression of the observation
prediction density pZ(zk|Zk−1). From (7), as the sum of
two random variables: Hkxk and nk, the p.d.f. of zk is the
convolution of their two p.d.f.s:

pZ(zk|Zk−1) =

∫
Rm

fXk|Zk−1(zk − t|Zk−1)fG(t|Zk−1)dt

where the p.d.f. of the first term fXk|Zk−1(t|Zk−1) is Gaus-
sian with mean Hkx̄k and covariance Lk = HkMkH

T
k .

The second p.d.f. comes from our assumptions in the previous
section. Therefore, it comes:

pZ(zk|Zk−1) =

∫
Rm

[
(2π)m/2|Lk|1/2

]−1
exp{T k1 (zk, t)}·[

θk

[
(2π)m/2|Rk|1/2

]−1
exp{T k2 (t)}+ (1− θk)fU (t)

]
dt

= θk

[
(2π)m/2|Sk|1/2

]−1
exp{T k3 (zk)}

+
1− θk
Ak

∫ ak

−ak

[
(2π)m/2|Lk|1/2

]−1
exp{T k1 (zk, t)}dt

= θkf
1
k +

1− θk
Ak

f2k (16)

where the terms in exponential are

T k1 (zk, t) = −1

2
[εk − t]T L−1k [εk − t]

T k2 (t) = −1

2
tTR−1k t

T k3 (zk) = −1

2
εTkS

−1
k εk

with Ak = 2m
∏m
l=1 al,k, Sk = HkMkH

T
k +Rk and εk =

zk −Hkx̄k. The first term f1k is a Gaussian p.d.f. and given
by

f1k =
[
(2π)m/2|Sk|1/2

]−1
exp{T k3 (zk)} (17)

The second term f2k is a little more complex:

f2k =
[
(2π)m/2|Lk|1/2

]−1 ∫ ak

−ak

exp{T k1 (zk, t)}dt (18)

=
[
(2π)m/2|Lk|1/2

]−1
· Jk

The term Jk is developed in Appendix A. It can be expressed
as Jk =

∏m
l=1 Il,k and its derivative is ∂Jk

∂zj,k
= Jk · γj,k, with

the intermediate variables Il,k and γj,k defined by (27) and
(31) respectively.

The calculation of the derivative is divided into two terms
such as

∂pZ(zk|Zk−1)

∂zi,k
= θk

∂f1k
∂zi,k

+
(1− θk)

Ak

∂f2k
∂zi,k

(19)

= θkf
1,i
k +

(1− θk)

Ak
f2,ik

The first element of the derivative is:

f1,ik =
[
(2π)m/2|Sk|1/2

]−1
exp{T k3 (zk)}∂T

k
3 (zk)

∂zi,k
(20)

= −f1k
[
S−1k [zk −Hkx̄k]

]
i
.

Using the results of Appendix A, the second element of the
derivative is:

f2,ik =
[
(2π)m/2|Lk|1/2

]−1 ∂Jk
∂zi,k

(21)

=
[
(2π)m/2|Lk|1/2

]−1
Jk · γi,k = f2k · γi,k.

In this part, the expression of pZ(zk|Zk−1) and its deriva-
tive have been developed in closed-form so that the score
function can be expressed.

B. Score function and its derivative

From the previous derivations, the score function comes out:

gi,k(zk) = −
[
∂pZ(zk|Zk−1)

∂zi,k

] [
pZ(zk|Zk−1)

]−1
= −

θkf
1,i
k + 1−θk

Ak
f2,ik

θkf1k + 1−θk
Ak

f2k

=

[
θkf

1
kS
−1
k [zk −Hkx̄k]

]
i− 1−θk

Ak
f2kγi,k

θkf1k + 1−θk
Ak

f2k

=
θkf

1
k

[
S−1k εk

]
i
− 1−θk

Ak
f2kγi,k

pZ(zk|Zk−1)
. (22)

Then, the matrix Gk is expressed:

[Gk(zk)]ij =
∂gi,k(zk)

∂zj,k
=

∂

∂zj,k

(
θkf

1,i
k + 1−θk

Ak
f2,ik

pZ(zk|Zk−1)

)

=
∂
(
θkf

1
k

[
S−1k εk

]
i
− 1−θk

Ak
f2kγi,k

)
∂zj,k

1

pZ(zk|Zk−1)

−
θkf

1,i
k + 1−θk

Ak
f2,ik

p2Z(zk|Zk−1)

∂pZ(zk|Zk−1)

∂zj,k

=
1

pZ(zk|Zk−1)

(
θk
∂f1k

[
S−1k εk

]
i

∂zj,k
− 1− θk

Ak

∂f2kγi,k
∂zj,k

)
+ gi,k(zk)gj,k(zk) (23)
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where, the remaining terms to be estimated are

∂f1k
[
S−1k εk

]
i

∂zj,k
= f1,jk

[
S−1k εk

]
i
+ f1k [S−1k ]ij

= f1k

(
[S−1k ]ij −

[
S−1k εk

]
i

[
S−1k εk

]
j

)
∂f2kγi,k
∂zj,k

= f2,jk γi,k + f2k
∂γi,k
∂zj,k

= f2k

(
γj,kγi,k +

∂γi,k
∂zj,k

)
C. Corner cases

If the previous development is correct in theory, numerical
issues may appear in practice in three specific cases, referred
to as ”Corner Cases” (CCs). Those CCs are:

1) the reliability coefficient is set to one;
2) the Gaussian component, f1k , is too weak;
3) both components, f1k and f2k , are too weak.
The first CC would appear in the case where the designer

sets θk = 1. In this case, the filter is equivalent to the regular
KF and it is more efficient to apply: gk(zk) ← S−1k εk and
Gk(zk)← S−1k , setting θk = 1 in (22) and (23).

The second CC appears in the case where the observation is
an outlier for the Gaussian term but explained by the uniform
distribution. With such a configuration, the p.d.f. of the Gaus-
sian component may be too low with respect to the floating-
point relative accuracy leading to numerical instability. In fact,
if the Gaussian component f1k is neglected, (22) and (23)
can be reduced to gk(zk) ← γk and Gk(zk) ← ∂γk

∂zk
. The

challenge is now to define when f1k can be neglected. As long
as the measurement error nk is Gaussian, the term εTkS

−1
k εk

follows a chi-square distribution and the limit is evaluated for
the χ2 value with m degrees-of-freedom, such as

f1k >
[
(2π)m/2|Sk|1/2

]−1
exp{−1

2
xlim}, (24)

where xlim is the inverse of the chi-square cumulative distri-
bution function, selected with a p-value of p = 0.001. One
should note that xlim is similar to the gate threshold of the
PDAF method; see e.g. [23].

The remaining CC is when the outlier is not explained by the
noise model. The uniform component f2k is then too small and
a source of instability. Two solutions can be thought to deal
with such a situation. First, the regular KF step can be used.
Second, the measurement can be discarded and no correction is
performed. These two different solutions are referred to as the
regular (reg.) and prediction (pred.) variants respectively. The
main question left is the detection of an observation that does
not follow the model. In practice, the value of pZ(zk|Zk−1)
is compared with the χ2 value, such as

f2k >
[
(2π)m/2|Lk|1/2

]−1
Ak · exp{−

1

2
xlim}. (25)

Although [εk − t]T L−1k [εk − t] is not supposed to follow
exactly a chi-square distribution, this criterion gives good
results in practice as it is illustrated in the following sections.
The pseudo-code of the score function and its derivative
calculation is given in Algorithm 1.

Algorithm 1 Kalman-Masreliez Filter with GU Noise
Require: Lk, Sk, εk, θk, ak, Ak, xlim

1: if θk == 1 then
2: gk ← S−1k εk
3: Gk ← S−1k
4: else
5: Ck ← chol(L−1k ,′ upper′)
6: Compute bk and ek
7: Compute Ik with (27)
8: Compute f2k with (18)
9: Compute f1k with (17)

10: Compute pZ with (16)
11: f2,limk ←

[
(2π)m/2|Lk|1/2

]−1
Ak · exp{− 1

2xlim}
12: if pZ < (1− θk)f2,limk /Ak then
13: Prediction variant:
14: gk ← zeros(m, 1)
15: Gk ← zeros(m,m)
16: Regular variant:
17: gk ← S−1k εk
18: Gk ← S−1k
19: else
20: Compute γk with (31)
21: Compute ∂γk

∂zk
with (34)

22: f1,limk ←
[
(2π)m/2|Sk|1/2

]−1
exp{− 1

2xlim}
23: if f1k ≥ f

1,lim
k then

24: Compute gk with (22)
25: Compute Gk with (23)
26: else
27: gk ← γk
28: Gk ← ∂γk

∂zk
return gk, Gk

IV. PRELIMINARY TESTS

A. Single state model

For the first evaluation of the introduced filter, a simple
one dimensional test case is considered. The constant distance
of an object is measured. In practice, one can think about
a laser rangefinder used in a dusty environment, i.e. there is
probability 1 − θ that a particle positions itself between the
object and the sensor. The system properties are as follows
• x∗ = 100 m, true distance of the target;
• x0 = 50 m, initial distance of the estimators;
• P0 = 202 m2, initial variance of the state;
• Q = 1 m2, variance of the state noise;
• x, estimated state;
• y = x + n, measured distance with measurement noise
n: zero mean and variance σ2

n.
The state model is therefore a random walk. The data are
generated with the p.d.f. (2) where the noise parameters are
constant: θ = 0.9, µ = 0, σ = 5 and a = 100.

Table I provides three criteria: the Root Mean Square (RMS)
error, the Execution Time (ET) and the Average Normalized
Equation Estimation Error Squared (ANEES) over 10000
Monte Carlo Simulations (MCS) of a regular KF, the two
variants of the introduced Robust KF (RKF), the MCDA and
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Table I
NOMINAL CASE – 10000 MCS – 1D MODEL

Crit. KF RKF (reg.) RKF (pred.) MCDA PDAF

G
au

ss
. RMS 1.74 1.77 1.77 1.77 1.75

ET [ms] 0.14 4.31 4.22 48.61 1.26
ANEES 0.59 0.56 0.56 0.58 0.74

M
ix

t. RMS 6.24 3.84 4.10 3.36 6.02
ET [ms] 0.14 4.37 4.31 48.55 4.19
ANEES 8.21 3.16 5.00 2.81 56.06

PDAF algorithms. Both MCDA and PDAF were designed to
take into account clutter measurements and to track multiple
targets. In our case, we consider only one target and use 10
particles for the MCDA. That number was chosen to have
similar performances with the mixture noise case; see Table
I. The MCDA software can be downloaded via http://becs.
aalto.fi/en/research/bayes/rbmcda/. For the PDAF algorithm,
the gate probability is based on xlim defined in section III-C
and the clutter density at time k is λk = (1− θ)/Vk, with the
Vk the volume of the gate.

For the first example, the measurement noise is generated as
Gaussian with the same standard deviation as the noise models
of the KF and RKF filters: σn = σ = 5. The second example
is called ”Mixture” because the noise model of the RKF is
exactly the one used to generate the data. In both cases, the
situation is described as ”Nominal” because there is no error
introduced in the RKF noise model.

For the Gaussian case, it appears that both RKF variants
are equivalent but slightly less precise than the regular KF.
That can be explained by a slower convergence due to the
noise model. The GU mixture indeed tends to explain more
easily the measurement noise and thus corrects less quickly the
state. This phenomenon can be observed in Fig. 1. This figure
depicts the four estimations for the last Monte Carlo iteration.
The MCDA and PDAF algorithms provide equivalent mean
estimates in this introductory case. Regarding the ANEES, the
PDAF has the closest to 1, which means that its covariance
estimate best represents the underlying estimate error [24].

When the measurement noise is generated with the GU
mixture, the KF has difficulty as expected. It seems that
the regular variant is more robust than the prediction one.
However, this is not so clear by looking at Fig. 2 (last
MCS iteration) and hence requires more investigation. In this
case, the MCDA algorithm gives a mean RMS error as low
as the regular variant. Nonetheless, Table I shows that it
requires more execution time. It may be observed that the
ratio is more or less the number of particles considered.
The difficulties of the PDAF can be explained by the case
where the first observation is an outlier, which prevents the
estimator to converge and causes large errors due to the coarse
initialization.

B. Influence of the outliers model and the reliability coefficient

If the previous subsection illustrated the interest of the RKF
in presence of outliers, the current one is devoted to the limit
case where the outliers’ model is erroneous. The measurement
noise is still generated with the same GU mixture but both
RKF variants and MCDA have a different range of outliers: a.

Figure 1. Nominal case – Gaussian noise – 1D model

Figure 2. Nominal case – Mixture noise – 1D model
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Figure 3. Errors in the error model – ∆a = −50% – 1D model

Table II summarizes the results for 10000 MCS with outliers
range errors ∆a = ±50 %. As it could be expected, if the
outliers’ range is larger than the ’reality’, the RKF variants
do not suffer. In the opposite, when the range is narrower,
the effect is disastrous for the regular variant whereas the
prediction one is insensitive. This is also depicted in Fig. 3
that gives the estimation results of the last MCS iteration for
∆a = −50 %. Here also, the MCDA algorithm proves to
be robust by providing low RMS estimates, although it has a
larger computational cost. Obviously, the results of the PDAF
are insensitive since the method does not rely on the range
information. With respect to the ANEES, the most credible
estimator is the MCDA followed by the prediction variant of
the RKF.

The second limitation of the GU mixture lies in the re-
liability coefficient. To test its influence on the estimation
results, the RKF variants are considered with reliability errors:
∆θ = ±10 %. The results are provided in Table III. It appears
that both variants similarly behave. Here also, the estimations
are less accurate in the case where the reliability coefficient
is not large enough; i.e. ∆θ = −10 %. Nevertheless, this is
not disastrous as the case ∆a = −50 %, which appears to
be the limit case. In particular, the RMS errors stay far below
the one of the KF. Although the clutter density depends on θ,
the PDAF is not really prone to its miscalculation. Therefore,
the time histories of the last MCS iteration are not presented
because do not provide more information. Finally, by putting
aside the regular variant, the same observation can be made
for the ANEES criterion as the case ∆a = ±50 %.

Table II
ERRORS IN THE RELIABILITY COEFFICIENT – 10000 MCS – 1D MODEL

∆θ Crit. KF RKF
(reg.)

RKF
(pred.) MCDA PDAF

+
1
0
% RMS 6.24 3.76 4.06 4.21 6.01

ET [ms] 0.15 4.47 4.38 50.02 4.45
ANEES 8.21 3.45 5.73 5.28 56.14

−
1
0
% RMS 6.24 3.95 4.16 3.14 6.03

ET [ms] 0.14 4.46 4.36 49.15 4.33
ANEES 8.21 3.03 4.58 1.98 55.94

Table III
ERRORS IN THE OUTLIERS RANGE – 10000 MCS – 1D MODEL

∆a Crit. KF RKF
(reg.)

RKF
(pred.) MCDA PDAF

+
5
0
% RMS 6.24 3.76 4.16 3.42 6.02

ET [ms] 0.15 4.57 4.49 51.74 4.55
ANEES 8.21 3.44 4.48 3.05 56.06

−
5
0
% RMS 6.24 8.98 3.51 3.15 6.02

ET [ms] 0.14 4.37 4.28 48.92 4.34
ANEES 8.21 10.86 3.09 2.05 56.06

V. COMPLEMENTARY TESTS

A. Simplified car model

For further testing of the introduced RKF, a 2-dimensional
car model is considered; see Examples 3.6 and 4.3 in [25].
Compared with the previous example, this one has a real
dynamics (i.e. there is a movement) and illustrates a multi-
dimensional estimation. In this case, the outliers could model
multipath errors of the GPS receiver for instance. For the sake
of clarity, the linear state space model is recalled here:

xk = Axk−1 + qk−1

yk = Hxk + nk

qk−1 ∼ N (0,Q),

nk ∼ G(θ,0,R,a),

where x = [x1, x2, x3, x4]T with the position of the
car (x1, x2) and the corresponding velocities (x3, x4). The
matrices are

A =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


H =

[
1 0 0 0
0 1 0 0

]
Q = σ2

q


∆t3

3
0 ∆t2

2
0

0 ∆t3

3
0 ∆t2

2
∆t2

2
0 ∆t 0

0 ∆t2

2
0 ∆t

 ,
R = σ2

n

[
1 0
0 1

]
,

where ∆t = 0.1 s in the sampling period, σq = 1
m.s−1/

√
Hz and σn = 0.5 m. The other parameters of the

mixture model are θ = 0.9 and a = [10, 10]T . The initial
state is vector x0 = [0, 0, 1,−1]T and its covariance matrix
P0 is the (4× 4) identity matrix.

B. Results

Table IV provides the results over 10000 MCS, for the nom-
inal case. It should be noticed that the RMSx and RMSy errors
are computed for the whole state vector and only the positions
respectively. As expected, with a Gaussian noise, the RKF does
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not improve the estimation. That is confirmed by Fig. 4. This
figure illustrates the vehicle position, the measurements and
the estimates for the last MCS iteration. With the GU mixture
noise, the prediction variant outperforms the KF whereas the
regular one has major difficulties. When the outlier is not
explained by the noise model, the application of the regular
KF correction step appears to be counterproductive. Hence,
the corresponding trajectory is not depicted in Fig. 5, where
it is visible that the RKF provides a more reliable estimated
trajectory compared to the regular filter. The MCDA algorithm
gives results (RMSx, RMSy and ANEES) similar to the
prediction variant but has the advantage of providing narrower
confidence ellipsoids, i.e. smaller covariances, although the
computational cost is still larger. The PDAF algorithm has also
RMSx and RMSy equivalent to the prediction variant with
a lowest computational cost, however, it is more optimistic
according to the ANEES criterion. One should note here that
there is no initialization issue.

Tables V and VI give the criteria values in the case of errors
in the error model. Those results definitively disqualify the
regular variant which gives worse results than the regular KF.
On the contrary, the prediction variant appears to be robust
to the errors and always provides mean RMS errors lower
than the regular KF. Furthermore, its estimation is similar to
the reference MCDA algorithm, though its confidence ellipses
are larger. Here also, the PDAF provides estimates with RMS
errors comparable to those of prediction variant and MCDA,
with a lowest computational cost. Nonetheless, with a slightly
larger amount of time, the prediction variant appears to be
credible with respect to the ANESS criterion.

From those different observations, the following comments
can be drawn
• the regular variant should be dropped;
• compared to the regular KF, the RKF is more robust to

outliers but has a slower convergence and provides larger
states covariances;

• compared to the MCDA, the RKF has a lower compu-
tational cost, provides as accurate estimates but is less
optimal (larger covariances);

• compared to the PDAF, the RKF provides as accurate
estimates with more credibility (ANEES closer to 1), is
less sensitive to rough initialisation, but has a slightly
larger computational cost;

• the worst case to test is the narrower outlier range (∆a <
0);

• the RKF is not too sensitive to the reliability coefficient.

VI. CONCLUSION

This paper suggests the use of a Gaussian-uniform mixture
for the observation noise model in a Kalman-type recursive
estimator. Such a noise model encompasses the outliers by
expressing the instrument reliability. Based on the Masreliez’s
work, a closed-form formulation of the filter is drawn. Al-
though this formulation is rigorously established, that may lead
to numerical instability in several cases: (i) the filter is used
as regular KF, (ii) the Gaussian component of the error model
is too weak, (iii) both components of the error model are too

Figure 4. Nominal case – Gaussian noise – 2D model

Figure 5. Nominal case – Mixture noise – 2D model
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Table IV
NOMINAL CASE – 10000 MCS – 2D MODEL

Crit. KF RKF (reg.) RKF (pred.) MCDA PDAF

G
au

ss
. RMSx 0.57 0.59* 0.58 0.58 0.58

RMSy 0.28 0.29* 0.28 0.28 0.28
ET [ms] 1.09 11.66* 11.40 71.34 2.80
ANEES 1.07 1.07* 1.03 1.07 1.11

M
ix

t.

RMSx 1.30 1.41* 0.61 0.62 0.65
RMSy 0.93 1.07* 0.33 0.33 0.38

ET [ms] 1.07 10.32* 11.20 69.93 2.79
ANEES 8.00 8.70* 1.07 1.17 4.54

*: xlim selected for a p-value p = 0.02

Table V
ERRORS IN THE OUTLIERS RANGE – 10000 MCS – 2D MODEL

∆a Crit. KF RKF
(reg.)

RKF
(pred.) MCDA PDAF

+
2
5
%

RMSx 1.30 1.37* 0.61 0.62 0.65
RMSy 0.93 1.02* 0.33 0.33 0.38

ET [ms] 1.05 10.18* 11.11 69.04 2.77
ANEES 8.00 8.45* 1.09 1.18 4.54

−
2
5
%

RMSx 1.30 2.27* 0.62 0.61 0.65
RMSy 0.93 2.21* 0.34 0.33 0.38

ET [ms] 1.06 10.95* 11.00 69.28 2.77
ANEES 8.00 12.08* 1.06 1.16 4.54

*: xlim selected for a p-value p = 0.02

weak. The resulting algorithm is able to detect those cases and
adapts itself to provide an accurate estimation. Though case
(iii) led to two variants, the simulation results indicate that
the best solution is to perform only the prediction when the
measurement is not explained at all by the GU mixture.

Regarding the prospects, the next step is to undertake a
real-time implementation in order to evaluate the solution in
realistic experimental situations.

APPENDIX A
DEFINITION AND DERIVATIVES OF Jk

From (18), the term Jk is defined as follows:

Jk =

∫ ak

−ak

exp{−1

2
εTkL

−1
k εk −

1

2
tTL−1k t− ε

T
kL
−1
k t}dt

=

∫ Ckak

−Cka

exp{−1

2
eTk ek − eTk u−

1

2
uTu}du (26)

=
m∏
l=1

∫ bl,k

−bl,k
exp{−1

2
e2l,k −

1

2
u2l − el,kul}dul =

m∏
l=1

Il,k

We define the integration variable u = Ckt where Ck
is the upper triangular matrix coming from the Cholesky

Table VI
ERRORS IN THE RELIABILITY COEFFICIENT — 10000 MCS – 2D MODEL

∆θ Crit. KF RKF
(reg.)

RKF
(pred.) MCDA PDAF

+
1
0
%

RMSx 1.30 1.50* 0.62 0.62 0.68
RMSy 0.93 1.18* 0.33 0.34 0.43

ET [ms] 1.11 10.77* 11.57 72.45 2.85
ANEES 8.00 9.46* 1.15 1.22 7.97

−
1
0
%

RMSx 1.30 1.39* 0.61 0.61 0.64
RMSy 0.93 1.05* 0.33 0.33 0.37

ET [ms] 1.08 10.35* 11.32 71.06 2.83
ANEES 8.00 8.53* 1.04 1.15 3.47

*: xlim selected for a p-value p = 0.02

factorization of L−1k = CT
k Ck. Therefore, the exponential

term in the integral can be decomposed axis per axis, by
writing bk = Ckak and ek = Ckεk. By assumption the
covariance of the predicted state Mk is symmetric positive
definite. In addition, HT is assumed to be full column rank;
i.e. rank(HT ) = m. Consequently, Lk and its inverse are
symmetric positive definite, which is the requirement for the
Cholesky factorization. Each component of the (m×1) vector
Ik can be evaluated separately such as

Il,k =

∫ bl,k

−bl,k
exp{−1

2
(ul + el,k)2}dul (27)

=

∫ el,k+bl,k

el,k−bl,k
exp{−1

2
v2l }dvl

=

√
2π

2

[
erf

(
(bl,k + el,k)

√
1

2

)

− erf

(
(−bl,k + el,k)

√
1

2

)]
where erf is the error function.

In order to obtain the derivatives of Jk, one should noticed
that it is not independent of zk. Thus, the derivative of Il,k is
first developed:

∂Il,k
∂zj,k

=

√
2π

2

√
1

2

∂el,k
∂zj,k

2√
π

(
exp{−1

2
(bl,k + el,k)2}

− exp{−1

2
(bl,k − el,k)2}

)
=
∂el,k
∂zj,k

αl,k = [Ck]ljαl,k, (28)

by defining the (m× 1) vector αk such as

αl,k = exp{−1

2
(bl,k+el,k)2}−exp{−1

2
(bl,k−el,k)2}. (29)

The first derivative is thus defined by:

∂Jk
∂zj,k

=
m∑
l=1

∂Il,k
∂zj,k

m∏
i=1,i6=l

Ii,k =
m∑
l=1

Jk
Il,k

∂Il,k
∂zj,k

(30)

= Jkγj,k,

by assuming Il,k 6= 0 and defining the (m×1) vector γk such
as

γj,k =
m∑
l=1

1

Il,k

∂Il,k
∂zj,k

. (31)

With respect to (27), Il,k = 0 implies that bl,k = 0 since
erf is a strictly monotonic function. Therefore, one should
be cautious to ensure al,k 6= 0, ∀l, k. To derive the second
order derivatives, it appears in (30) that only ∂γj,k/∂zi,k is
missing. It first comes

∂2Il,k
∂zi,k∂zj,k

=
∂

∂zi,k
([Ck]ljαl,k) = [Ck]lj

∂αl,k
∂zi,k

= −[Ck]lj
∂el,k
∂zi,k

βl,k = −[Ck]lj [Ck]liβl,k (32)
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by defining the (m× 1) vector βk such as

βl,k = (bl,k + el,k)exp{−1

2
(bl,k + el,k)2} (33)

+ (bl,k − el,k)exp{−1

2
(bl,k − el,k)2}

The derivatives of γk components are thus defined by:

∂γj,k
∂zi,k

=
m∑
l=1

[
∂ 1
Il,k

∂zi,k

∂Il,k
∂zj,k

+
1

Il,k

∂2Il,k
∂zi,k∂zj,k

]
(34)

=
m∑
l=1

[
− 1

I2l,k

∂Il,k
∂zi,k

∂Il,k
∂zj,k

+
1

Il,k

∂2Il,k
∂zi,k∂zj,k

]
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