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Extensible Beam Models in Large Deformation

Under Distributed Loading: a Numerical Study

on Multiplicity of Solutions

Francesco dell’Isola, Alessandro Della Corte, Antonio Battista, and Emilio 
Barchiesi

Abstract In this paper we present numerical solutions to a geometrically nonlinear 
version of the extensible Timoshenko beam model under distributed load. The par-
ticular cases in which: i) extensional stiffness is infinite (inextensible Timoshenko 
model), ii) shear stiffness is infinite (extensible Euler model) and iii) extensional 
and shear stiffnesses are infinite (inextensible Euler model) will be numerically ex-
plored. Parametric studies on the axial stiffness in both the Euler and Timoshenko 
cases will also be shown and discussed.
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2.1 Introduction

In the recent literature the behaviour of a clamped-free nolinear inextensible Eu-
ler Elastica introduced in Euler (1952); Bernoulli (1843, 1691); see Luongo and
Zulli (2013); Eugster (2015); Steigmann and Faulkner (1993) for general reference
works, has been mathematically investigated under distributed load (Della Corte
et al, 2016). In particular, the set of stable equilibrium configurations has been com-
pletely characterized in Della Corte et al (2019). On the other hand, extending such
rigorous results to the extensible Euler beam model, or to the Timoshenko beam
model is not straightforward. Indeed, the presence of the additional kinematical de-
scriptor accounting for extensibility gives rise to various new mathematical difficul-
ties. The most basic one is that it changes the functional set in which the problem
is naturally collocated and in particular prevents it from being a vector space, since
a strictly positive local axial deformation has to be prescribed. Of course one can
obtain this making suitable assumptions on the energy, but in any case the non-
autonomous variational problem that arises in the case of a distributed load will
present new difficulties with respect to the inextensible case (Battista et al, 2018).

The problem of existence and stability of equilibrium configurations for exten-
sible Euler and Timoshenko beams in large deformations under distributed load is
therefore an open one. Because of this reason, it is interesting to study the behavior
of solutions by means of a systematic collection of parametric studies starting from
the inextensible Elastica and approaching more general beam models. The present
work is aimed at performing such kind of investigation. Our main effort will be to
show the variety of different (and at times rather exotic) equilibrium configurations
that can arise when the value of the load is large enough. Moreover, we want to
numerically investigate how fast the number of possible equilibrium solutions in-
creases with the load and how this particular feature is affected by allowing shear
deformation.

The study of these exotic configurations is particularly important, nowadays, due
to the enhancement of computational methods that make nonlinearity more practi-
cally relevant for structural members (Fertis, 2006; Ladevèze, 2012; Antman and
Renardy, 1995; Rezaei et al, 2012; Eugster et al, 2014; Steigmann, 2017) as well
as in machine mechanics applications (Pepe et al, 2016; Giorgio and Del Vescovo,
2018). Moreover, they are becoming fashionable as an elementary constituent of
microstructured objects manufactured with computer-aided techniques (Atai and
Steigmann, 1997; dell’Isola et al, 2016b; Ravari and Kadkhodaei, 2015; Ravari et al,
2014; dell’Isola et al, 2016a; Turco et al, 2016, 2017; Milton et al, 2017; Spagnuolo
et al, 2017). These objects are potentially advantageous for their mechanical char-
acteristics, as shown in recent literature (Boutin et al, 2017; Giorgio et al, 2017;
Scerrato et al, 2016; Eremeyev, 2017; Golaszewski et al, 2019; Turco et al, 2019;
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Franciosi et al, 2019) and their theoretical study requires tools from homogeniza-
tion theory (Boubaker et al, 2007; Ravari et al, 2016; Dos Reis and Ganghoffer,
2012; Reda et al, 2016), discrete mechanics (Turco, 2018; Jawed et al, 2018; An-
dreaus et al, 2018), theory of generalized continua (Misra et al, 2016; Altenbach
et al, 2013; Altenbach and Eremeyev, 2013; Placidi et al, 2017, 2014, 2016) as well
as developments in nonlinear elasticity of beams. In this last regard, certainly a
full understanding of the onset and the characteristics of multiple solutions for the
static problem under distributed load would be an important step forward, and pos-
sibly more general beam models will also have to be considered (Diyaroglu et al,
2015; Challamel, 2013; Challamel et al, 2013) because of the exotic properties of
microstructured continua (Misra et al, 2018; dell’Isola et al, 2018; Diyaroglu et al,
2017).

The paper is organized as follows: we introduce the general model for a non-
linear version of the Timoshenko beam; we deduce the equilibrium equations by
means of the Lagrange multipliers method. Then, imposing stationarity to the en-
ergy functional, we deduce an expression for the total energy in stationary points
which depends only on the angles formed by the tangent to the deformed shape.
Then we show and discuss numerical results on the multiplicity of solutions with
large value of the load and on the effect of releasing extensional stiffness in both the
Euler and the Timoshenko case. Finally we propose some future research directions.

2.2 The Model

2.2.1 Kinematics and Deformation Energy

Let {D1,D2} be an orthogonal reference system in which the beam lies in the
unstressed configuration along D1. We will denote by s the abscissa along the beam,
by the apex ′ the differentiation with respect to the reference abscissa1 and by χ(s)
the placement function. The tangent vector to the current configuration of the beam
is then:

χ′ = α(s) [cos(θ(s))D1 + sin(θ(s))D2] := α(s)e(θ(s)) (2.1)

where e(θ(s)) represents the unit vector parallel to χ′. Therefore α(s) describes the
local elongation of the beam:

‖χ′(s)‖ = α(s) (2.2)

while θ(s) is the angle between χ′(s) and D1.
We will assume the following energy functional:

1 Notice that this means that, denoting by θ the angle formed by the tangent to the deformed shape
and a reference axis, θ′ does not coincide with the geometrical curvature but with the so-called
Chebyshev curvature (see Chebyshev, 1878).
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E
def
(χ, ϕ) :=

∫ L

0

⎧⎪⎪⎨⎪⎪⎩
ke
2

(‖χ′(s)‖ − 1)
2︸ ︷︷ ︸

extensional energy

+
kb
2
(ϕ′(s))2︸ ︷︷ ︸

flexural energy

+
kt
2
(ϕ(s)− θ(s))2︸ ︷︷ ︸

shear energy

⎫⎪⎪⎬⎪⎪⎭ ds

(2.3)
Here ϕ is the angle between sections of the beam (supposed rigid) and the normal
to the neutral axes, while kb, ke and kt are respectively the bending, extensional and
shear stiffness. The energy can be rewritten as:

E
def

=

∫ L

0

{
ke
2

(α− 1)
2
+

kb
2
(ϕ′(s))2 +

kt
2
(ϕ(s)− θ(s))2

}
ds. (2.4)

We introduce now a uniformly distributed load b(s) and a concentrated load and
couple in the endpoint of the beam s = L, denoted respectively by R(L) and
M(L). The total energy of the system is then:

E
tot
=

∫ L

0

{
ke
2

(α− 1)
2
+

kb
2
(ϕ′(s))2 +

kt
2
(ϕ(s)− θ(s))2 − b · χ

}
ds

−R · χ(L)−Mϕ(L)

(2.5)

The beam model described by the functional (2.5) is a geometrically nonlin-
ear version of the Timoshenko beam model (introduced in Timoshenko, 1921,
1922), which is a particular case of Cosserat continuum introduced in Cosserat and
Cosserat (1909); for general references and interesting results see e.g. Altenbach
et al (2010); Birsan et al (2012); Forest (2005); Eremeyev and Pietraszkiewicz
(2016)). Interesting generalizations of the Timoshenko beam model have been pro-
posed (see e.g. Romano et al, 1992; Serpieri and Rosati, 2014), while a periodic
mechanical system whose homogenized limit is the model (2.5) (in the particular
case α ≡ 1) is shown in Battista et al (2018). It is in fact a microstructured 1D
system whose unit cell is an articulated parallelogram and equipped with suitably
placed rotational springs, and it can be easily obtained by means of 3D printing.
Of course also other (possibly more complex) microstructured systems can have a
similar homogenized version (on microstructured continua see e.g. Barchiesi et al,
2019; Engelbrecht and Berezovski, 2015; Engelbrecht et al, 2005; Barchiesi et al,
2018).

2.2.2 Lagrange Multipliers Method

Given the total energy of the system, equilibrium configurations are found as station-
ary points of the energy functional (2.5). A synthetic formulation of the problem,
taking into account together the constrain of Eq. (2.1) and the total energy, is ob-
tained with the introduction of a Lagrange multiplier Λ(s). We get the following
functional formulation:
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E
tot
=

∫ L

0

{
ke
2

(α− 1)
2
+

kb
2
(ϕ′(s))2 +

kt
2
(ϕ(s)− θ(s))2 − b · χ+

+Λ · (χ′ − α [cos(θ(s))D1 + sin(θ(s))D2])

}
ds−R · χ(L)−Mϕ(L)

(2.6)

i.e., the energy is a function of the fields α(s), ϕ(s), θ(s),χ(s),Λ(s). The first vari-
ation of the energy with respect to these fields (considered independent) gives the
two boundary value problems (BVPs):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−kbϕ
′′ + kt(ϕ− θ) = 0

kbϕ
′(L)δϕ(L) = Mδϕ(L)

kbϕ
′(0)δϕ(0) = 0

(2.7)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Λ′ − b = 0

Λ(L) · δχ(L) = R · δχ(L)
Λ(0) · δχ(0) = 0,

(2.8)

as well as the algebraic relations:

kt(ϕ− θ) + αΛ · e⊥(θ) = 0 (2.9)

ke(α− 1)−Λ · e(θ) = 0 (2.10)

and the kinematic constraint Eq. (2.1).
In Eq. (2.9) we introduced:

e⊥(θ(s)) = − sin(θ(s))D1 + cos(θ(s))D2

and the two boundary conditions in 0 are imposed considering a cantilever beam
(lying along D1 in the reference configuration and clamped in the extreme s = 0).

2.3 Numerical Simulations

2.3.1 Numerical Methods

An increasingly popular approach for the numerical study of nonlinear beams is
isogeometric analysis (see e.g. Balobanov and Niiranen, 2018; Niiranen et al, 2017;
Cazzani et al, 2016; Greco et al, 2017; Dortdivanlioglu et al, 2017), which is a
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suitable variant of the finite element method. This method is very powerful and
relatively light from a computational point of view, but just like every energy-related
method it is not very suitable to study the multiplicity of arising solutions. For this
reason, the numerical technique used here is the same as in Battista et al (2018).
Indeed, the boundary value problem for the clamped-free Euler and Timoshenko
beams has been solved by means of a shooting technique. We introduce a family of
Cauchy problems 2:

Pk =

⎧⎪⎨⎪⎩
θ′′ = −b(1− s) cos θ

θ(0) = 0

θ′(0) = k

(2.11)

depending on the parameter k. Then we selected the solutions of (2.11) which satisfy
(with prescribed accuracy) θ′(1) = 0, so as to obtain a numerical solution of the
equilibrium condition δEtot = 0. Clearly the solution for the Cauchy problem exists
and is unique for every initial datum k.

In Fig. 2.1, we show the plot of θ′(1) as a function of k := θ′(0) for an inexten-
sible Euler beam model for b = 250. The graph intersects in five different points
the horizontal axis, which means that in this case we have five different solutions of
the boundary value problem with θ(0) = 0 and θ′(1) = 0. In the next section, the
solutions will be shown in the same order as they appear as intersections between
θ′(1) and the horizontal axis. Therefore the absolute minimum of the total energy
will be always the rightmost configuration and, of course, the only solution for b
small enough.

Fig. 2.1 θ′(1) as a function of
k := θ′(0) for an inextensible
Euler beam with a transverse
applied load b = 250. Solu-
tions to the boundary value
problem (2.11) correspond to
the intersections of the curve
with the horizontal axis.

-60 -40 -20 20 40 60

-60

-40

-20

20

40

60

2 We consider here the inextensible Euler beam for simplicity, but everything is analogous for the
general case.
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Remark 2.1. Of course this numerical technique can only capture regular equi-
librium configurations. It is well-known that the minima (and maxima) of non-
autonomous functionals may be not regular enough to satisfy the Euler-Lagrange
equations (even in the one-dimensional case as in Ball and Mizel, 1987). This, to-
gether with the assessment of the stability of the solutions, is the main reason for
which a rigorous study of the problem will be crucial.

2.3.2 The Number of Equilibrium Configurations when the Load
Increases

It is generally very difficult to address theoretically the problem of evaluating how
fast the number of solutions of a nonlinear parametric dynamical system increases
with the parameter (Guckenheimer and Holmes, 1983), which in our case is the ex-
ternal load. It is therefore interesting, as a preliminary step, to address the problem
numerically. In Fig. 2.2 the number of solutions for an inextensible (left) and ex-
tensible (right) Euler beem model is plotted as a function of the non-dimensional
external load. As expected, the behavior is that of a step-function, as it is clear that
new branches of solutions arise only when the external load overcomes specific
thresholds. The number of equilibrium configurations increases significantly with
the load, and again as expected it reaches slightly larger values in case an additional
kinematic degree of freedom (i.e. α) is included.

Figure 2.3 is consistent with this. Indeed, in this case inextensible (left) and ex-
tensible (right) Timoshenko beam models are considered, which produces an even
more rapid increase of the possible equilibrium configurations. It has to be re-
marked, however, that a straight comparison with the Euler case is difficult because
adimensionalizing the load is a different procedure in the two cases.

1000 2000 3000 4000 5000
b

5

10

15

20

n

Inextensible Euler Model

1000 2000 3000 4000 5000
b

5

10

15

20

n

Extensible Euler Model

Fig. 2.2 Number of solutions, n, as a function of the transversal applied load, b. Left: inextensible
Euler model. Right: extensible Euler model (ke = 1.3× 103).



26 dell’Isola, Corte, Battista, Barchiesi

200 400 600 800 1000 1200 1400
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2
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Inextensible Timoshenko Model

200 400 600 800 1000 1200 1400
b

5

10

15

n
Extensible Timoshenko Model

Fig. 2.3 Number of solutions, n, as a function of the transversal applied load, b. Left: inextensible
Timoshenko model (kt = 1.8× 104). Right: extensible Timoshenko model (kt = 1.8× 104,
ke = 2× 103).

2.3.3 Equilibrium Configurations

In the first gallery of equilibrium solutions we will show the full set of equilibrium
configurations when the nondimensional load is b = 60, b = 250 and b = 500. We
considered inextensible Euler (Figs. 2.4, 2.8, 2.12), extensible Euler (Figs. 2.5, 2.9,
2.13), inextensible Timoshenko (Figs. 2.6, 2.10, 2.14) and extensible Timoshenko
(Figs. 2.7, 2.11, 2.15) beam models.

For the chosen values of the other parameters, we have the same number of solu-
tions (when applying the same load) for the four beam models. It has to be remarked
that no branch of solutions appear to bifurcate. Instead, when the load increases, new
branches appear at some thresholds. It can be seen that θ(s) is a positive monotonic
function for the rightmost solution in all the cases. For b = 60 the central equilib-
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Fig. 2.4 Clamped inextensible Euler beam with a transversal applied load b = 60
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Fig. 2.5 Clamped extensible Euler beam with a transversal applied load b = 60 (ke = 3000)
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Fig. 2.6 Clamped inextensible Timoshenko beam with a transversal applied load b = 60
(kt = 7000)

rium shape is non monotonic, while the leftmost is a negative monotonic function.
This is a general trend as the load increases. Indeed, branches that arise with in-
creasingly large values of the load will be made of progressively more numerous
monotonic pieces. Of course in the Timoshenko case in general it is θ(0) 
= 0. As
the boundary datum for θ in 0 can have more than one solution, we have always cho-
sen the smallest one in absolute value (see also the Appendix). The axial elongation
relative to Figs. 2.9 and 2.11 are shown respectively in Figs. 2.16 and 2.18. The shear
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Fig. 2.7 Clamped extensible Timoshenko beam with a transverse applied load b = 60 (kt = 7000,
ke = 3000)
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Fig. 2.8 Clamped inextensible Euler beam with a transversal applied load b = 250
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Fig. 2.9 Clamped extensible Euler beam with a transversal applied load b = 250 (ke = 3000)
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Fig. 2.10 Clamped inextensible Timoshenko beam with a transversal applied load b = 250
(kt = 7000)
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Fig. 2.11 Clamped extensible Timoshenko beam with a transverse applied load b = 250
(kt = 7000, ke = 3000)

deformation relative to Figs. 2.10 and 2.11 are shown respectively in Figs. 2.17 and
2.19.

It is not clear whether the solutions shown herein for the extensible Euler and
Timoshenko models can be stable—while in Della Corte et al (2019) it has been
proved that for the inextensible Euler case only the left and right configurations of
Figs. 2.4 and 2.8 can be stable.

2.3.4 Parametric Study on the Extensional Stiffness

When the parameter ke diverges, the beam model tends to inextensibility. The effect
of decreasing ke is evaluated for the Euler and Timoshenko models respectively in
Figs. 2.24 and 2.26 for b = 120. In Figs. 2.25 and 2.27 the local elongation α(s) is
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Fig. 2.12 Clamped inextensible Euler beam with a transverse applied load b = 500.
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Fig. 2.13 Clamped extensible Euler beam with a transverse applied load b = 500 and ke = 5000.
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Fig. 2.14 Clamped inextensible Timoshenko beam with a transverse applied load b = 500 and
kt = 7000.

shown for the two previous cases respectively. The elongation reaches its maximum
(minimum) value where the beam lies parallel to the load with the same (oppo-
site) direction. Instead, it is close to 1 where the beam lies orthogonal to the load.
While in the Euler case the change in ke causes a minimal change in the deformed
shape, in the Timoshenko case there is a much more relevant influence of ke on
the configuration. In particular, decreasing ke allows a much larger maximum value
of the local geometrical curvature γ := θ′/α of the beam. This maximum is at-
tained when θ(s) = −π/2; we will define s0 the point at which this occurs. It
has to be noted, however, that the Chebyshev curvature θ′(s0) takes similar val-
ues in the two cases. For instance, in the rightmost simulation of Fig. 2.24 we have
θ′(s0) ≈ −16.4 and γ(s0) ≈ −17.9, while in the rightmost simulation of Fig. 2.26
we have θ′(s0) ≈ −16.3 and γ(s0) ≈ −111.9 (we point out that s0 ≈ 0.303 in the
right panel of Fig. 2.24 and s0 ≈ 0.288 in the right panel of Fig. 2.26).
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Fig. 2.15 Clamped extensible Timoshenko beam with a transverse applied load b = 500 and
kt = 7000 and ke = 5000.
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Fig. 2.16 Plot of α for the five configurations in Fig. 2.9.

2.4 Conclusions

In this paper we numerically studied clamped-free Euler and Timoshenko beams in
large deformation under distributed load. Extensibility has been taken into account
and results on the static behavior of the beam under different values of the load and
of the axial stiffness has been shown. The main interest of the results consists in the
multiplicity of solutions that arise as the load increases, not as a bifurcation of ex-
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Fig. 2.17 Above: plot of φ (dotted) and θ for the five configurations shown in Fig. 2.10. Below: the
corresponding plot of φ− θ.
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Fig. 2.18 Plot of α for the five configurations in Fig. 2.11.
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Fig. 2.19 Above: plot of φ (dotted) and θ for the five configurations shown in Fig. 2.11. Below: the
corresponding plot of φ− θ.
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Fig. 2.20 Plot of α for the configurations in Fig. 2.13.

isting branches of solutions but as new branches that arise when the load overcomes
a series of progressively larger threshold-values. Future investigations are required
to establish whether these multiple solutions can be stable. In this regard, an anal-
ysis of the small oscillations of the beam around candidate stable equilibria would
be useful to assess numerically the question. Moreover, addressing theoretically the
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Fig. 2.21 Above: plot of φ (dotted) and θ for the five configurations shown in Fig. 2.14. Below: the
corresponding plot of φ− θ.
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Fig. 2.22 Plot of α for the configurations in Fig. 2.15.

dynamical behavior of the nonlinear version of the Timoshenko beam model pro-
posed here is a challenging task. The results developed in Berezovski et al (2018);
Luongo and D’Annibale (2013); Piccardo et al (2015b); Taig et al (2015); Piccardo
et al (2015a); Chróścielewski et al (2019) may prove useful in this direction.

Apart from the models introduced here, an independent and novel approach to
understand the large deformation of beams to be investigated in the future is to
regard a beam as the boundary curve of a two-dimensional manifold in a three-
dimensional space. In doing so, not only is the curve endowed with its own energy
similar to that in the context of lower-dimensional energetics (Javili et al, 2013b) but
also in a geometrically nonlinear framework (Javili et al, 2014) and in accordance
with higher gradient elasticity accounting for boundary energetics elaborated in Jav-
ili et al (2013a). The advantage of this approach, particularly from a computational
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Fig. 2.23 Above: plot of φ (dotted) and θ for the five configurations shown in Fig. 2.15. Below: the
corresponding plot of φ− θ.
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Fig. 2.24 Parametric study on a clamped extensible Euler beam with a transversal applied load
b = 120 with ke = 2500, ke = 2000, ke = 1500, ke = 1000.
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Fig. 2.25 The local elongation α(s) relative to the equilibrium shapes shown in Fig. 2.24.
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Fig. 2.26 Parametric study on a clamped extensible Timoshenko beam with a transversal applied
load b = 120 with ke = 2500, ke = 2000, ke = 1500, ke = 1000 (kt = 18000).
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Fig. 2.27 The local elongation α(s) relative to the equilibrium shapes shown in Fig. 2.26.

viewpoint, is that the bulk material acts to regularize the behavior of the beam espe-
cially important to analyze the instabilities associated with thin beams similar to the
instabilities of thin films on an elastic foundation (Javili et al, 2015). Obviously, in
the limiting case of the vanishing bulk one would recover exactly the beam theory.

Appendix

We show here the Euler–Lagrange boundary value problem associated with the
functional (2.5). We recall that the solutions θ(s) of this BVP are the scalar fields of
angles formed by the tangent to the deformed configuration and a reference axis at
the equilibrium for a clamped-free, extensible Timoshenko beam, in large deforma-
tion regime, under distributed load.
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θ′′ =
[
kb

(
bke(1− s) sin(θ)− (b(1− s))2(cos(2θ)) + kekt

)]−1[
bkb(1− s)θ2 cos(θ)(4b(1− s) sin(θ) + ke)− 2bkbθ(2b(1− s) cos(2θ)+

−ke sin(θ)) + cos(θ)
(
2b2kb sin(θ)− bkt(1− s)(b(1− s) sin(θ) + ke)

)]
(2.12)

with boundary conditions:

(
θ − b2(1− s)2 sin(θ) cos(θ)

keke
+

b(1− s) cos(θ)

ke

) ∣∣∣
s=0

= 0(
θ − b2(1− s)2 sin(θ) cos(θ)

keke
+

b(1− s) cos(θ)

ke

)′ ∣∣∣
s=1

= 0

(2.13)

Remark 2.2. The boundary conditions in the previous problem have in general more
than one solution. In the numerical simulations, we always considered the value
θ(0) which was smaller in absolute value.
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Chróścielewski J, Schmidt R, Eremeyev VA (2019) Nonlinear finite element modeling of vibration

control of plane rod-type structural members with integrated piezoelectric patches. Continuum
Mechanics and Thermodynamics 31(1):147–188

Cosserat E, Cosserat F (1909) Théorie des corps déformables. A Hermann et fils
Della Corte A, dell’Isola F, Esposito R, Pulvirenti M (2016) Equilibria of a clamped Euler beam

(Elastica) with distributed load: Large deformations. Mathematical Models and Methods in
Applied Sciences pp 1–31

Della Corte A, Battista A, dell’Isola F, Seppecher P (2019) Large deformations of Timoshenko and
Euler beams under distributed load. Zeitschrift für angewandte Mathematik und Physik 70(52),
DOI 10.1007/s00033-019-1098-y

dell’Isola F, Giorgio I, Pawlikowski M, Rizzi N (2016a) Large deformations of planar extensi-
ble beams and pantographic lattices: heuristic homogenization, experimental and numerical
examples of equilibrium. Proceedings of the Royal Society A: Mathematical, Physical and En-
gineering Sciences 472(2185):20150,790

dell’Isola F, Steigmann D, Della Corte A (2016b) Synthesis of fibrous complex structures: de-
signing microstructure to deliver targeted macroscale response. Applied Mechanics Reviews
67(6):060,804–060,804–21

dell’Isola F, Seppecher P, Alibert JJ, Lekszycki T, Grygoruk R, Pawlikowski M, Steigmann D,
Giorgio I, Andreaus U, Turco E, Golaszewski M, Rizzi N, Boutin C, Eremeyev VA, Misra
A, Placidi L, Barchiesi E, Greco L, Cuomo M, Cazzani A, Corte AD, Battista A, Scerrato
D, Eremeeva IZ, Rahali Y, Ganghoffer JF, Müller W, Ganzosch G, Spagnuolo M, Pfaff A,
Barcz K, Hoschke K, Neggers J, Hild F (2018) Pantographic metamaterials: an example of
mathematically driven design and of its technological challenges. Continuum Mechanics and
Thermodynamics 31(4):851–884

Diyaroglu C, Oterkus E, Oterkus S, Madenci E (2015) Peridynamics for bending of beams and
plates with transverse shear deformation. International Journal of Solids and Structures 69:152–
168

Diyaroglu C, Oterkus E, Oterkus S (2017) An Euler–Bernoulli beam formulation in an ordinary
state-based peridynamic framework. Mathematics and Mechanics of Solids 24(2):361–376

Dortdivanlioglu B, Javili A, Linder C (2017) Computational aspects of morphological instabili-
ties using isogeometric analysis. Computer Methods in Applied Mechanics and Engineering
316:261–279

Dos Reis F, Ganghoffer J (2012) Construction of micropolar continua from the asymptotic homog-
enization of beam lattices. Computers & Structures 112:354–363



2 Extensible Beam Models in Large Deformation 39

Engelbrecht J, Berezovski A (2015) Reflections on mathematical models of deformation waves in
elastic microstructured solids. Mathematics and Mechanics of Complex Systems 3(1):43–82

Engelbrecht J, Berezovski A, Pastrone F, Braun M (2005) Waves in microstructured materials and
dispersion. Philosophical Magazine 85(33-35):4127–4141

Eremeyev VA (2017) On characterization of an elastic network within the six-parameter shell
theory. In: Pietraszkiewicz W, Witkowski W (eds) Shell Structures: Theory and Applications
Volume 4: Proceedings of the 11th International Conference in Shell Structures: Theory and
Applications, SSTA 2017, CRC Press, pp 81–84

Eremeyev VA, Pietraszkiewicz W (2016) Material symmetry group and constitutive equations of
micropolar anisotropic elastic solids. Mathematics and Mechanics of Solids 21(2):210–221

Eugster S, Hesch C, Betsch P, Glocker C (2014) Director-based beam finite elements relying on
the geometrically exact beam theory formulated in skew coordinates. International Journal for
Numerical Methods in Engineering 97(2):111–129

Eugster SR (2015) Geometric Continuum Mechanics and Induced Beam Theories, Lecture Notes
in Applied and Computational Mechanics, vol 75. Springer

Euler L (1952) Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive so-
lutio problematis isoperimetrici latissimo sensu accepti (ed. by C. Carathéodory), Opera math-
ematica, vol 1. Birkhäuser, Basel

Fertis DG (2006) Nonlinear Structural Engineering. Springer
Forest S (2005) Mechanics of Cosserat media - an introduction. Ecole des Mines de Paris, Paris pp

1–20
Franciosi P, Spagnuolo M, Salman OU (2019) Mean Green operators of deformable fiber networks

embedded in a compliant matrix and property estimates. Continuum Mechanics and Thermo-
dynamics 31(1):101–132

Giorgio I, Del Vescovo D (2018) Non-linear lumped-parameter modeling of planar multi-link ma-
nipulators with highly flexible arms. Robotics 7(4):60

Giorgio I, Rizzi N, Turco E (2017) Continuum modelling of pantographic sheets for out-of-plane
bifurcation and vibrational analysis. Proceedings of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences 473(2207):20170,636

Golaszewski M, Grygoruk R, Giorgio I, Laudato M, Di Cosmo F (2019) Metamaterials with rela-
tive displacements in their microstructure: technological challenges in 3D printing, experiments
and numerical predictions. Continuum Mechanics and Thermodynamics 31(4):1015–1034

Greco L, Cuomo M, Contrafatto L, Gazzo S (2017) An efficient blended mixed b-spline formu-
lation for removing membrane locking in plane curved Kirchhoff rods. Computer Methods in
Applied Mechanics and Engineering 324:476–511

Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields, Applied Mathematical Sciences, vol 42. Springer

Javili A, dell’Isola F, Steinmann P (2013a) Geometrically nonlinear higher-gradient elasticity with
energetic boundaries. Journal of the Mechanics and Physics of Solids 61(12):2381–2401

Javili A, McBride A, Steinmann P (2013b) Thermomechanics of solids with lower-dimensional
energetics: on the importance of surface, interface, and curve structures at the nanoscale. a
unifying review. Applied Mechanics Reviews 65(1):010,802

Javili A, McBride A, Steinmann P, Reddy B (2014) A unified computational framework for bulk
and surface elasticity theory: a curvilinear-coordinate-based finite element methodology. Com-
putational Mechanics 54(3):745–762

Javili A, Dortdivanlioglu B, Kuhl E, Linder C (2015) Computational aspects of growth-induced
instabilities through eigenvalue analysis. Computational Mechanics 56(3):405–420

Jawed MK, Novelia A, O’Reilly OM (2018) A Primer on the Kinematics of Discrete Elastic Rods.
Springer

Ladevèze P (2012) Nonlinear Computational Structural Mechanics: New Approaches and Non-
incremental Methods of Calculation. Springer Science & Business Media

Luongo A, D’Annibale F (2013) Double zero bifurcation of non-linear viscoelastic beams un-
der conservative and non-conservative loads. International Journal of Non-Linear Mechanics
55:128–139



40 dell’Isola, Corte, Battista, Barchiesi

Luongo A, Zulli D (2013) Mathematical Models of Beams and Cables. John Wiley & Sons
Milton G, Briane M, Harutyunyan D (2017) On the possible effective elasticity tensors of 2-

dimensional and 3-dimensional printed materials. Mathematics and Mechanics of Complex
Systems 5(1):41–94

Misra A, Placidi L, Scerrato D (2016) A review of presentations and discussions of the work-
shop computational mechanics of generalized continua and applications to materials with mi-
crostructure that was held in Catania 29–31 October 2015. Mathematics and Mechanics of
Solids 22(9):1891–1904

Misra A, Lekszycki T, Giorgio I, Ganzosch G, Müller WH, dell’Isola F (2018) Pantographic meta-
materials show atypical poynting effect reversal. Mechanics Research Communications 89:6–
10

Niiranen J, Balobanov V, Kiendl J, Hosseini S (2017) Variational formulations, model comparisons
and numerical methods for Euler–Bernoulli micro-and nano-beam models. Mathematics and
Mechanics of Solids 24(1):312–335

Pepe G, Carcaterra A, Giorgio I, Del Vescovo D (2016) Variational feedback control for a nonlinear
beam under an earthquake excitation. Mathematics and Mechanics of Solids 21(10):1234–1246

Piccardo G, Pagnini LC, Tubino F (2015a) Some research perspectives in galloping phenom-
ena: critical conditions and post-critical behavior. Continuum Mechanics and Thermodynamics
27(1-2):261–285

Piccardo G, Tubino F, Luongo A (2015b) A shear–shear torsional beam model for nonlinear
aeroelastic analysis of tower buildings. Zeitschrift für angewandte Mathematik und Physik
66(4):1895–1913

Placidi L, Rosi G, Giorgio I, Madeo A (2014) Reflection and transmission of plane waves at sur-
faces carrying material properties and embedded in second-gradient materials. Mathematics
and Mechanics of Solids 19(5):555–578

Placidi L, Greco L, Bucci S, Turco E, Rizzi NL (2016) A second gradient formulation for a 2D fab-
ric sheet with inextensible fibres. Zeitschrift für angewandte Mathematik und Physik 67(5):114

Placidi L, Andreaus U, Giorgio I (2017) Identification of two-dimensional pantographic structure
via a linear d4 orthotropic second gradient elastic model. Journal of Engineering Mathematics
103(1):1–21

Ravari MRK, Kadkhodaei M (2015) A computationally efficient modeling approach for predict-
ing mechanical behavior of cellular lattice structures. Journal of Materials Engineering and
Performance 24(1):245–252

Ravari MRK, Kadkhodaei M, Badrossamay M, Rezaei R (2014) Numerical investigation on me-
chanical properties of cellular lattice structures fabricated by fused deposition modeling. Inter-
national Journal of Mechanical Sciences 88:154–161

Ravari MRK, Kadkhodaei M, Ghaei A (2016) Effects of asymmetric material response on the
mechanical behavior of porous shape memory alloys. Journal of Intelligent Material Systems
and Structures 27(12):1687–1701

Reda H, Rahali Y, Ganghoffer JF, Lakiss H (2016) Wave propagation in 3D viscoelastic auxetic
and textile materials by homogenized continuum micropolar models. Composite Structures
141:328–345

Rezaei DAH, Kadkhodaei M, Nahvi H (2012) Analysis of nonlinear free vibration and damping
of a clamped–clamped beam with embedded prestrained shape memory alloy wires. Journal of
Intelligent Material Systems and Structures 23(10):1107–1117

Romano G, Rosati L, Ferro G (1992) Shear deformability of thin-walled beams with arbitrary cross
sections. International Journal for Numerical Methods in Engineering 35(2):283–306

Scerrato D, Giorgio I, Rizzi NL (2016) Three-dimensional instabilities of pantographic sheets with
parabolic lattices: numerical investigations. Zeitschrift für angewandte Mathematik und Physik
67(3):53

Serpieri R, Rosati L (2014) A frame-independent solution to Saint-Venant’s flexure problem. Jour-
nal of Elasticity 116(2):161–187



2 Extensible Beam Models in Large Deformation 41

Spagnuolo M, Barcz K, Pfaff A, dell’Isola F, Franciosi P (2017) Qualitative pivot damage analy-
sis in aluminum printed pantographic sheets: numerics and experiments. Mechanics Research
Communications 83:47–52

Steigmann D, Faulkner M (1993) Variational theory for spatial rods. Journal of Elasticity 33(1):1–
26

Steigmann DJ (2017) Finite Elasticity Theory. Oxford University Press
Taig G, Ranzi G, D’annibale F (2015) An unconstrained dynamic approach for the generalised

beam theory. Continuum Mechanics and Thermodynamics 27(4-5):879–904
Timoshenko SP (1921) Lxvi. on the correction for shear of the differential equation for transverse

vibrations of prismatic bars. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 41(245):744–746

Timoshenko SP (1922) X. on the transverse vibrations of bars of uniform cross-section. The Lon-
don, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 43(253):125–131

Turco E (2018) Discrete is it enough? the revival of Piola–Hencky keynotes to analyze three-
dimensional Elastica. Continuum Mechanics and Thermodynamics 30(5):1039–1057

Turco E, Golaszewski M, Cazzani A, Rizzi NL (2016) Large deformations induced in planar pan-
tographic sheets by loads applied on fibers: experimental validation of a discrete lagrangian
model. Mechanics Research Communications 76:51–56

Turco E, Golaszewski M, Giorgio I, D’Annibale F (2017) Pantographic lattices with non-
orthogonal fibres: Experiments and their numerical simulations. Composites Part B: Engineer-
ing 118:1–14

Turco E, Misra A, Sarikaya R, Lekszycki T (2019) Quantitative analysis of deformation mech-
anisms in pantographic substructures: experiments and modeling. Continuum Mechanics and
Thermodynamics 31(1):209–223

View publication statsView publication stats

https://www.researchgate.net/publication/337017348

	2 Extensible Beam Models in Large Deformation Under Distributed Loading: a Numerical Study on Multiplicity of Solutions
	2.1 Introduction
	2.2 The Model
	2.2.1 Kinematics and Deformation Energy
	2.2.2 Lagrange Multipliers Method

	2.3 Numerical Simulations
	2.3.1 Numerical Methods
	2.3.2 The Number of Equilibrium Configurations when the Load Increases
	2.3.3 Equilibrium Configurations
	2.3.4 Parametric Study on the Extensional Stiffness

	2.4 Conclusions
	Appendix
	References




