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Abstract: In this paper a method is proposed to design a fault tolerant control strategy based on
a pressure and mass flow rate model, as well as a fault detection and isolation scheme to improve
the reliability of a cryogenic bench operation. The fault is detected by the fault detection and
isolation scheme composed of an extended unknown input observer, a cumulative sum algorithm
and an exponentially moving average chart. Then the goal is to provide a fault tolerant system
reconfiguration mechanism with a control law which compensates for the estimated actuator
additive faults to maintain the overall system stability. For that purpose we use a linear quadratic
regulator on an equivalent system where the unknown input is expressed as a function of the
known state and known input vectors. The model and the estimation part were validated on
the real Mascotte test bench (ONERA/CNES) data, and the reconfiguration control law was
validated in realistic simulations.

Keywords: Change detection, actuator fault accommodation, cryogenic system, fault tolerant
control, fault detection and isolation

1. INTRODUCTION

The need for increased launch safety and launcher’s en-
gines reliability leads to the development of health moni-
toring systems. The experience acquired during the years
of Ariane 5 system’s exploitation has pointed out the
complexity of the implementation of cryogenic propulsive
systems as well as the necessity to get a specialized ex-
pertise on physical phenomenon. In terms of traditional
engines the objective is the improvement and the reliability
of the implementation (see Iannetti et al. (2014)). It is
then necessary to be able to handle emergency situations
arising from actuator failures that can affect the engine
performance. The failure should be detected quickly, then
isolated and its causes should be identified. For that pur-
pose, Fault detection and isolation (FDI) methods have
been developed to evaluate failures and take a decision
using all available information with the help of explicit or
implicit models. The most common model-based approach
makes use of observers to generate residuals. Faults are
detected by setting a fixed or variable threshold on each
residual signal as in Basseville et al. (1993). Those FDI
methods assume that the mathematical model used is rep-
resentative of the system dynamics. This is challenging in
practice because of the presence of modeling uncertainties
and unknown disturbances. To tackle the problem of those
unknown disturbances, a simple class of full order ob-
servers for linear systems with unknown inputs. It consists
in a coordinate system transformation that decouples the
disturbance effect on the system outputs. The observer
resulting from such an approach is called Unknown input
observer (UIO) (see for example Darouach et al. (1994)).
An UIO is used to estimate the unknown state of the

system independently of the unknown input. In the case
of non-linear systems one of the developed techniques is to
linearize and design an Extended unknown input observer
(EUIO) as described in Witczak (2007).
Once the fault is detected by the FDI method based on
observers, one solution to accommodate the presence of
fault is to adopt a Fault tolerant control (FTC) strategy,
for example see Cieslak et al. (2008); Hamayun et al.
(2013). The main objective of a Fault tolerant control sys-
tem (FTCS) is to maintain, with a control reconfiguration
mechanism, current performances close to the desirable
ones and preserve stability conditions in the presence of
component and/or instrument faults. An active FTCS is
characterized by an on-line FDI process (Zhang and Jiang
(2008)) which detects and estimates the fault, the second
step is to achieve a steady-state tracking of the reference
input by compensating the fault (Theilliol et al. (2008)).
In this paper a FTC method for the cooling circuit of a
cryogenic combustion bench, Mascotte (CNES/ONERA),
is studied. This bench has been developed to study heat
transfers in the combustion chamber and jet separation in
nozzles in the same conditions as for Vulcain 2 motor. The
method proposed here is based on a physical model giving
the output pressure and mass flow rate of the cooling cir-
cuit (Section 2). This model presenting non-linearity and
unknown terms is more complete than the previous one
established in Iannetti et al. (2014). To generate residuals
we estimate the state with the help of an EUIO (Sec-
tion 3) and reconstruct the unknown input with the help
of a high order sliding modes observer proposed by Kalsi
et al. (2010); Zhu (2012). Then the residual is analyzed
with a Cumulative sum (CUSUM) algorithm using an
Exponentially weighted moving average (EWMA-C) chart



to detect a mean shift (Jiang et al. (2008); Ryu et al.
(2010); Basseville et al. (1993)). If an actuator failure is
detected we switch to a FTCS (Section 4) to design a con-
troller based on an unknown input observer by considering
the fault to be the unknown input similar to Hamayun
et al. (2013). This complete FDI/FTC loop permits to
localize an actuator fault thanks to an estimation of the
full state in spite of unmeasured information and then to
compensate on-line for the fault. The results are obtained
with off-line tests based on real experimental data and
the reconfiguration control law was validated on realistic
simulations based on the established model.

2. SYSTEM DESCRIPTION

The cryogenic combustion bench Mascotte (Figure 1)
performs an oxygen / hydrogen operation with pressures
and mass flow rates comparable to an injection element
of the Vulcain 2 engine. The system studied here is
its water cooling circuit. This part of the circuit feeds
the combustion chamber. The detection of a leak or
an obstruction is a critical safety task for the bench
operation. The water cooling circuit consists in different
pipes sections with multiple pressure release valves and a
tank at the inlet. The available measurements are pressure,
mass flow and temperature. Sections are separated by
sliding valves with additional pressure measurements.

Fig. 1. Mascotte test bench - Ferrules (ONERA - CNES)

The circuit between two ferrules can be modeled by two
cavities defined in pressure and temperature linked by an
orifice where friction forces and heat flux exchanges are
taken into account, see Iannetti et al. (2014). A pressure
regulator (actuator) permits to regulate the first cavity
pressure of the water cooling circuit.

The method used here (Figure 2) consists of a loop
composed of a first EUIO (unknown output mass flow rate)
for fault detection purpose and another loop with a second
EUIO (actuator failure) for FTC purpose. Once and only
if a change has been detected by the FDI function, the

FTC is included in the closed-loop system. The fault
estimate is calculated from the estimated unknown mean
shift provided by the ACUSUM. Then the second EUIO
ensures the estimation error convergence (and stability)
and the feedback controller ensures the reconfiguration
error convergence (and stability).

Fig. 2. Diagram of the complete loop

The performances of the algorithms are evaluated by
two means. The first one is based on off-line tests re-
alized with real measurements of the project Conforth
(CNES/ONERA). During those trials, pressures (cavities
1 and 2), temperatures (cavities 1, 2 and wall) and out-
put mass flow rate have been recorded. The second one
is based on a simulator, Carins (CNES/ONERA). This
simulator permits to simulate failures for the evaluation of
performances with various faults.

2.1 Model of the cooling circuit

In this section we denote ṁ the mass flow rate (kg/s), ρ the
density (kg/m3), S the surface (m), c the velocity of sound
(m/s), u the fluid velocity (m/s), P the pressure (Pa), D
the orifice diameter (m), Dh the hydraulic diameter (m), L
the length (m), r the radius (m), µ the dynamic viscosity
(Pa.s) and V the volume (m3), dt the time step (s).

The flow is assumed to stay monophasic, is ideal (no force
due to viscosity acts) and incompressible following Euler
equations. The cavity section is assumed constant and the
velocity of sound is defined as for an isentropic reaction in
the orifice. We assume that the fluid flow velocity is small
in comparison to the velocity of sound.
The flow crossing cavities respects the mass balance
equation, after integrating this equation along the cavity
length, we obtain:

∂P

∂t
=
c2

V
(ṁe − ṁs) (1)

The flow crossing the orifice between the two cavities
respects the momentum balance equation with friction
forces, expressed with the Darcy-Weisbach and Blasius
equations for moderate turbulent flows in a smooth pipe
(Nakayama (1998)). After integrating this equation along
the orifice length we obtain:
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The model of this part of the cooling circuit is then:
∂ṁ2e

∂t
= θ1ṁ

7
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V

The parameter θ1 must be identified since the distance L
is unknown. We can assume here that the density and the
viscosity remain constant for the considered pressures and
temperature ranges. A first model of the cooling circuit
has been proposed in Iannetti et al. (2014) with a constant
mass flow rate.

This model (Model 1) presented approximations in the
transient of the test bench inducing the presence of a
pressure difference square root (see Figure 3). Moreover
the mass flow rate dynamics was not modeled. The model
(Model 2) presented here permits to determine the pres-
sure but also the mass flow rate and it is now possible to
model their evolution during the motor speed transients.
The model was tested off-line with real measurements
of the project Conforth as inputs. Those trials last 60
seconds. The final evolution of the pressure dynamics is
well reconstituted (Table 1).

Table 1. Relative errors of the pressure model
1 and 2

Model Total Transient Permanent
(%) (%) (%)

Pressure (1) 10.58 13.35 5.04
Pressure (2) 5.44 8.01 0.31

Input mass flow rate (2) 3.31e-5 4.97e-5 6.17e-8

Fig. 3. Pressure model - Project Conforth - Real data

2.2 Parameter identification

One way to identify θ1 is to use recursive least-squares by
selecting one steady-state equilibrium point for the mass
flow rate and the pressures. An alternative used here is

the Hagen-Poiseuille formula (Nakayama (1998)) in one
steady-state equilibrium point for the mass flow rate and
the pressures to express the unknown length as a function
of the average mass flow rate ṁav:

L = − ρS

32µ

∆P

ṁav
D2 (4)

Finally,

θ1 := 0.316

(
4

πDµ

)− 1
4 SD∆P

64V µṁav

For a circular pipe the hydraulic diameter Dh is equal to
the pipe diameter.

The set of parameters is chosen in order to fit with
the measurements and in accordance with the known
geometric properties of the test bench (see Table 2). Since
Carins simulations and the Project Conforth do not have
the same pressure reference, the parameter θ1 varies.

Table 2. Parameters for estimation and control

Parameters Carins Mascotte - Conforth

θ1 -0.1858 -0.2864
θ2 6.07 6.07
θ3 2.25 2.25

3. FAULT DETECTION AND ISOLATION

3.1 Unknown Input Observer design

The first step is to design an observer to estimate the state
in the presence of unknown inputs. The system (3), can be
rewritten as a linear time-varying system with an unknown
input by linearizing around a steady-state equilibrium
trajectory corresponding to the mass flow trajectory to
estimate the engine speed transients. Then, the system
can be transformed into an equivalent discrete-time state
space system with an Euler explicit scheme:{

Xk+1 = Ak(X̄)Xk +BUk + EDk

Yk+1 = CXk+1
(5)

where Xk is the state vector, Yk is the measured output
vector, Uk is the known measured input vector, Dk is the
unknown input vector and X̄ is the equilibrium state.

Xk :=

[
ṁ2e,k

P2,k

]
, Yk := P2,k, Uk := P1,k, Dk := ṁ2s,k

Where ṁ2e is the cavity 2 input mass flow rate, P2 is the
cavity 2 pressure, P1 is the cavity 1 pressure and ṁ2s is
the cavity 2 unknown output mass flow rate.

With Ak the state matrix, B the known input distribution
matrix, E the unknown input distribution matrix and C
the output distribution matrix.

Ak :=

 1 + dt
7θ1 ¯̇m

3
4

2e,k

4
−dtθ2

dtθ3 1


B := [ dtθ2 0 ]

T

E := [ 0 −dtθ3 ]
T

C := [ 0 1 ]



The first objective is to design an observer depending only
on known input and output measurements. We propose
to use an EUIO with the following structure (Witczak
(2007)): {

Zk+1 = Nk+1Zk +Kk+1Yk +GUk
X̂k+1 = Zk+1 +HYk+1

(6)

The above matrices are designed in such a way as to ensure
unknown input decoupling as well as the minimization of
the state estimate error.

ek = X̂k −Xk = Zk −Xk +HYk (7)

To reduce its expression to a homogeneous equation we
impose:

G = TB (8)

TAk −Nk+1T −Kk+1C = 0 (9)

TE = 0 (10)

With T = In −HC and n the dimension of the state.
A necessary condition for the existence of a solution is
rank(CE) = rank(E). A particular solution is then:

H = E((CE)T (CE))−1(CE)T (11)

The matrix Nk+1 should be Hurwitz to make the observer
converge asymptotically.
This is the case if we choose:

Nk+1 = TAk −Kk+1C (12)

The gain matrix Kk+1 is chosen to minimize the variance
of the state estimation error. For a linear estimator under
gaussian hypotheses (the standard deviation is denoted σ),
this translates into:

Kk+1 = TAk+1PkC
T (CkPkC

T −Rk)−1 (13)

The covariance matrix is then given by:

Pk+1 = TAk+1PkTA
T
k+1 −Kk+1CPkTA

T
k+1

+HRk+1H
T + TQkT

T (14)

The estimation cadence used on real measurements of the
project Conforth is fixed to 0.03 second, the acquisition
machine acquires one point each 0.01 second and delivers
information to the surveillance machine at a rate of one
point each 0.03 second. The state estimation error (7) is
taken as a residual.

Fig. 4. Pressure residual - Project Conforth

Table 3. Relative errors of the pressure and
input mass flow rate estimations

Model Total Transient Permanent
(%) (%) (%)

Pressure (Pa) 9.92e-2 7.00e-2 1.16e-2
Mass flow rate (kg/s) 6.27 31.4 1.18e-2

Figure 4 and Table 3 report the estimation results of the
UIO, which are very satisfactory. Moreover in the case
where it is not possible to measure the mass flow rates we
can obtain an accurate estimate, in the permanent regime
of the engine. The first peak in Figure 4 corresponds to
the transient.

3.2 FDI with an adaptive CUSUM and EWMA-C shift
estimator

The FDI mechanism is supposed to detect and diagnose
any relevant failure that could lead to engine performance
degradations. This shall be done sufficiently early to set
up timely safe recovery. One way to proceed to detect
faults is to evaluate the residual corresponding to our state
estimator error. The objective is then to be able to detect
a residual mean shift for a nominal behavior, see Basseville
et al. (1993).

The two hypotheses considered are then:

H0: The mean value of the residual is nominal µ = µ0

H1: The mean value of the residual has a shift µ = µ1

In most common practical cases µ1 is unknown. This
can be overcome by using Adaptive CUSUM algorithm
(ACUSUM) which estimates this value as in Jiang et al.
(2008).
As mean shift amplitudes can vary drastically for a class
of failure, the estimator designed for δ is a generalization
of the Exponentially Weighted Moving Average (EWMA)
which presents enhanced efficiency for estimation of large
mean shifts:

δ̂k = δ̂k−1 + Φγ(ep,k) (15)

With ep,k = rk − δ̂k−1 the prediction error, Φγ is defined
as a Huber score function.

Φγ :=

{
ep + (1− λ)γ , ep < −γ

λep , |ep| ≤ γ
ep − (1− λ)γ , ep > γ

With γ ≥ 0, usually fixed constant.

This leads to the following ACUSUM Statistic:

sk =
±
∣∣∣δ̂±∣∣∣
σ2

rk − µ0 ±

∣∣∣δ̂±∣∣∣
2

 (16)

where for a mean shift increase or decrease:

δ̂+ := max (δ+,min, δ̂k), δ̂− := min (δ−,min, δ̂k)

δ+,min and δ−,min are here the minimum mean shifts
amplitudes to detect.
The threshold is chosen to be a security coefficient times

δ̂+ (Table 4).



Table 4. Parameters for fault detection

Parameters Values

δ+,min 4e-2
δ−,min -4e-2
λ 1.1055

Threshold coefficient 4.5e4

γ is defined here at each step by γ :=| rk − δ̂k−1 | /2.

With this choice of γ, the algorithm is more efficient for
the detection of small shifts. This generalization is referred
to as an EWMA-C statistic. To select the coefficients
values and test the algorithm performance, three faults
have been simulated with Carins for different profiles of
the cooling circuit inflow valves closures and openings. The
objective of this FDI system is to be able to detect abrupt
changes and to differentiate state perturbations and speed
transients characterized by slower variations from a failure.

The first fault simulated is abrupt with a large mean shift
(Figure 5), the second one has a slow variation with also
a large mean shift (Figure 6) and the third one contains
two faults one with a small mean shift, another one with a
large mean shift (Figure 7). The first one has a slow shift
then an abrupt recovery; the second one has an abrupt
shift and a slow recovery. The total time of the simulation
is 60 seconds with a time step of 1 millisecond (Table 5).
The cadence of the estimation and the detection is 1 time
step per 30 milliseconds.

Table 5. Simulated faults

Fault tbegin(s) tend(s) Nbegin Nend

Fault 1 41010 46200 1367 1540
Fault 2 30960 37560 1032 1252

Fault 3(1) 39300 41040 1310 1368
Fault 3(2) 45960 60000 1532 2000

The EUIO from the previous subsection permits to es-
timate outputs and generate the residual as the state
estimator error defined by rk := Yk − CX̂k.

Fig. 5. Fault 1 residual - Carins simulation

Fig. 6. Fault 2 residual - Carins simulation
timespan

Fig. 7. Fault 3 residual - Carins simulation

After eliminating the effect of process input signals, fil-
tering the effect of disturbances and model uncertainties
on the residual, a residual evaluator has been designed
by choosing an evaluation function and determining the
threshold. To evaluate the effectiveness of the designed
algorithm, the good detection (GDR) and false detection
rates (FDR) have been calculated.
The good detection rate (GDR) is defined as:

GDR := 100.NGD/∆tfault

and, the false detection rate (FDR) is defined as:

FDR := 100.NFD/(∆tdetection −∆tfault)

with NGD the number of good detection, NFD the num-
ber of false detection, ∆tfault the fault timespan and
∆tdetection the detection timespan.

Table 6. Detection rates

Fault GDR FDR

Fault 1 98.8% 0.0%
Fault 2 27.4% 0.0%
Fault 3 98.5% 14.5%

Those rates have been calculated from ten runs for each
simulation and the settings have been chosen to optimize
the good detection rate and minimize the false detection
rate of abrupt mean shifts. Results on Fault 2 are satis-
factory since it is not mandatory to detect slow variations
that can be confused with transients (see Table 6). Good



results are obtained for Faults 1 and 3. The last case per-
mits to evaluate the algorithm performance for successive
faults of different sizes and this is better to avoid false
alarms. In some rare cases the system behavior between
two faults can be considered to be faulty but in most cases
the two faults in Fault 3 are well detected.

4. ACTIVE FTCS FOR THE INPUT PRESSURE

We consider in this part an additive actuator failure on
the system. Once the fault has been detected by an on-
line and real-time FDI mechanism the goal is to maintain
the overall system stability and an acceptable performance
in spite of the occurrence of faults by reconfiguring the
nominal control law.
Since the system is controllable in pressure and a pressure
failure induces a mass flow rate failure, it is necessary to be
able to decouple the fault effect on the system dynamics
from the unknown input one. The first step is then to
decouple the reconstructed cavity 2 output mass flow rate
from the system dynamics in order to evaluate the actuator
fault and compensate it.

This method can also be useful in the case of Vulcain
2 engine during an Ariane flight, where it is difficult or
expensive to measure the mass flow rate.

4.1 Unknown Input Reconstruction via high order observer

In Zhu (2012) and Kalsi et al. (2010), an auxiliary output
vector is introduced so that the observer matching condi-
tion is satisfied and is used as the new system output to
asymptotically estimate the system state without suffering
the influence of the unknown inputs. From this result, it is
possible to build an unknown input reconstruction method
based on both the state and the auxiliary output derivative
estimates.

The auxiliary output is defined as:

Y ia,k := Cia,kXk

with i = 1, ..., p and p is the number of rows of Yk.
The auxiliary output vector contains the output informa-
tion of the original system.

If we denote:

Ca,k :=
[
C1 ... C1A

γ1−1
k ... Cp ... CpA

γp−1

k

]T
with 1 ≤ γi ≤ ni i = 1, ..., p where ni is defined as the
smallest integer such that:{

ciA
γi
k E = 0 γi = 0, 1, ..., ni − 2

ciA
ni−1
k E 6= 0

(17)

and Ci the i-th row of C.

Cia,k :=
[
Ci ... CiA

γi−1
k

]T
Since the auxiliary output vector depends on unmeasured
variables, we can design a high-order sliding mode observer
to get the estimates of both the auxiliary output vector
and its derivative.

After discretization we have:

Y ia,k+1 = Cia,k+1(AkXk +BUk + EDk) (18)

If we denote:

Λi :=

[
0 Iγi−1

0 0

]
, ri :=

[
0(γi−1)×1

1

]
, Ψi

k := Cia,kB

Then (18) can be written as:

Y ia,k+1 = ΛiY
i
a,k + rif

i
k(Xk, Dk) + Ψi

kUk (19)

where

f ik(Xk, Dk) := CiA
γi−1
k (AkXk + EDk)

The last equation of this ni size system is:

CiA
γi−1
k EDk = Y γia,k+1 − CiA

γi−1
k (AkXk +BUk) (20)

The above p equations can be unified into a single matrix:

MkDk = ξk+1 − C̃k(AkXk +BUk) (21)

if we denote

Mk := C̃kE

C̃k :=
[

(C1A
γ1−1
k )T (C2A

γ2−1
k )T . . . (CpA

γp−1
k )T

]T
ξk+1 :=

[
(Y γ1a,k+1)T (Y γ2a,k+1)T . . . (Y

γp
a,k+1)T

]T
Since rank(Mk) = rank(Ca,kDk) = rank(Dk) = q, MT

k Mk

is invertible because Mk has full column rank. So the input
vector satisfies:

Dk = (MT
k Mk)−1MT

k (ξk+1 − C̃k(AkXk +BUk)) (22)

An estimation of it is then:

D̂k = (MT
k Mk)−1MT

k (ξ̂k+1 − C̃k(AkX̂k +BUk)) (23)

with

ξ̂k+1 :=


C1A

γ1+1
k X̂k + C1A

γ1−1
k BUk

C2A
γ2+1
k X̂k + C2A

γ2−1
k BUk

. . .

CpA
γp+1
k X̂k + CpA

γp−1
k BUk


To validate the result, the unknown input reconstruction
is compared to the cavity 2 output mass flow rate mea-
surements available for this trial. Results are reported in
Figure 8 and Table 7 and show a correct convergence after
the transient phase.

Fig. 8. Unknown input reconstruction - Project Conforth



Table 7. Relative error of the output mass flow
rate reconstruction

Model Total Transient Permanent
(%) (%) (%)

Output mass flow rate (kg/s) 17.6 35.2 1.19e-2

4.2 Fault tolerant control system design

Now that the unknown input expression is available, we
can rewrite the first system without the mass flow rate
as an unknown input. Then, in order to annihilate the
actuator fault effect on the system, another EUIO is used
to estimate the fault magnitude. A control law has then
to compensate the fault and be computed such that the
faulty system is as close as possible to the nominal one.
We can use the previous result (22) from the unknown
input reconstruction part to rewrite the system under a
second form only depending on known inputs for control
purposes:

Xk+1 = AXk +BUk + E((MTM)−1MT

(ξk+1 − C̃(AXk +BUk))) (24)

Xk+1 = (In − E(MTM)−1MT C̃A)−1

[(A− E(MTM)−1MT C̃A)Xk

+ (B − E(MTM)−1MT C̃B)Uk] (25)

The system is linearized around a steady state equilibrium,
the nominal state to reach, the matrix A is then constant
in time.

This method requires matrix inversions, which may be
numerically unstable due to possible ill-conditioning. In
the problem considered, the matrices were invertible.

We obtain a new system under the form:{
Xk+1 = AcXk +BcUk

Yk+1 = CXk+1
(26)

with Ac the new state matrix and Bc the new known input
distribution matrix:

Ac := (In − E(MTM)−1MT C̃A)−1

(A− E((MTM)−1MT C̃A))

Bc := (In − E(MTM)−1MT C̃A)−1

(B − E((MTM)−1MT C̃B))

The estimate of the state is given by:

X̂c,k+1 = ηk+1 + ec,k+1 +Xk+1 (27)

An additive actuator failure with a control law can be
modeled as:{

Xk+1 = AcXk +BcUn,k +Bc(fk + Uc,k)
Yk+1 = CXk+1

(28)

where we assume Un,k, the nominal input, to be known,
Uc,k is the control law and fk is the faulty part of the
input. Un,k and fk are components of Uk.

It is then possible to design a second unknown input
observer for the reconfiguration part, where fk + Uc,k is
considered to be the unknown input, with the following
structure (Hamayun et al. (2013)):

{
Zc,k+1 = Nc,k+1Zc,k +Kc,k+1Yk
X̂c,k+1 = Zc,k+1 +HcYk+1

(29)

The above matrices are designed in such a way as to
ensure unknown input decoupling from the estimation
error dynamic as well as the minimization of the state
estimator error variance as previously.

ec,k = X̂c,k −Xk = Zc,k −Xk +HcYk (30)

To reduce this expression to a homogeneous equation we
impose:

Hc = Bc((CBc)
T (CBc))

−1(CBc)
T (31)

Nc,k = TcAc −Kc,kC (32)

To give the state estimator error the minimum variance,
the gain matrix should be determined to minimize the
covariance matrix:

Kc,k = (TA)cPkC
T (CPkC

T −Rk)−1 (33)

The EUIO stability is adressed in Witczak (2007).

We also have to ensure the convergence of the regulation
error ηk.

ηk+1 = Xk+1 −Xk+1 (34)

ηk+1 = Ac(Xk −Xk) +Bcfk +BcUc,k (35)

ηk+1 = Acηk +Bcfk +BcUc,k (36)

Then we can use a control law of the form:

Uc,k := −B+
c Bcf̂k −Wc(X̂c,k −Xk)

where −B+
c Bcf̂k is the fault compensation part and

Wc(X̂c,k−Xk) is the reconfiguration part. The fault mag-

nitude estimation f̂k is obtained from the fault diagnosis
part (Section 3.2 Residual) and unknown input reconstruc-
tion (Section 4.1 Unknown input estimate). Which can be
alternatively written as

Uc,k := −B+
c Bcf̂k −Wcec,k −Wcηk

Where we denote B+
c as the pseudo-inverse of Bc (Theilliol

et al. (2008)). Then we have:

ζk+1 =

[
Ac −BcWc −BcWc

0 Nc

]
ζk

where ζk := [ ηk ec,k ]
T

.

For the nominal system, the gain Wc must stabilize (Ac−
BcWc). Since the pair (Ac, Bc) is assumed to be control-
lable, a Linear-Quadratic Regulator (LQR) formulation
can be adopted where Wc is selected to minimize

Jk :=
∑
k

XT
k Qc,kXk + UTc,kRc,kUc,k

WhereQc,k andRc,k are symmetric positive definite design
matrices. It is also possible to proceed to a pole placement
for the continous time system (small time constant), we
can choose to fix a damping ratio and a natural frequency.

Table 8. Gain matrix choice

Pressure Mass flow Damping Natural
part rate part ratio frequency

-0.3668 -0.9956 2 1e-1



The desired transient behavior depends on the gain choice
(Table 8), in our case we have to limit the overshoots to
maintain the cooling circuit performances (Figure 9). The
fault was implemented as in the previous section. The
aim of this simulation is to see if the controller is able
to stabilize the closed-loop system after the detection, see
Table 9. If a fault is detected then the system switches to
the closed-loop one.

Fig. 9. Pressure and mass flow rate control - Carins
simulator - ATAC configuration

When the fault is detected the system switches to the
FTCS. The fault is compensated and it can be seen
that the control law for the rewritten system permits
to stabilize the system around the reference steady-state
equilibrium with sufficient precision.

Table 9. Relative errors of the simulated pres-
sure and input mass flow rate from references

Model (2) with control Permanent (from detection time)
(%)

Pressure (Pa) 1.6e-1
Input mass flow rate (kg/s) 7e-2

5. CONCLUSION

In this paper a new model was proposed for the evolution
of pressure and mass flow rates in the cooling circuit of
a cryogenic test bench. Once the fault in the actuator
has been detected by the FDI method composed of a first
EUIO, the designed FTCS based on a fault estimator and
a second EUIO permits to compensate the failure and to
converge if necessary to a chosen steady state. This FTCS
consist in a linear quadratic regulator on an equivalent
system where the unknown input is expressed as a function
of the known state and known input vectors in order
to decouple only the fault effect on the system. Future
work will address the design of a method to calculate
another steady point which may be reachable in the
case where the previous nominal steady point cannot be
reached because of the actuator failure and the effect of
the saturation. Being able to choose the nominal behavior
of the system may then be useful to take into account
actuator saturation.
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