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Extensible Beam Models in Large Deformation Under Distributed Loading: a Numerical Study on Multiplicity of Solutions
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In this paper we present numerical solutions to a geometrically nonlinear version of the extensible Timoshenko beam model under distributed load. The particular cases in which: i) extensional stiffness is infinite (inextensible Timoshenko model), ii) shear stiffness is infinite (extensible Euler model) and iii) extensional and shear stiffnesses are infinite (inextensible Euler model) will be numerically explored. Parametric studies on the axial stiffness in both the Euler and Timoshenko cases will also be shown and discussed.

Introduction

In the recent literature the behaviour of a clamped-free nolinear inextensible Euler Elastica introduced in Euler (1952); [START_REF] Bernoulli | Quadratura curvae, e cujus evolutione describitur inflexae laminae curvatura[END_REF][START_REF] Bernoulli | Quadratura curvae, e cujus evolutione describitur inflexae laminae curvatura[END_REF]; see [START_REF] Luongo | On the possible effective elasticity tensors of 2dimensional and 3-dimensional printed materials[END_REF]; [START_REF] Eugster | Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti[END_REF]; [START_REF] Steigmann | Variational theory for spatial rods[END_REF] for general reference works, has been mathematically investigated under distributed load [START_REF] Dell'isola | Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response[END_REF]. In particular, the set of stable equilibrium configurations has been completely characterized in Della [START_REF] Corte | Large deformations of Timoshenko and Euler beams under distributed load[END_REF]. On the other hand, extending such rigorous results to the extensible Euler beam model, or to the Timoshenko beam model is not straightforward. Indeed, the presence of the additional kinematical descriptor accounting for extensibility gives rise to various new mathematical difficulties. The most basic one is that it changes the functional set in which the problem is naturally collocated and in particular prevents it from being a vector space, since a strictly positive local axial deformation has to be prescribed. Of course one can obtain this making suitable assumptions on the energy, but in any case the nonautonomous variational problem that arises in the case of a distributed load will present new difficulties with respect to the inextensible case [START_REF] Battista | Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams[END_REF].

The problem of existence and stability of equilibrium configurations for extensible Euler and Timoshenko beams in large deformations under distributed load is therefore an open one. Because of this reason, it is interesting to study the behavior of solutions by means of a systematic collection of parametric studies starting from the inextensible Elastica and approaching more general beam models. The present work is aimed at performing such kind of investigation. Our main effort will be to show the variety of different (and at times rather exotic) equilibrium configurations that can arise when the value of the load is large enough. Moreover, we want to numerically investigate how fast the number of possible equilibrium solutions increases with the load and how this particular feature is affected by allowing shear deformation.

The study of these exotic configurations is particularly important, nowadays, due to the enhancement of computational methods that make nonlinearity more practically relevant for structural members (Fertis, 2006;Ladevèze, 2012;[START_REF] Antman | Nonlinear problems of elasticity[END_REF][START_REF] Rezaei | Analysis of nonlinear free vibration and damping of a clamped-clamped beam with embedded prestrained shape memory alloy wires[END_REF][START_REF] Eugster | Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates[END_REF][START_REF] Steigmann | Finite Elasticity Theory[END_REF] as well as in machine mechanics applications [START_REF] Pepe | Variational feedback control for a nonlinear beam under an earthquake excitation[END_REF][START_REF] Giorgio | Non-linear lumped-parameter modeling of planar multi-link manipulators with highly flexible arms[END_REF]. Moreover, they are becoming fashionable as an elementary constituent of microstructured objects manufactured with computer-aided techniques [START_REF] Atai | On the nonlinear mechanics of discrete networks[END_REF]dell'Isola et al, 2016b;[START_REF] Ravari | A computationally efficient modeling approach for predicting mechanical behavior of cellular lattice structures[END_REF][START_REF] Ravari | Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling[END_REF]dell'Isola et al, 2016a;[START_REF] Turco | Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete lagrangian model[END_REF][START_REF] Turco | Pantographic lattices with nonorthogonal fibres: Experiments and their numerical simulations[END_REF][START_REF] Luongo | On the possible effective elasticity tensors of 2dimensional and 3-dimensional printed materials[END_REF][START_REF] Spagnuolo | Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments[END_REF]. These objects are potentially advantageous for their mechanical characteristics, as shown in recent literature [START_REF] Boutin | Linear pantographic sheets: Asymptotic micro-macro models identification[END_REF][START_REF] Giorgio | Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis[END_REF][START_REF] Scerrato | Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations[END_REF][START_REF] Eremeyev | On characterization of an elastic network within the six-parameter shell theory[END_REF][START_REF] Golaszewski | Metamaterials with relative displacements in their microstructure: technological challenges in 3D printing, experiments and numerical predictions[END_REF][START_REF] Turco | Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling[END_REF][START_REF] Franciosi | Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates[END_REF] and their theoretical study requires tools from homogenization theory [START_REF] Boubaker | Discrete models of woven structures. macroscopic approach[END_REF][START_REF] Ravari | Effects of asymmetric material response on the mechanical behavior of porous shape memory alloys[END_REF][START_REF] Reis | Construction of micropolar continua from the asymptotic homogenization of beam lattices[END_REF][START_REF] Reda | Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models[END_REF], discrete mechanics [START_REF] Turco | Discrete is it enough? the revival of Piola-Hencky keynotes to analyze threedimensional Elastica[END_REF][START_REF] Jawed | A Primer on the Kinematics of Discrete Elastic Rods[END_REF][START_REF] Andreaus | A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams[END_REF], theory of generalized continua [START_REF] Misra | A review of presentations and discussions of the workshop computational mechanics of generalized continua and applications to materials with microstructure that was held in Catania 29-31 October 2015[END_REF]Altenbach et al, 2013;Altenbach and Eremeyev, 2013;[START_REF] Placidi | Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model[END_REF][START_REF] Placidi | Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials[END_REF][START_REF] Placidi | A second gradient formulation for a 2D fabric sheet with inextensible fibres[END_REF] as well as developments in nonlinear elasticity of beams. In this last regard, certainly a full understanding of the onset and the characteristics of multiple solutions for the static problem under distributed load would be an important step forward, and possibly more general beam models will also have to be considered [START_REF] Diyaroglu | Peridynamics for bending of beams and plates with transverse shear deformation[END_REF][START_REF] Challamel | Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams[END_REF][START_REF] Challamel | Nonlocal equivalent continua for buckling and vibration analyses of microstructured beams[END_REF] because of the exotic properties of microstructured continua [START_REF] Misra | Pantographic metamaterials show atypical poynting effect reversal[END_REF][START_REF] Dell'isola | Pantographic metamaterials: an example of mathematically driven design and of its technological challenges[END_REF][START_REF] Diyaroglu | An Euler-Bernoulli beam formulation in an ordinary state-based peridynamic framework[END_REF].

The paper is organized as follows: we introduce the general model for a nonlinear version of the Timoshenko beam; we deduce the equilibrium equations by means of the Lagrange multipliers method. Then, imposing stationarity to the energy functional, we deduce an expression for the total energy in stationary points which depends only on the angles formed by the tangent to the deformed shape. Then we show and discuss numerical results on the multiplicity of solutions with large value of the load and on the effect of releasing extensional stiffness in both the Euler and the Timoshenko case. Finally we propose some future research directions.

The Model

Kinematics and Deformation Energy

Let {D 1 , D 2 } be an orthogonal reference system in which the beam lies in the unstressed configuration along D 1 . We will denote by s the abscissa along the beam, by the apex the differentiation with respect to the reference abscissa1 and by χ(s) the placement function. The tangent vector to the current configuration of the beam is then:

χ = α(s) [cos(θ(s))D 1 + sin(θ(s))D 2 ] := α(s)e(θ(s)) (2.1)
where e(θ(s)) represents the unit vector parallel to χ . Therefore α(s) describes the local elongation of the beam:

χ (s) = α(s) (2.2)
while θ(s) is the angle between χ (s) and D 1 . We will assume the following energy functional:

E def (χ, ϕ) := L 0 ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ k e 2 ( χ (s) -1) 2 extensional energy + k b 2 (ϕ (s)) 2 flexural energy + k t 2 (ϕ(s) -θ(s)) 2 shear energy ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ds (2.
3) Here ϕ is the angle between sections of the beam (supposed rigid) and the normal to the neutral axes, while k b , k e and k t are respectively the bending, extensional and shear stiffness. The energy can be rewritten as:

E def = L 0 k e 2 (α -1) 2 + k b 2 (ϕ (s)) 2 + k t 2 (ϕ(s) -θ(s)) 2 ds.
(2.4)

We introduce now a uniformly distributed load b(s) and a concentrated load and couple in the endpoint of the beam s = L, denoted respectively by R(L) and M (L). The total energy of the system is then:

E tot = L 0 k e 2 (α -1) 2 + k b 2 (ϕ (s)) 2 + k t 2 (ϕ(s) -θ(s)) 2 -b • χ ds -R • χ(L) -M ϕ(L)
(2.5)

The beam model described by the functional (2.5) is a geometrically nonlinear version of the Timoshenko beam model (introduced in [START_REF] Timoshenko | Lxvi. on the correction for shear of the differential equation for transverse vibrations of prismatic bars[END_REF][START_REF] Timoshenko | X. on the transverse vibrations of bars of uniform cross-section. The London[END_REF], which is a particular case of Cosserat continuum introduced in [START_REF] Cosserat | Equilibria of a clamped Euler beam (Elastica) with distributed load: Large deformations[END_REF]; for general references and interesting results see e.g. [START_REF] Altenbach | On generalized Cosserat-type theories of plates and shells: a short review and bibliography[END_REF]; [START_REF] Birsan | Deformation analysis of functionally graded beams by the direct approach[END_REF]Forest (2005); [START_REF] Eremeyev | Material symmetry group and constitutive equations of micropolar anisotropic elastic solids[END_REF]). Interesting generalizations of the Timoshenko beam model have been proposed (see e.g. [START_REF] Romano | Shear deformability of thin-walled beams with arbitrary cross sections[END_REF][START_REF] Serpieri | A frame-independent solution to Saint-Venant's flexure problem[END_REF], while a periodic mechanical system whose homogenized limit is the model (2.5) (in the particular case α ≡ 1) is shown in [START_REF] Battista | Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams[END_REF]. It is in fact a microstructured 1D system whose unit cell is an articulated parallelogram and equipped with suitably placed rotational springs, and it can be easily obtained by means of 3D printing.

Of course also other (possibly more complex) microstructured systems can have a similar homogenized version (on microstructured continua see e.g. [START_REF] Barchiesi | Mechanical metamaterials: a state of the art[END_REF][START_REF] Engelbrecht | Reflections on mathematical models of deformation waves in elastic microstructured solids[END_REF][START_REF] Engelbrecht | Waves in microstructured materials and dispersion[END_REF][START_REF] Barchiesi | A 1D continuum model for beams with pantographic microstructure: Asymptotic micro-macro identification and numerical results[END_REF].

Lagrange Multipliers Method

Given the total energy of the system, equilibrium configurations are found as stationary points of the energy functional (2.5). A synthetic formulation of the problem, taking into account together the constrain of Eq. (2.1) and the total energy, is obtained with the introduction of a Lagrange multiplier Λ(s). We get the following functional formulation:

E tot = L 0 k e 2 (α -1) 2 + k b 2 (ϕ (s)) 2 + k t 2 (ϕ(s) -θ(s)) 2 -b • χ+ + Λ • (χ -α [cos(θ(s))D 1 + sin(θ(s))D 2 ]) ds -R • χ(L) -M ϕ(L) (2.6)
i.e., the energy is a function of the fields α(s), ϕ(s), θ(s), χ(s), Λ(s). The first variation of the energy with respect to these fields (considered independent) gives the two boundary value problems (BVPs):

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ -k b ϕ + k t (ϕ -θ) = 0 k b ϕ (L)δϕ(L) = M δϕ(L) k b ϕ (0)δϕ(0) = 0 (2.7) and ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ -Λ -b = 0 Λ(L) • δχ(L) = R • δχ(L) Λ(0) • δχ(0) = 0, (2.8)
as well as the algebraic relations:

k t (ϕ -θ) + αΛ • e ⊥ (θ) = 0 (2.9) k e (α -1) -Λ • e(θ) = 0 (2.10)
and the kinematic constraint Eq. (2.1). In Eq. (2.9) we introduced:

e ⊥ (θ(s)) = -sin(θ(s))D 1 + cos(θ(s))D 2
and the two boundary conditions in 0 are imposed considering a cantilever beam (lying along D 1 in the reference configuration and clamped in the extreme s = 0).

Numerical Simulations

Numerical Methods

An increasingly popular approach for the numerical study of nonlinear beams is isogeometric analysis (see e.g. [START_REF] Balobanov | Locking-free variational formulations and isogeometric analysis for the timoshenko beam models of strain gradient and classical elasticity[END_REF][START_REF] Niiranen | Variational formulations, model comparisons and numerical methods for Euler-Bernoulli micro-and nano-beam models[END_REF][START_REF] Cazzani | Isogeometric analysis of plane-curved beams[END_REF][START_REF] Greco | An efficient blended mixed b-spline formulation for removing membrane locking in plane curved Kirchhoff rods[END_REF][START_REF] Dortdivanlioglu | Computational aspects of morphological instabilities using isogeometric analysis[END_REF], which is a suitable variant of the finite element method. This method is very powerful and relatively light from a computational point of view, but just like every energy-related method it is not very suitable to study the multiplicity of arising solutions. For this reason, the numerical technique used here is the same as in [START_REF] Battista | Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams[END_REF]. Indeed, the boundary value problem for the clamped-free Euler and Timoshenko beams has been solved by means of a shooting technique. We introduce a family of Cauchy problems 2:

P k = ⎧ ⎪ ⎨ ⎪ ⎩ θ = -b(1 -s) cos θ θ(0) = 0 θ (0) = k (2.11)
depending on the parameter k. Then we selected the solutions of (2.11) which satisfy (with prescribed accuracy) θ (1) = 0, so as to obtain a numerical solution of the equilibrium condition δE tot = 0. Clearly the solution for the Cauchy problem exists and is unique for every initial datum k.

In Fig. 2.1, we show the plot of θ (1) as a function of k := θ (0) for an inextensible Euler beam model for b = 250. The graph intersects in five different points the horizontal axis, which means that in this case we have five different solutions of the boundary value problem with θ(0) = 0 and θ (1) = 0. In the next section, the solutions will be shown in the same order as they appear as intersections between θ (1) and the horizontal axis. Therefore the absolute minimum of the total energy will be always the rightmost configuration and, of course, the only solution for b small enough. Remark 2.1. Of course this numerical technique can only capture regular equilibrium configurations. It is well-known that the minima (and maxima) of nonautonomous functionals may be not regular enough to satisfy the Euler-Lagrange equations (even in the one-dimensional case as in [START_REF] Ball | One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation[END_REF]. This, together with the assessment of the stability of the solutions, is the main reason for which a rigorous study of the problem will be crucial.

The Number of Equilibrium Configurations when the Load Increases

It is generally very difficult to address theoretically the problem of evaluating how fast the number of solutions of a nonlinear parametric dynamical system increases with the parameter [START_REF] Guckenheimer | Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[END_REF], which in our case is the external load. It is therefore interesting, as a preliminary step, to address the problem numerically. In Fig. 2.2 the number of solutions for an inextensible (left) and extensible (right) Euler beem model is plotted as a function of the non-dimensional external load. As expected, the behavior is that of a step-function, as it is clear that new branches of solutions arise only when the external load overcomes specific thresholds. The number of equilibrium configurations increases significantly with the load, and again as expected it reaches slightly larger values in case an additional kinematic degree of freedom (i.e. α) is included. Figure 2.3 is consistent with this. Indeed, in this case inextensible (left) and extensible (right) Timoshenko beam models are considered, which produces an even more rapid increase of the possible equilibrium configurations. It has to be remarked, however, that a straight comparison with the Euler case is difficult because adimensionalizing the load is a different procedure in the two cases. 

Equilibrium Configurations

In the first gallery of equilibrium solutions we will show the full set of equilibrium configurations when the nondimensional load is b = 60, b = 250 and b = 500. For the chosen values of the other parameters, we have the same number of solutions (when applying the same load) for the four beam models. It has to be remarked that no branch of solutions appear to bifurcate. Instead, when the load increases, new branches appear at some thresholds. It can be seen that θ(s) is a positive monotonic function for the rightmost solution in all the cases. For b = 60 the central equilib- rium shape is non monotonic, while the leftmost is a negative monotonic function. This is a general trend as the load increases. Indeed, branches that arise with increasingly large values of the load will be made of progressively more numerous monotonic pieces. Of course in the Timoshenko case in general it is θ(0) = 0. As the boundary datum for θ in 0 can have more than one solution, we have always chosen the smallest one in absolute value (see also the Appendix). The axial elongation relative to Figs. 2.9 and 2.11 are shown respectively in Figs. 2.16 and 2.18. The shear It is not clear whether the solutions shown herein for the extensible Euler and Timoshenko models can be stable-while in Della Corte et al ( 2019) it has been proved that for the inextensible Euler case only the left and right configurations of Figs. 2.4 and 2.8 can be stable. shown for the two previous cases respectively. The elongation reaches its maximum (minimum) value where the beam lies parallel to the load with the same (opposite) direction. Instead, it is close to 1 where the beam lies orthogonal to the load. While in the Euler case the change in k e causes a minimal change in the deformed shape, in the Timoshenko case there is a much more relevant influence of k e on the configuration. In particular, decreasing k e allows a much larger maximum value of the local geometrical curvature γ := θ /α of the beam. This maximum is attained when θ(s) = -π/2; we will define s 0 the point at which this occurs. It has to be noted, however, that the Chebyshev curvature θ (s 0 ) takes similar values in the two cases. For instance, in the rightmost simulation of Fig. 2.24 we have θ (s 0 ) ≈ -16.4 and γ(s 0 ) ≈ -17.9, while in the rightmost simulation of Fig. 2.26 we have θ (s 0 ) ≈ -16.3 and γ(s 0 ) ≈ -111.9 (we point out that s 0 ≈ 0.303 in the right panel of Fig. 2.24 and s 0 ≈ 0.288 in the right panel of Fig. 2.26). 

Parametric Study on the Extensional Stiffness

Conclusions

In this paper we numerically studied clamped-free Euler and Timoshenko beams in large deformation under distributed load. Extensibility has been taken into account and results on the static behavior of the beam under different values of the load and of the axial stiffness has been shown. The main interest of the results consists in the multiplicity of solutions that arise as the load increases, not as a bifurcation of ex- isting branches of solutions but as new branches that arise when the load overcomes a series of progressively larger threshold-values. Future investigations are required to establish whether these multiple solutions can be stable. In this regard, an analysis of the small oscillations of the beam around candidate stable equilibria would be useful to assess numerically the question. Moreover, addressing theoretically the Apart from the models introduced here, an independent and novel approach to understand the large deformation of beams to be investigated in the future to regard a beam as the boundary curve of a two-dimensional manifold in a threedimensional space. In doing so, not only is the curve endowed with its own energy similar to that in the context of lower-dimensional energetics (Javili et al, 2013b) but also in a geometrically nonlinear framework [START_REF] Javili | A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology[END_REF] and in accordance with higher gradient elasticity accounting for boundary energetics elaborated in Javili et al (2013a). The advantage of this approach, particularly from a computational viewpoint, is that the bulk material acts to regularize the behavior of the beam especially important to analyze the instabilities associated with thin beams similar to the instabilities of thin films on an elastic foundation [START_REF] Javili | Computational aspects of growth-induced instabilities through eigenvalue analysis[END_REF]. Obviously, in the limiting case of the vanishing bulk one would recover exactly the beam theory.

Appendix

We show here the Euler-Lagrange boundary value problem associated with the functional (2.5). We recall that the solutions θ(s) of this BVP are the scalar fields of angles formed by the tangent to the deformed configuration and a reference axis at the equilibrium for a clamped-free, extensible Timoshenko beam, in large deformation regime, under distributed load. (2.13)

Remark 2.2. The boundary conditions in the previous problem have in general more than one solution. In the numerical simulations, we always considered the value θ(0) which was smaller in absolute value.
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 2 Fig. 2.1 θ (1) as a function of k := θ (0) for an inextensible Euler beam with a transverse applied load b = 250. Solutions to the boundary value problem (2.11) correspond to the intersections of the curve with the horizontal axis.

  Fig. 2.2 Number of solutions, n, as a function of the transversal applied load, b. Left: inextensible Euler model. Right: extensible Euler model (ke = 1.3 × 10 3 ).

  Fig. 2.4 Clamped inextensible Euler beam with a transversal applied load b = 60
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 2 Fig. 2.7 Clamped extensible Timoshenko beam with a transverse applied load b = 60 (kt = 7000, ke = 3000)
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 2 Fig. 2.12 Clamped inextensible Euler beam with a transverse applied load b = 500.

Fig. 2 .

 2 Fig. 2.14 Clamped inextensible Timoshenko beam with a transverse applied load b = 500 and kt = 7000.
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 2 Fig. 2.15 Clamped extensible Timoshenko beam with a transverse applied load b = 500 and kt = 7000 and ke = 5000.
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 222 Fig.2.17 Above: plot of φ (dotted) and θ for the five configurations shown in Fig.2.10. Below: the corresponding plot of φ -θ.
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 2 Fig. 2.20 Plot of α for the configurations in Fig. 2.13.
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 22 Fig. 2.21 Above: plot of φ (dotted) and θ for the five configurations shown in Fig. 2.14. Below: the corresponding plot of φ -θ.
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 22 Fig. 2.23 Above: plot of φ (dotted) and θ for the five configurations shown in Fig. 2.15. Below: the corresponding plot of φ -θ.
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 222 Fig. 2.25 The local elongation α(s) relative to the equilibrium shapes shown in Fig. 2.24.

θ

  = k b bk e (1s) sin(θ) -(b(1s)) 2 (cos(2θ)) + k e k t -1 bk b (1s)θ 2 cos(θ)(4b(1s) sin(θ) + k e ) -2bk b θ(2b(1s) cos(2θ)+ -k e sin(θ)) + cos(θ) 2b 2 k b sin(θ)bk t (1s)(b(1s) sin(θ) + k e )(2.12) with boundary conditions:θ -b 2 (1s) 2 sin(θ) cos(θ) k e k e + b(1s) cos(θ)

Notice that this means that, denoting by θ the angle formed by the tangent to the deformed shape and a reference axis, θ does not coincide with the geometrical curvature but with the so-called Chebyshev curvature (see[START_REF] Chebyshev | Sur la coupe des vetements[END_REF].

We consider here the inextensible Euler beam for simplicity, but everything is analogous for the general case.