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Abstract: In contrast to standard ILS-based landing control systems, vision-based strategies
rely on specific measures that introduce non-linearities into the control laws. Moreover, during
the landing phase high gains are often used to improve performances at the expense of
stability which is then degraded. This is not much an issue since both final approach and
flare segments are short-time maneuvers. However, high gains induce saturations which in turn
lead to performances degradation. For these reasons, vision-based landing systems design and
tuning require a specific attention which generally involves a time-consuming trial-and-error
process. The latter could certainly be fasten and improved with the help of adapted analysis
tools providing a reliable estimate of the finite-time performance level of the aforementioned
saturated nonlinear closed-loop system. As observed in Biannic and Burlion (2017), it can be
rewritten as a saturated Linear Parameter Varying (LPV) system for which many tools exist
or can be extended. In this contribution, original discrete-time extensions are then proposed
to characterize finite-time performance indexes for a vision-based landing system including an
anti-windup device.
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1. INTRODUCTION

Many airports are now equipped with Instrument Landing
Systems (ILS) that significantly secure the landing phase
in poor visibility conditions. However, the installation and
maintenance of such equipment remain very expensive
and is not always available. This is generally the case
for small airports and especially for unprepared runways,
which could, however, be used for emergency landings. In
such cases (but not only) vision landing systems offer an
attractive and inexpensive alternative. This is why such
solutions have been studied in recent years (see for exam-
ple: Bourquardez and Chaumette (2007); Azinheira and
Rives (2008); Le Bras et al. (2009); Huh and Shim (2010))
and are currently being explored further by the aviation
industry (see: Gibert and Puyou (2013); Dickmanns et al.
(2015); Gibert et al. (2015)). Despite the very promising
results obtained in simulations with IBVS (Image-Based
Visual Servoing) or PBVS (Pose-Based Visual Servoing)
or a combination of both, there are still some obstacles
before these solutions can be used on commercial aircraft:

• thorough evaluations under real conditions must be
carried out using ”true” images captured from video
sequences,

? This work was partly supported by ANR VISIOLAND project
ANR-13-CORD-0012 dedicated to VISIOn based aircraft LANDing
techniques

• the computational requirements must be carefully
evaluated to check compatibility with on-board com-
puters,

• a specific validation process must be defined for
certification needs.

Based on the Finite-Time-Stability (FTS) concept for
Linear Time Varying (LTV) systems (see Dorato (1961);
Garcia et al. (2009)), preliminary results of Biannic and
Burlion (2017) are extended here to provide reliable es-
timates of finite-time performance indexes for saturated
parameter-varying systems. As was indeed clarified in
Biannic and Burlion (2017), unlike ILS-based controllers,
the vision-based landing control system introduces in the
closed-loop plant a specific nonlinearity that can be re-
placed by a varying parameter which constantly grows
during the landing phase until flare is activated. More-
over, during this critical phase, high gains tend to be
used to maintain the aircraft on its nominal path with
a good accuracy despite perturbations. This however in-
duces saturations. The development of specific tools for
analysis of saturated LPV systems along given parametric
trajectories is then very useful in the context of vision-
based control assessment and improvement. The solution
proposed in Biannic and Burlion (2017) provides an initial
response without however taking into account the finite-
time horizon property of the problem which is essential
here. The proposed extension detailed in this paper is
based on a discrete-time reformulation as described in



section 2. Next, the main performance analysis results are
detailed in section 3 and applied to the evaluation of a
vision-based landing system in section 4. The interest of an
anti-windup device is clearly demonstrated there. Finally
concluding comments and future directions are proposed
in section 5.

2. A BOUNDED-HORIZON TIME-VARYING
ANALYSIS PROBLEM WITH SATURATIONS

2.1 System description & preliminary analysis

As detailed in Biannic and Burlion (2017), we focus on the
glide slope phase illustrated in Figure 1 during which the
autopilot system must maintain a constant slope γ0 = −3o

and a constant airspeed V despite external perturbations.
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Fig. 1. Landing phases

It is assumed that an inner-loop controller has been defined
to track the vertical acceleration z̈ as long as it remains
bounded (|z̈| ≤ La). Moreover, under low wind conditions,
the horizontal speed verifies the approximation ẋ ≈ V , so
that the studied open-loop system reduces to:{

ẋ = V

z̈ = satLa
(u)

(1)

In a vision-based landing context (see for example Gibert
et al. (2015) for further details) this system is initially con-
trolled by a nonlinear proportional-derivative controller:

u0 = kp

( z
x
− γ0

)
− kd(ż − γ0V ) (2)

whose gains kp > 0 and kd > 0 are tuned such that, at the
beginning of the glide phase, the system is well-damped
and the desired slope is rapidly reached. The non-linearity
γm = z/x is introduced by the visual features. After a
variable change ξ1 = z−γ0x and ξ2 = ∆vz = ż−γ0V , one
obtains a linear time-varying (LTV) system:{

ξ̇1 = ξ2

ξ̇2 = satLa
(−λ(t)ξ1 − kdξ2)

(3)

with:
λ(t) = −kp/x(t) (4)

The above system has been studied in Biannic and Burlion
(2017) with kd = 0.3 and an increasing parameter λ(t)
such that:

λ(t) ∈ [0.1 , 0.5] , λ̇(t) = 0.35λ(t)2 (5)

which corresponds to the final approach phase starting
approximately 2000m before the runway threshold with
a constant speed V = 70ms−1. This preliminary study

has revealed that the combined effects of the parametric
variations with the saturated acceleration were responsible
for a severe performance degradation.

2.2 Model-Recovery Anti-Windup (MRAW) design

In this section, it is proposed to enhance the control law
(2) with an anti-windup augmentation defined as follows:

• if λ were known, a conventional model-recovery anti-
windup scheme Zaccarian and Teel (2011) would
consist in choosing:

u = −λ(ξ1 − ξ1,aw)− kd(ξ2 − ξ2,aw) + uaw (6)
ξ̇1,aw = ξ2,aw

ξ̇2,aw = satLa(u)− (u− uaw)

uaw = −k1,aw. ξ1,aw − k2,aw. ξ2,aw

(7)

• in the case λ is unknown (which is our case), Burlion

and de Plinval (2017) used an estimate λ̂ in its anti-
windup scheme and proved that the closed-loop sys-
tem was stable using a well-chosen Lyapunov func-
tion. Here, we propose to use a more intuitive anti-
windup loop which uses a constant value λa. Doing so,
the anti-windup design is simple but one needs new
analysis techniques (especially in the finite-time case)
to guarantee that the closed-loop system remains
stable.

We thus consider the following control law:

u = −λξ1 + λaξ1,aw − kd(ξ2 − ξ2,aw) + uaw (8)

with 
ξ̇1,aw = ξ2,aw

ξ̇2,aw = satLa
(u)− (u− uaw)

uaw = −k1,aw. ξ1,aw − k2,aw. ξ2,aw

(9)

Let us choose λa = 0.3, which corresponds to the mean
value of the set to which λ(t) belongs.

The gains k1,aw and k2,aw of this anti-windup device are
tuned according to a low gain strategy as exposed in Lin
(1998). For the considered parameter-varying application
they were chosen as k1,aw = 0.1 and k2,aw = 0.7. Next, the
global closed-loop system is discretized and the saturation
is replaced by a deadzone operator. The following fourth-
order system is then obtained:

ξk+1 =

 1 τ 0 0

−τλk 1− 0.3τ 0.2τ −0.4τ
0 0 1 τ

0 0 −0.1τ 1− 0.7τ


︸ ︷︷ ︸

Ak

ξk +

 0

τL

0

τL


︸ ︷︷ ︸

Bk

φ(vk)

vk =
(

λkL
−1

0.3L
−1 −0.2L−1

0.4L
−1
)︸ ︷︷ ︸

Ck

ξk

(10)

with ξ = [ξ1 ξ2 ξ1,aw ξ2,aw]′ and where φ(.) denotes
the standard, normalized deadzone operator and τ is the
sampling time.

2.3 A preliminary simulation-based analysis

A preliminary simulation-based analysis of the above sys-
tem is now performed with the initial condition ξ0 =
[0 2 0 0]′ and τ = 0.3.
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Fig. 2. A preliminary simulation-based analysis: phase
portraits illustration.

Phase portraits are plotted in Figure 2 where the discrete-
time values λk of the varying parameter starting from
0.1 are computed according to equation (5). The effect
of the anti-windup system (whose response is visualized
by the dash-dotted line) is clearly visible. The phase-
portrait trajectory is indeed very close to the origin at the
end of the considered horizon [0 N ] for which λN = 0.5
and the control system is about to switch to the flare
mode. Without anti-windup device, it is observed that the
acceleration remains saturated (switching from L to −L)
on large portions of the trajectory.

The next plots, visualized in Figure 3, show the evolution
of ‖ξ‖, the norm of the state vector as a function of time
for the same three configurations as above (unconstrained,
constrained without anti-windup and constrained with
anti-windup). From this simulation, it can be concluded
for the given initial state, that the vision-based control
system, equipped with the anti-windup filter, is able to
precisely track the glide slope trajectory despite a limited
vertical acceleration capacity.
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Fig. 3. A preliminary simulation-based analysis: time-
domain results

However, the above simulation results do not provide any
guarantees at least for different initial conditions. The
remainder of the paper is then devoted to the evaluation
of a guaranteed performance level without intensive simu-
lations.

3. FINITE-TIME PERFORMANCE ANALYSIS
RESULTS

Extending the infinite-horizon and continuous-time anal-
ysis results of Biannic and Burlion (2017) to a finite-time
horizon analysis, the core of this paper is based on the
study of discrete-time saturated LTV systems. The main
result, presented next in Theorem 1 generalizes to the
bounded horizon and time-varying case a previous result
of Gomes da Silva Jr. and Tarbouriech (2006).

3.1 Main result

Theorem 1. (Finite-Time Performance of a Discrete-Time
Saturated LTV System). Consider the discrete-time sat-
urated LTV system, defined on the bounded-horizon
{0, 1, . . . , N} by:{

ξk+1 = Akξk +Bkφ(zk) , k = 0 . . . N
zk = Ckξk

(11)

where φ(.) denotes a normalized deadzone function. If
there exist a set of positive definite matrices Qk ∈ Rn×n,
a set of diagonal matrices Sk ∈ Rm×m, a set of matrices
Zk ∈ Rm×n and a positive real r such that: Qk+1 AkQk BkSk

QkA
′
k Qk Z ′k

SkB
′
k Zk 2Sk

 > 0 , k = 0 . . . N (12)

(
Qk Z ′k +QkC

′
k

Zk + CkQk 1

)
> 0 , k = 0 . . . N (13)

Q0 > ξ0ξ
′
0 (14)

QN < ρI (15)

then, any trajectory ξk of system (11) starting from the
ellipsoidal set E0 that contains the initial vector ξ0:

E0 = {ξ ∈ Rn/ξ′Q−10 ξ ≤ 1} 3 ξ0 (16)

will verify:

ξk ∈ Ek, i.e. ξ′kQ−1k ξk ≤ 1 , k = 1 . . . N (17)

and
‖ξN‖ <

√
ρ (18)

2

Sketch of proof: This theorem is easily established with
the help of a time-varying quadratic Lyapunov function
Vk = ξ′kPkξk. The matrix inequality (12) in which Qk =

P−1k clearly implies: Vk+1 < Vk. The same auxiliary vari-
ables Sk et Zk as those introduced in the continuous-time
case Biannic and Burlion (2017) are used. This variables
are a direct consequence of the use of the modified sector
condition originally proposed by Gomes da Silva Jr. and
Tarbouriech (2005). The set of inequalities (13) are also
linked to the sector conditions and the same formulation
is observed in the continuous-time case. The inequality
(14) enforces the inclusion of the initial state vector ξ0



inside the ellipsoidal set E0. One has indeed: ξ′0P0ξ0 <
1 ⇔ Q0 > ξ0ξ

′
0. Finally, the last inequality (15) QN < ρI

also reads PN > ρ−1I, from which one obtains ξ′NξN =
‖ξN‖2 < ρ.ξ′NPNξN . The result claimed by inequality (18)
stems from the following fact: VN = x′NPNxN < 1 since,
by assumption, V0 ≤ 1 and also from (12) which implies
Vk+1 < Vk. �

3.2 Numerical complexity and resolution aspects

From a numerical viewpoint, the results stated in Theorem
1 are of high practical interest since they correspond to the
minimization of the positive scalar ρ (i.e a linear objective)
under linear matrix inequalities (LMI) constraints. How-
ever, both the number of constraints:

Nc = 2(N + 2) (19)

and the number of scalar decision variables:

Nv = 1 + (1 +
n

2
)(1 + n)(1 +N) (20)

may grow rapidly with the order n of the plant and the
number of samples N . At the expense of precision, the
latter (N) can be slightly reduced to some extent by
increasing the sampling time. But the main options are
based on relaxation strategies detailed next.

Reduction in the number of variables. The best option to
limit complexity in the LMI optimization problem involved
in Theorem 1 is to reduce the number of variables. This is
rather easily performed here since the time-varying system
matrices depend on a scalar parameter λ. The inequalities
(12)- (15) can thus be rewritten:(

Q(λk+1) ? ?
Q(λk)A

′(λk) Q(λk) ?
S(λk)B

′(λk) Z(λk) 2S(λk)

)
> 0 , k = 0 . . . N (21)(

Q(λk) ?
Z(λk) + C(λk)Q(λk) 1

)
> 0 , k = 0 . . . N (22)

Q(λ0) > ξ0ξ
′
0 (23)

Q(λN ) < ρI (24)

and the variables can be chosen, for example, as polyno-
mial functions with respect to λ. Let np denote the order
of such polynomials, the total number of scalar decision
variables now reduces to:

Nv = 1 + (1 +
n

2
)(1 + n)(1 + np) (25)

Reduced number of constraints. A trivial approach to
reduce the number of constraints consists in increasing the
sampling time in the discretization process to decrease N .
This is however infeasible without a possibly significant
loss of accuracy. Based on the above characterization,
using parameterized functions, there is yet a possible
alternative which consists in gridding the parameter space.
Then, in inequalities (21) and (22), the index k will no
longer evolve in the set {0, 1, . . . , N} but in a much smaller
subset {i0, i1, . . . , iNr} such that i0 = 0, iNr = N and of
course Nr � N . As a result, the number of constraints
reduces to:

Nc = 2(Nr + 2) (26)
The validity of the inequalities (21) and (22) on the entire
set must however be checked a posteriori on the initial
set and additional constraints must then be considered in
case of failure which leads to a (possibly time-consuming)
iterative process...

A specialized algorithm for affine parametrically dependent
systems. As it can be noticed from equation (10),
the state-space data Ak = A(λk), Bk = B(λk) and
Ck = C(λk) of the considered time-varying system depend
affinely 1 on the parameter λ at each sampling time. In
the context of LMI optimization, such a property is useful
to guarantee that a parameter-dependent inequality holds
by only testing the vertices of the parametric domain.
This property forms the basis of the following algorithm
with which both the number of variables (without using
polynomial expressions) and the number of constraints
can be simultaneously limited. As proposed above the
algorithm is essentially based on a selection of sampling
times:

IR = {i0, i1, . . . , iNr} (27)

with i0 = 0 and iNr
= N . Next, for each interval

Ik = [ik ik+1] (with k = 0 . . . Nr − 1), piecewise constant
Lyapunov functions Vk = x′kPkxk and relaxation variables
Zk and Sk are used. Then, the 2(N + 2) inequalities (21)-
(24) become: Qk ? ?

QkA
′(λik) Qk ?

SkB
′(λik) Zk 2Sk

 > 0 , k = 0 . . . Nr − 1 (28)

 Qk ? ?
QkA

′(λik+1−1) Qk ?
SkB

′(λik+1−1) Zk 2Sk

 > 0 , k = 0 . . . Nr − 1 (29)

 Qk+1 ? ?
QkA

′(λik+1
) Qk ?

SkB
′(λik+1

) Zk 2Sk

 > 0 , k = 0 . . . Nr − 1 (30)

(
Qk ?

Zk + C(λik)Qk 1

)
> 0 , k = 0 . . . Nr − 1 (31)(

Qk ?
Zk + C(λik+1

)Qk 1

)
> 0 , k = 0 . . . Nr − 1 (32)

Q0 > ξ0ξ
′
0 (33)

QNr
< ρI (34)

Remark 2. Since an affine parametric dependence is as-
sumed here, the above inequalities, by a standard convex-
ity argument, imply that (21) and (22) are satisfied with
Q(λ) = Qk, S(λ) = Sk and Z(λ) = Zk if λ ∈ [ik ik+1[.

Algorithm 1. Finite time performance analysis of affine
parametrically dependent systems.

(1) Define a subset IR = {i0, i1, . . . , iNr
}

(2) Solve the LMI optimization problem:

min ρ / (28), (29), (30), (31), (32)

(3) Go back to step (1) and update IR to possibly reduce
ρ otherwise stop the algorithm.

Remark 3. The number of constraints and variables in-
volved in the above algorithm are respectively reduced to:

Nc = 5Nr + 2 (35)

and

Nv = 1 + (1 +
n

2
)(1 + n)Nr (36)

Remark 4. The use of a piecewise constant Lyapunov
function possibly leads to conservative results when there

1 Note that B(λk) is even a constant, but this additional property
will not be exploited in the proposed algorithm.



are not enough points in the selected subset. In such as
case, as is proposed in Algorithm 1, a new (denser) set
must be provided at the expense of a higher computational
burden. An alternative option consists of using piecewise
affine functions:

Q(λ) =
λk+1 − λ
λk+1 − λk

Qk +
λ− λk

λk+1 − λk
Qk+1 (37)

with λ ∈ [λk λk+1]. In this case the matrix inequalities
(28)-(32) are now second-order polynomials in λ and must
then be checked a posteriori to establish their validity
for each interval Ik. An efficient alternative option to
ensure their validity a priori can also be proposed with the
help of additional constraints to enforce a multi-convexity
property (see Apkarian and Tuan (2000)).

4. APPLICATION TO THE VISION-BASED
LANDING ANALYSIS PROBLEM

The proposed finite-time performance characterizations
are now applied to evaluate the vision-based landing
system detailed in Section 2. The total order of the system
including anti-windup augmentation is limited to n = 4.
Moreover, the studied horizon is bounded by T = 25 s
and N is thus no larger than 80 (with sampling time
τ = 0.3 s). For these moderate dimensions, the main
result stated by Theorem 1 is directly applicable. As
emphasized in equations (19) and (20), the LMI problem
to be solved involves around 160 constraints and 1200
decision variables.

The results of the application of Theorem 1 are visual-
ized in Figure 4. The problem is solved iteratively over
increasing time horizons Ti from 3 s to 24 s. In each case,
a guaranteed upper-bound ρ(Ti) (visualized by a magenta
star) is computed as well as an ellipsoidal set of initial
conditions that includes ξ0. As in subsection 2.3, the latter
is fixed to ξ0 = [0 2 0 0]′. The lower-bound, represented
by the blue solid line curve is simply obtained by the
discrete-time trajectory starting from the initial condition
ξ0.
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Fig. 4. Finite-time performance analysis: a simulated
lower-bound and guaranteed upper-bounds

As one could expect, the conservatism of the proposed
characterization in Theorem 1 is reasonably low. At the
end of the studied horizon, the gap between upper and
lower bounds is very tight indeed and the analysis tech-
nique thus captures the beneficial effects of the anti-
windup system after 15 s. Unfortunately, this approach is
limited to moderate dimensions problems. The computa-
tional burden may however be significantly reduced with
the help of Algorithm 1 which has also been applied on the
same study case for various subset IR with growing size.
The results are summarized in Table 1.

Nr 10 20 30 Theorem 1

Nc 62 102 152 160

Nv 166 316 466 1196

ρ infeasible 1.89 0.478 0.396

Table 1. Application of Algorithm 1

The good compromise between accuracy and computa-
tional complexity is obtained here with Nr = 30. Note
that for this choice, the number of constraints is not sig-
nificantly reduced in comparison with theorem 1. However
the number of variables is much smaller. As suggested in
Remark 4, less conservative results can be obtained with
piecewise affine functions.

5. CONCLUSION AND FUTURE WORK

New performance analysis results have been presented
in this paper for time-varying saturated systems over a
bounded horizon. The proposed characterization has been
successfully tested to evaluate the performance of a land-
ing system with an anti-windup loop. Thanks to well-
chosen relaxation techniques the computational complex-
ity can be limited which makes the proposed approach
applicable to higher order systems than those considered in
this paper. Moreover, extensions (possibly using the IQC
framework as proposed in Fry et al. (2017); Seiler et al.
(2017)) may also be investigated to introduce robustness
aspects with respect to parametric uncertainties. On the
application level, more complex vision-based landing con-
trol systems, including the flare phase, will also be studied
with similar tools in a near future.
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