
HAL Id: hal-02475633
https://hal.science/hal-02475633

Submitted on 8 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A new adaptive switching median filter for impulse noise
reduction with pre-detection based on evidential

reasoning
Zhe Zhang, Deqiang Han, Jean Dezert, Yi Yang

To cite this version:
Zhe Zhang, Deqiang Han, Jean Dezert, Yi Yang. A new adaptive switching median filter for impulse
noise reduction with pre-detection based on evidential reasoning. Signal Processing, 2018, 147, pp.173-
189. �10.1016/j.sigpro.2018.01.027�. �hal-02475633�

https://hal.science/hal-02475633
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A new adaptive switching median filter for impulse noise reduction

with pre-detection based on evidential reasoning

Zhe Zhang 
a , Deqiang Han 

a , ∗, Jean Dezert b , Yi Yang 
c

a MOE KLINNS Lab, Institute of Integrated Automation, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
b ONERA, The French Aerospace Lab, Chemin de la Hunière, Palaiseau F-91761, France
c SKLSVMS, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China

Image denoising is a fundamental problem in image processing. The switching filtering is a popular ap- 

proach to reduce the impulse noise. It faces two challenges including the impulse noise detection and

filter design. The traditional detection methods based on single criterion or multiple criteria encounter

uncertainty problems and produce many miss-detections and false alarms, especially when the image is

severely corrupted. In this paper, the uncertainties encountered in the impulse noise detection are ad- 

dressed using the theory of belief functions, and a multi-criteria detection strategy for the impulse noise

based on evidential reasoning is proposed. Based on the pre-detection, an adaptive median filter is de- 

signed, which adaptively determines the size of the filtering window according to the estimated global

noise density and the degree of local corruption. Experimental results and related analyses show that

our proposed image denoising method for the impulse noise has superior performance compared with

several state-of-the-art denoising methods.

1. Introduction

Digital images can be corrupted by various types of noise dur- 

ing the image acquisition and transmission. The impulse noise is 

one of the most common types, which is encountered in cases 

with quick transients, e.g., faulty switching during imaging [1] . The 

intensity of a pixel corrupted by the impulse noise tends to be 

much higher or lower than those of its uncorrupted neighbors. The 

impulse noise dramatically influences the image quality and makes 

images unsuitable for subsequent human understanding or image 

processing such as the edge detection [2] , segmentation [3] , object 

recognition [4] , image analysis [5] and image understanding [6] . 

Till now, the impulse noise reduction problem has not been 

well solved and has attracted extensive research interests. The me- 

dian filtering is the most popular approaches for the impulse noise 

reduction. The standard median (SM) filter [7] replaces the target 

pixel’s intensity by the median of intensities of its neighbors. Var- 

ious modifications of the SM filter have been proposed, such as 

the weighted median (WM) filter [8] and the center weighted me- 

dian (CWM) filter [9] . However, all these filters apply the median 

operations to each pixel ignoring whether the target pixel is cor- 
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rupted or not. This might destroy the details contributed from un- 

corrupted pixels and lead to image quality degradation. To deal 

with this problem, switching median filters [10] were proposed, 

which introduce the noise detection prior to the filtering. Since 

only the corrupted pixels will be filtered and the uncorrupted pix- 

els remain intact, more details can be preserved and better filtering 

performance can be achieved if the pre-detection result is accurate 

enough. 

In recent years, sparse representation (SR) [11] is widely used in 

image denoising [12–14] , especially for Gaussian noise. For the im- 

pulse noise, the noise detector is incorporated into SR model and 

the weighted dictionary learning method was proposed for im- 

pulse noise denoising [15–17] . Both median filtering and SR based 

method face the challenge of noise detector designing. 

There have emerged two major criteria for the impulse noise 

detection including the extreme property and discontinuity prop- 

erty. Some detectors only use a single criterion, which may involve 

some uncertainty problems. For example, the boundary discrimi- 

native noise detection (BDND) [18] and the efficient improvements 

on the BDND (IBDND) [19] use the criterion of extreme property. 

Both algorithms label a pixel as the noise if it is assigned to the 

low-intensity range or high-intensity range according to the his- 

togram distribution in a local window centered at that given pixel. 

However, these detectors easily lead to false alarms since not all 

the pixels with low-intensity or high-intensity are noise. There are 
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other detectors that only use the criterion of discontinuity prop- 

erty. Such detectors can be found in the adaptive impulse detec- 

tion using center-weighted median (ACWM) filter [20] , directional 

weighted median (DWM) filter [21] , contrast enhancement-based 

(CEF) filter [22] , adaptive switching median (ASWM) filter [23] , 

weighted couple sparse representation (WCSR) model [24] and the 

denoising framework combining the detection mechanism based 

on the robust outlyingness ratio with the NL-means (ROR-NLM) 

[25] . They label a pixel as the noise if its similarity with its neigh- 

bors is lower than a preset threshold. However, when the noise 

density is high, the impulse noise pixels might not show the dis- 

continuity property since there are too many noise pixels in their 

neighbors. Since pixels with extreme or discontinuity property may 

not always be the noise, the detectors based on a single criterion 

will involve uncertainty problems and tend to yield incorrect de- 

tection results. Both criteria have their own rationalities; however, 

they are one-sided. It should be better to jointly use them when 

detecting the impulse noise. Therefore, some approaches using the 

above two criteria jointly have been proposed, e.g., the detector in 

noise adaptive soft-switching median (NASM) filter [26] and the 

detector based on the cloud model (CM) [27] . These two-step de- 

tection methods first recognize the suspected noise pixels using 

the extreme criterion, and then distinguish the noise pixels from 

the suspected noise pixels using the discontinuity criterion. How- 

ever, they can easily produce miss-detections when some noise 

pixels are not detected as the suspected noise in the first step. 

Therefore, the two-step type joint use is not preferred. 

To deal with the uncertainties encountered in the impulse noise 

detection and avoid the drawbacks of the two-step-type joint use 

of detection criteria, in this paper, a new detection approach for 

the impulse noise is proposed, which uses the two criteria simulta- 

neously based on the theory of belief functions [28] . In our detec- 

tion approach, the extreme property is described using the interval 

data distance between the target pixel’s intensity and the intensity 

range of the whole noisy image (expressed as an interval number). 

The discontinuity property is described using the rank-ordered ab- 

solute differences (ROAD) statistic [29] . The uncertainty problem 

encountered in the impulse noise detection, e.g., pixels with ex- 

treme or discontinuity property may not always be the noise, are 

modeled by belief functions and are further handled through the 

evidence combination. 

The impulse noise detector implementation is the main work 

of this paper. Based on the detection result, an adaptive median 

filter is designed, which adaptively determines the size of filtering 

window according to the estimated global noise density and lo- 

cal corrupted degree. Experimental results show that our proposed 

adaptive switching median filter with pre-detection based on ev- 

idential reasoning (ASMF-DBER) has superior performance com- 

pared with several state-of-the-air switch median filters and the 

SR based method. 

2. Basis of impulse noise and uncertainty problems

encountered in impulse noise detection 

2.1. Impulse noise model 

When an image is corrupted by the impulse noise, some pixels 

are changed and their intensities are extremely high or extremely 

low. We use the same impulse noise model as used in BDND 

[18] . Assume that the noise pixels take values in two fixed sets 

S 1 = { 0 , 1 , . . . , α} and S 2 = { 255 − α, 255 − (α − 1) , . . . , 255 } for an
8-bit monochrome image. Let s i,j and x i,j be the pixels’ intensities 

at location ( i, j ) in the original and noisy images, respectively. Let 

n i,j be the noise which is independent of s i,j and corresponds to a 

random value uniformly distributed in the set S 1 and S 2 . Let p de- 

note the probability that a pixel is corrupted. The probability mass 

function (pmf) [30] of x i,j is given by 

P ( x i, j ) = 

{

p, for x i, j = n i, j , 
1 − p, for x i, j = s i, j . 

(1) 

Specially, if α = 0 , the intensities of noise pixels can only take the 

two extreme values 0 or 255. This type of impulse noise is also 

called the salt-and-pepper noise. Since n i,j is independent of s i,j , it 

is possible that n i, j = s i, j . This kind of pixel should be regarded as 

uncorrupted. 

2.2. Uncertainties encountered in impulse noise detection 

The impulse noise has two properties: 

(a) Extreme property : The intensity of an impulse noise pixel is 

usually an extreme value (0 or 255) or close to an extreme 

value. 

(b) Discontinuity property : The intensity of an impulse noise 

pixel tends to be much higher or lower than those of its 

neighbors. 

These two properties are often used as detection criteria for the 

impulse noise. Some detectors only use one of the criteria: 

(a) Detectors based on the criterion of extreme property: These 

detectors label a pixel as the noise, if it is assigned to the 

low-intensity range or high-intensity range according to the 

histogram distribution in a local window centered at that 

pixel, e.g., BDND [18] and IBDND [19] detectors. 

(b) Detectors based on the criterion of discontinuity property: 

These detectors label a pixel as the noise, if its dissimilar- 

ity with its neighbors is larger than a preset threshold, such 

as ACWM [20] , DWM [21] , CEF [22] , ASWM [23] , ROR-NLM 

[25] and WCSR [24] . 

However, such single criterion based detectors may involve the 

following uncertainty problems: 

(a) Uncertainty in extreme criterion: Some signal pixels may 

also be detected as the noise, since their intensities are very 

close to extreme values, e.g., some edge pixels and texture 

pixels. Moreover, in some bright or dark area, the intensity 

range of signal pixels may overlap with that of the impulse 

noise pixels. Therefore, when using the extreme criterion 

alone, it is uncertain to judge those signal pixels with ex- 

treme property to be the impulse noise or not. 

(b) Uncertainty in discontinuity criterion: The discontinuity 

property of the impulse noise pixels becomes weaker with 

the increase of noise density since there are many noise pix- 

els in their neighbors. At the same time, some signal pixels 

may show discontinuity. Therefore, with only the disconti- 

nuity criterion, it is uncertain to judge a pixel to be the im- 

pulse noise or not. 

Due to these uncertainties, the single criterion based detectors 

are to some extent one-sided and tend to yield incorrect detection 

results. Hence, it should be better to jointly use the two criteria to 

implement a more comprehensive detection. 

Some two-step detection methods, like NASM [26] and CM [27] , 

jointly use these two criteria in two consecutive steps. They first 

recognize suspected noise pixels according to the extreme crite- 

rion, and then distinguish noise pixels from suspected noise pixels 

according to the discontinuity criterion, as illustrated in Fig. 1 . In 

the first step, only using the extreme criterion, some noise pix- 

els may not be detected as the suspected noise and therefore are 

miss-detected straightly. These miss-detected pixels will not un- 

dergo the filtering so that these two-step methods can easily lead 

to poor noise-reduction capabilities. Therefore, when detecting the 
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Fig. 1. The two-step detection method.

impulse noise, it should be better to use these two criteria simul- 

taneously, but not in two consecutive steps. 

To deal with these uncertainties encountered in the single cri- 

terion based detections and to implement a more comprehensive 

detection by using these two criteria simultaneously, we propose 

an evidential reasoning based impulse noise detection approach 

thanks to the ability of belief functions to model uncertainty and 

for reasoning under uncertainty. The theory of belief functions 

[28] are briefly recalled first below. 

3. Impulse noise detection based on evidential reasoning

3.1. Basic of evidence theory 

The theory of belief functions, also called Dempster–Shafer evi- 

dence theory (DST) [28] , is a theoretical framework for uncertainty 

modeling and reasoning. 

In DST, elements in the frame of discernment (FOD) � = 

{ θ1 , θ2 , . . . , θl } are mutually exclusive and exhaustive. The power

set 2 � of the FOD � is the set of all subsets of �. Define a func- 

tion m from 2 � to [0, 1] as a basic belief assignment (BBA, also 

called a mass function) satisfying 

∑ 

A ⊆�

m (A ) = 1 , m (∅ ) = 0 (2) 

m ( A ) depicts the evidence support to the proposition A . If m ( A ) > 0, 

A is called a focal element. 

The plausibility function ( Pl ) and belief function ( Bel ) are de- 

fined as: 

P l (A ) = 

∑ 

A ∩ B � = ∅

m (B ) (3) 

Bel (A ) = 

∑ 

B ⊆A

m (B ) (4) 

The belief interval [28,31] [ Bel ( A ), Pl ( A )] represents the imprecision 

of the support to the proposition A . 

Dempster’s rule of combination [28] , which is used for combin- 

ing two distinct pieces of evidence, is defined as 

( m 1 � m 2 )(A ) = 

⎧ 

⎨ 

⎩ 

0 , A = ∅ 

1 

1 − K 

∑ 

B ∩ C= A

m 1 (B ) m 2 (C) , A � = ∅ 
(5) 

where K = 
∑ 

B ∩ C= ∅ m 1 (B ) m 2 (C) represents the total conflict or 

contradictory mass assignments. 

For a probabilistic decision-making, Smets defined the pignistic 

probability transformation [32] to transform a BBA into a probabil- 

ity measure BetP: 

BetP ( θi ) 
�
=

∑ 

θi ∈ A 

m (A ) 

| A | 
∀ θi ∈ � (6) 

where | A | denotes the cardinality of A . The decision is made by 

choosing the element in FOD which has the highest BetP value. 

Note that there are still other probability transformations of BBA, 

see [33] for details. 

3.2. Evidential modeling for uncertainties and fusion based detection 

To deal with the uncertainties encountered in the impulse noise 

detection, we propose a detection method based on evidential rea- 

soning, which uses the extreme criterion and discontinuity crite- 

rion simultaneously. The flow chart of the detection algorithm is 

illustrated in Fig. 2 . 

Here we propose two methods for uncertainties modeling. One 

proposed method models the uncertainties of extreme criterion 

and discontinuity criterion with two BBAs, respectively (denoted 

by method I). The other proposed method treats this impulse 

noise detection with two criteria as a multi-criteria decision mak- 

ing problem, and uses cautious ordered weighted averaging with 

evidential reasoning (COWA-ER) method [34] to generate BBAs 

(denoted by method II). In both methods, we use the distance of 

interval numbers to describe the extreme property and use the 

rank-ordered absolute differences (ROAD) statistic [29] to describe 

the discontinuity property. 

3.2.1. Evidential modeling method I and fusion based detection 

1) Evidential modeling for the uncertainty in extreme criterion Ac- 

cording to the extreme property of the impulse noise, the intensity 

of an impulse noise pixel must be an extreme value or close to an 

extreme value. 

Since all of the pixels’ intensities in an image are within a range 

([0, 255] for an 8-bit image), the intensity information of an image 

can be represented by an interval number. An interval number ˜ a in 

R is a set of real numbers that lie between two real numbers, i.e., 

˜ a = [ a 1 , a 2 ] = { x | a 1 ≤ x ≤ a 2 } , a 1 , a 2 ∈ R and a 1 ≤ a 2 . The intensity

information of an image can be expressed as an interval number 
˜ I = [ I min , I max ] , where I min and I max denote the minimum and max- 

imum intensities of the image, respectively. Furthermore, a single 

pixel’s intensity x can also be viewed as an interval number [ x, x ], 

whose upper bound and lower bound are equal. 

The distance of interval numbers is a measure of dissimilarity 

between interval numbers. Here we use it to describe the close- 

ness between a pixel’s intensity and the extreme values. Various 

types of distance for interval numbers [35] have been proposed. 

Here, we use the following strict distance metric. Given two inter- 

val numbers ˜ a = [ a 1 , a 2 ] and ˜ b = [ b 1 , b 2 ] , the distance between ˜ a 

and ˜ b is defined as: 

d( ̃  a , ̃  b ) = 

√ 
[

( a 1 + a 2 ) − ( b 1 + b 2 ) 

2 

]2

+ 
1

3 

[

( a 2 −a 1 ) −( b 2 − b 1 ) 

2 

]2

.

(7) 

According to (7) , the distance between ˜ I and [ x, x ], which de- 

scribes the closeness between a pixel’s intensity x and the extreme 

values, I min and I max , is: 

d( ̃ I , [ x, x ]) = 

√ 
(

I min + I max 

2 
− x 

)2

+ 
( I max − I min ) 

2

12 
. (8) 

Here, x takes values in the interval [ I min , I max ]. An illustration of 

d( ̃ I , [ x, x ]) is shown in Fig. 3 , where the intensity range of the im- 

age is set as [0, 255]. When x takes the median of [0, 255], i.e., 

127 or 128, d( ̃ I , [ x, x ]) reaches the minimum value. The closer be- 

tween x and the extreme value, e.g., 0 or 255, the higher the value 

of d( ̃ I , [ x, x ]) . Thus, d( ̃ I , [ x, x ]) can be used to describe the extreme 

property. 

Suppose that the only possible type of the noise existing in the 

given image is the impulse noise. The pixel whose intensity is far 

from the extreme values must be the signal, but the pixel whose 

intensity is close to an extreme value may not be the noise. For 

example, in some bright or dark area, the intensity range of signal 

pixels may overlap with that of the impulse noise pixels. Here, we 

use the belief function to describe this uncertainty. 
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Fig. 2. Noise detection algorithm based on evidential reasoning.

Fig. 3. An illustration of d( ̃ I , [ x, x ]) . 

We set a detection window with a size of w D ×w D centered at 

the given pixel at ( i, j ): 

W D (i, j) = { x i −s, j−t | − ( w D − 1) / 2 ≤ s, t ≤ ( w D − 1) / 2 } (9) 

where x i −s, j−t is the intensity of the pixel at (i − s, j − t) . 

We focus on two distances in W D : 

(a) d c denotes the distance between the center pixel’s intensity 

and the interval number ˜ I , where ˜ I expresses the intensity 

range of the pixels in the whole image. 

(b) d 0 denotes the minimum distance in W D between a pixel’s 

intensity and ˜ I , where the pixel is the one whose intensity 

is the farthest one in W D from the extreme values. Thus, this 

pixel is most unlikely to be the noise in W D according to the 

extreme criterion. 

We also focus on another two distances in the whole image: 

(a) d ext denotes distance between ˜ I and the extreme value: I min 

or I max . It is the maximum distance in the image between 

a pixel’s intensity and ˜ I . If a pixel’s intensity is close to the 

extreme value, its distance to ˜ I is close to d ext . 

(b) d med denotes distance between ˜ I and the median of ˜ I . It 

is the minimum possible distance in the image between a 

pixel’s intensity and ˜ I . If a pixel’s intensity is much far from 

the extreme values, its distance to ˜ I is close to d med . 

Finally, we construct a BBA m 1 using the above distances to 

model the uncertainty of whether the center pixel is corrupted by 

the impulse noise or not according to the extreme criterion:
⎧

⎪ 
⎪ 
⎪ 
⎪

⎨

⎪ 
⎪

⎪

⎪

⎩ 

m 1 (N) = 
d c − d 0 

d ext − d 0 + ε 

m 1 (S) = 1 −
d c − d med

d ext − d med 

m 1 (�) = 1 − m 1 (N) − m 1 ( S ) 

(10) 

Here, the FOD � = { N, S} , where N denotes the noise and S denotes 

the signal. The parameter ε is a small positive real number to avoid 

m 1 ( N ) to be 1, when the intensity of the center pixel is an extreme 

value. It means that a pixel with an extreme value should not be 

absolutely recognized as the noise because it might be the signal 

actually. Furthermore, Dempster’s rule of combination in (5) has 

the problem of one ballot veto when one BBA is assigned 1 on 

one singleton θ i ( θ i ∈ �), while 0 on other singletons. That is, if 

m 1 (N) = 1 , i.e., m 1 (S) = 0 , no matter what m 2 is, the combined 

BBA has m (S) = 0 , which indicates the center pixel cannot be the 

signal. 

Since d ext ≥d c ≥d 0 ≥ d med , 0 ≤ ( d c − d 0 ) / ( d ext − d 0 + ε) < 1 

and 0 ≤ ( d c − d med ) / ( d ext − d med ) ≤ 1 . That is, 0 ≤m 1 ( N ) < 1 and 

0 ≤m 1 ( S ) ≤1. Besides, as d med ≤ d 0 , 

m 1 (N) ≤
d c − d 0
d ext − d 0 

≤
d c − d med 

d ext − d med 
,

which means m 1 (N) ≤ 1 − m 1 ( S ) so that m 1 (N) + m 1 ( S ) ≤ 1 . 

Therefore, m 1 satisfies the constraint in (2) , and m 1 is a legitimate 

BBA. 

According to m 1 , the center pixel will have a large value of 

m 1 ( N ) only when its intensity is close to the extreme value, and at 

the same time far from the intensity being the closest to the me- 

dian of ˜ I in W D . The center pixel will have a large value of m 1 ( S ) 

when its intensity is close to the median of ˜ I . 

Here, we consider two different cases about the detection win- 

dow and the corresponding BBA m 1 of the center pixel when 
˜ I = [0 , 255] , ε = 0 . 1 and α = 10 , i.e., noise pixels take values in the 

sets of S 1 = { 0 , 1 , . . . , 10 } and S 2 = { 245 , 246 , . . . , 255 } .

(a) For the most common case, the intensities of signal pixels 

in a detection window W D are far from the extreme values, 

as the example shown in Fig. 4 (a), where the intensity range 

of signal pixels is [100, 150]. The pixel with the intensity of 

127 is the most unlikely to be the noise in W D , since 127 

is the farthest intensity in W D from the extreme values. If 

the center pixel’s intensity x i,j is in the range of [0, 10] or 

[245, 255], it is close to the extreme value, and at the same 

time far from 127. Thus, the center pixel is assigned a large 

value of m 1 ( N ). If the center pixel’s intensity is in the range 

of [100, 150], it is close to the median of ˜ I . Thus, it is as- 

signed a large value of m 1 ( S ). 

(b) In some cases, all of the signal pixels’ intensities in a detec- 

tion window are close to an extreme value, as the example 

shown in Fig. 5 (a), where the intensity range of signal pixels 

is [230, 250]. The pixel with the intensity of 230 is the one 

that is most unlikely to be the noise in W D , since 230 is the 

farthest intensity in W D from the extreme values. If the cen- 

ter pixel’s intensity x i,j is in the range of [0, 10] or [241, 255], 

it is close to the extreme value and far from 230. Thus, the 

center pixel is assigned a large value of m 1 ( N ). If the center 

pixel’s intensity x i,j is in the range of [230, 240], the center 

pixel is assigned a small value of m 1 ( N ) since its intensity is 

close to 230. At the same time, it is assigned a small value of 

m 1 ( S ) since x i,j is far from the median of ˜ I . Therefore, m 1 ( �) 

is large, which indicates it is hard to say whether the center 

pixel is the noise or signal. 

In summary, in this case, it is hard to get a crisp descrip- 

tion of the beliefs for the corresponding decisions according 

to the extreme criterion, since the intensity range of signal 

pixels overlaps with that of the noise pixels. However, our 

BBA m 1 keeps the large uncertainty (large m 1 ( �)), which is 

helpful to avoid the arbitrary detection decision. 

From the above we can see that when using the extreme crite- 

rion for noise detection, our evidential method uses the BBA to de- 
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Fig. 4. Case a and the corresponding m 1 of the center pixel. (a) A detection window for case a . (b) Corresponding m 1 when x takes different values.

Fig. 5. Case b and the corresponding m 1 of the center pixel. (a) A detection window for case b . (b) Corresponding m 1 when x takes different values.

Fig. 6. One-dimensional illustration of the differences between some signal pixels and the impulse noise. (a) Intensities of the impulse noise and its neighbors. (b) Intensities

of an edge pixel and its neighbors. (c) Intensities of signal pixels in the bright area.

scribe the beliefs of the corresponding detection decisions, which 

does not make a hard decision like two-steps methods but keeps 

the uncertainty. This is more cautious and can reduce the informa- 

tion loss for the final fusion-based detection. 

2) Evidential modeling for the uncertainty in discontinuity crite- 

rion According to the discontinuity property of the impulse noise, 

the intensity of an impulse noise pixel tends to be much higher or 

lower than the intensities of its neighbors. For some signal pixels, 

e.g., edge pixels and signal pixels in the bright or dark area, they

are easily detected as the noise according to the extreme criterion. 

However, they have some differences from the noise pixel accord- 

ing to the discontinuity criterion. The intensity of an edge pixel is 

higher or lower than only a portion of the intensities of its neigh- 

bors. The intensity of a signal pixel in the bright or dark area is 

similar to the intensities of its neighbors. 

For a pixel at ( i, j ), we consider its neighbors’ intensity infor- 

mation in the same detection window W D (i, j) = { x i −s, j−t | − ( w D −

1) / 2 ≤ s, t ≤ ( w D − 1) / 2 } as used in modeling the uncertainty in

the extreme criterion. Those differences between the signal, edge, 

and the bright area pixels reflected in the discontinuity property 

are illustrated in Fig. 6 . Here for simplification, one-dimensional 

expressions of the pixels’ intensities in the detection windows are 

used, where q = ( w D − 1) / 2 . 

We use the rank-ordered absolute differences (ROAD) statis- 

tic [29] to describe such differences reflected in the discontinu- 

ity property. Define di f (x i, j , x i −s, j−t ) = x i, j − x i −s, j−t as the absolute 

difference of the intensities between the center pixel at ( i, j ) and 

its neighbor at (i − s, j − t) , where x i −s, j−t ∈ W D (i, j) . If the size of 

W D ( i, j ) is M = w D × w D , there will be M − 1 neighbors in the win- 

dow, and therefore the amount of dif ( x i,j , ·) is M − 1 . These dif ( x i,j , ·) 

can describe the dissimilarity between the center pixel and its 

neighbors. To further analyze this dissimilarity, sort these M − 1 

dif ( x i,j , ·) values in the ascending order and denote r g ( x i,j ) as the g th 

smallest dif ( x i,j , ·). Finally, calculate the sum of the first n smallest 

dif ( x i,j , ·) as 

ROAD n ( x i, j ) = 

n 
∑ 

g=1

r g ( x i, j ) (11) 

where 2 ≤ n ≤ M − 1 . 

If the center pixel is the noise, dif ( x i,j , ·) is small when its neigh- 

bor is a noise pixel whose intensity is close to the same extreme 

value as the center pixel. 
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If the center pixel is the signal without extreme property, 

dif ( x i,j , ·) is large when its neighbor is the noise. 

If the center pixel is the signal with extreme property, dif ( x i,j , ·) 

is large when its neighbor is a noise whose intensity is close to the 

other extreme value. 

Therefore, when the noise density is low, the impulse noise has 

large value of ROAD M−1 ( x i, j ) as well as the sum of its smallest n 

dif ( x i,j , ·) values, i.e., ROAD n ( x i,j ). The signal pixel has small value of 

ROAD M−1 ( x i, j ) as well as ROAD n ( x i,j ). 

With the increase of the noise density, the quantity of impulse 

noise pixels increases in a detection window. If the center pixel is 

the noise, the amount of small dif ( x i,j , ·) will increase since there 

are more noise neighbors having the similar intensities with the 

center pixel. At the same time, the amount of very large dif ( x i,j , ·) 

also increases since there are more noise neighbors having the in- 

tensities close to the other extreme value. Thus, ROAD n ( x i,j ) be- 

comes smaller but ROAD M−1 ( x i, j ) has no significant change. 

If the center pixel is the signal, the amount of large 

dif ( x i,j , ·) will increase since there are more noise neighbors. Thus, 

ROAD M−1 ( x i, j ) becomes larger but ROAD n ( x i,j ) has no significant 

change. 

In summary, ROAD n ( x i,j ) is large only when the center pixel is 

the noise and the noise density is small; ROAD M−1 ( x i, j ) is small 

only when the center pixel is the signal and the noise density 

is small. With the increasing of the noise density, the differences 

between the signal and the noise reflected in ROAD n ( x i,j ) and 

ROAD M−1 ( x i, j ) narrow. This means that the discontinuity property 

of the impulse noise pixels becomes weaker with the increase of 

the noise density. It is unreasonable to use the discontinuity crite- 

rion to make hard decisions for detection. Therefore, we construct 

a BBA m 2 to describe the beliefs of the corresponding detection 

decisions according to the discontinuity criterion. 

As we have discussed above, only the noise pixel can have large 

ROAD n ( x i,j ) and only the signal pixel can have small ROAD M−1 ( x i, j ) . 

Thus, for a given center pixel, the larger value of ROAD n ( x i,j ) it has, 

the larger belief it should be assigned to being detected as the 

noise; the smaller value of ROAD M−1 ( x i, j ) it has, the larger belief 

should be assigned to being detected as the signal. For a center 

pixel with the intensity of x i,j , its m 2 is constructed as follow. We 

take n = (M − 1) / 2 , which means that we focus on the first half 

small dif ( x i,j , ·) when considering the belief of that a pixel should 

be detected as the noise.
⎧ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪

⎨

⎪ 
⎪ 
⎪

⎪

⎪

⎩ 

m 2 (N) = 

ROAD (M−1) 
2

( x i, j ) 

(M−1) 
2 × ( I max − I min ) 

m 2 (S) = 1 −
ROAD M−1 (x i, j ) 

(M − 1) × ( I max − I min ) 

m 2 (�) = 1 − m 2 (N) − m 2 (S) 

(12) 

Here, I max and I min denote the maximum and minimum intensities 

of the whole image, respectively. 

Since r g ( x i, j ) ≤ I max −I min , ROAD (M −1) 
2

(x i, j ) ≤
(M −1) 

2 × ( I max −I min )

and ROAD M−1 (x i, j ) ≤ (M − 1) × ( I max − I min ) . That is 0 ≤m 2 ( N ) ≤1 

and 0 ≤m 2 ( S ) ≤1. Besides, since 

m 2 (N) + m 2 (S) 

= 1 −

(

ROAD M−1 (x i, j ) 

(M − 1) × (I max − I min ) 
−

ROAD (M−1) / 2 (x i, j ) 
(M−1) 

2 × ( I max − I min ) 

)

= 1 −

∑ M−1

g= (M+1) 
2 

r g (x i, j ) − ROAD (M−1) / 2 (x i, j ) 

(M − 1) × (I max − I min ) 

and 
∑ M−1 

g= (M+1) 
2 

r g (x i, j ) ≥ ROAD (M−1) 
2

(x i, j ) , there exists m 2 (N) + 

m 2 (S) ≤ 1 . Thus, m 2 satisfies the constraint of BBA in (2) and m 2 

is a legitimate BBA. 

For a given pixel, mass values in the BBA m 2 : m 2 ( N ), m 2 ( S ) 

and m 2 ( �) can be represented as the areas of regions as shown 

in Fig. 7 . 

Fig. 7 (a) illustrates an example of a detection window. The in- 

tensity of the center pixel x i, j = 2 . We suppose that the largest in- 

tensity difference I max − I min in the image is 255. Since the size 

of the window M is 25, we can get 24 dif ( x i,j , ·) values. The 

ascending ordered dif ( x i,j , ·), i.e., r g ( x i,j ), ( g = 1 , 2 , . . . , 24 ), are ex- 

pressed as the histogram in Fig. 7 (b). We specify the area of 

the rectangular region in Fig. 7 (b) with the vertex points: (0, 0), 

(24, 0), (0, 255) and (24, 255) as 1. It means that we repre- 

sent the value of (M − 1) × ( I max − I min ) in (12) using a region 

with an area of 1. Thus, the value of ROAD M−1 (x i, j ) / [(M − 1) ×

( I max − I min )] can be represented by the region determined by 

r g ( x i,j ), ( g = 1 , 2 , . . . , 24 ) in Fig. 7 (b). That is, the value of m 2 ( S ) 

in (12) , i.e., 1 − ROAD M−1 (x i, j ) / [(M − 1) × ( I max − I min )] can be rep- 

resented as the blue area in Fig. 7 (c). Similarly, the value of 

ROAD (M−1) / 2 (x i, j ) / [(M − 1) × ( I max − I min )] can be represented by 

the region determined by r g ( x i,j ), ( g = 1 , 2 , . . . , 12 ) in Fig. 7 (b). That 

is, the value of m 2 ( N ) in (12) , i.e., 2 × ROAD (M−1) / 2 (x i, j ) / [(M − 1) ×

( I max − I min )] , can be represented as the pink area 1 in Fig. 7 (c). 

Thus, the value of m 2 ( �) is represented as the remanent area, i.e. 

the green area in Fig. 7 (c). 

Fig. 8 shows the graphical representations of m 2 for different 

kinds of center pixels with different noise density levels (25%, 50% 

and 75%). Center pixels include the impulse noise pixel (the first 

column in Fig. 8 ), the signal pixels with extreme property, such 

as the edge pixel (the second column in Fig. 8 ), the signal pixels 

in the bright or dark area (the third column in Fig. 8 ), and the 

common signal pixels with no extreme property (the last column 

in Fig. 8 ). Here, we assume that the largest intensity differences 

I max − I min for the whole image in all cases are 255. 

In Fig. 8 , the signal pixels (from the second column to the last 

column) have large values of m 2 ( S ) indicating that for signal pixels, 

large beliefs are assigned to being detected as the signal under all 

noise density levels. 

For the impulse noise pixel, when the noise density ≤ 50% 

( Fig. 8 (a) or (e)), it has large value of m 2 ( N ) indicating that large 

belief is assigned to being detected as the noise. However, when 

the noise density is larger than 50% ( Fig. 8 (i)), the impulse noise 

pixel has small value of m 2 ( N ) indicating that only small belief 

is assigned to being detected as the noise. But at the same time, 

its value of m 2 ( �) is large indicating that the uncertainty degree 

of discontinuity criterion is large when the image is corrupted 

severely. 

Our evidential method uses the BBA to describe the beliefs of 

the corresponding detection decisions according to the discontinu- 

ity criterion. We do not make the hard decision directly but keep 

the uncertainty for the time being, which is more cautious. Particu- 

larly, our modeling method here keeps the large uncertainty of dis- 

continuity criterion when the noise intensity is large. This will be 

helpful for the final fusion-based detection to decrease the miss- 

detections and false alarms. 

3) Fusion based detection The generated BBAs m 1 and m 2 can be

combined, e.g., using Eq. (5) to obtain m (·) = [ m 1 � m 2 ](·) , which 

is a combined BBA for the noise detection representing the simul- 

taneous use of the extreme property and discontinuity property. 

Once m is obtained, we use the pignistic probability transforma- 

tion in Eq. (6) to transform m into a probability measure BetP. If 

BetP( N ) ≥0.5, the center pixel should be detected as the noise. 

1 Since the value of m 2 ( N ) is the double of ROAD (M−1) / 2 (x i, j ) / [(M − 1) × ( I max −

I min )] , m 2 ( N ) can be represented as the double of the region determined by r g ( x i,j ),

( g = 1 , 2 , . . . , 12 ). 
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Fig. 7. Visual representation of m 2 . (a) A detection window. (b) The illustration of r g (2). (c) Graphical representation of belief assignments. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Illustration of m 2 in cases with different noise densities. (From top to bottom, from left to right) The first row to third row show the cases when the noise densities

are 25%, 50% and 75% respectively. The first column to fourth column show the cases when the center pixels are the impulse noise, edge pixel, signal pixel in the bright or

dark area and common signal pixel without extreme property respectively.

Here we use an example to illustrate our detection procedure. 

A detection window is shown in Fig. 9 . 

In this window, intensities of signal pixels range from 200 to 

206 and several pixels are corrupted by the impulse noise with 

intensities of 0, 8 or 9. Assume the intensity range of the whole 

image is [0, 255]. The value of ε in (10) is 0.1. 

According to the modeling method I, the generated BBAs are: 

{ 
m 1 (N) = 0 . 8416 
m 1 (S) = 0 . 0933 
m 1 (�) = 0 . 0651 

and 

{ 
m 2 (N) = 0 . 5696 
m 2 (S) = 0 . 3320 
m 2 (�) = 0 . 0984 
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Fig. 9. The illustration of a detection window.

The combined BBA is: 
{ 
m (N) = 0 . 8978 
m (S) = 0 . 0926 
m (�) = 0 . 0096 

Then, we obtain the pignistic probability BetP (N) = 0 . 9026 and 

the center pixel is finally detected as the impulse noise since 

BetP( N ) > 0.5. 

3.2.2. Evidential modeling method II and fusion based detection 

The impulse noise detection with two criteria including the ex- 

treme property and discontinuity property can be viewed as a 

multi-criteria (to be more accurately bi-criteria) decision making 

problem. Therefore, we can use the cautious ordered weighted av- 

eraging with evidential reasoning (COWA-ER) method [34] to gen- 

erate BBAs and to implement the fusion-based noise detection. 

1) COWA-ER method : In the noise detection problem, for a given

pixel, the finite set of alternatives � = { θ1 , θ2 } = { N, S} . Accord- 
ing to the analyses in method I, the pessimistic and optimistic

valuations of the expected payoffs to these alternatives ob- 

tained from the two detection criteria (extreme criterion and

discontinuity criterion) are:

⎧

⎪ 
⎪ 
⎪ 
⎪

⎪

⎪

⎪

⎪

⎪

⎪ 
⎪ 
⎪ 
⎨ 

⎪

⎪ 
⎪ 
⎪ 
⎪ 
⎪

⎪

⎪

⎪

⎪

⎪ 
⎪ 
⎩ 

e min (N) = min 

{

d c − d 0 
d ext − d 0 + ε 

,
ROAD M−1 

2
( x i, j ) 

M−1 
2 × ( I max − I min ) 

}

e max (N) = max 

{

d c − d 0 
d ext − d 0 + ε 

,
ROAD M−1 

2
( x i, j ) 

M−1 
2 × ( I max − I min ) 

}

e min (S) = min 

{

1 −
d c − d med 

d ext − d med 
, 1 −

ROAD M−1 (x i, j ) 

(M − 1) × ( I max − I min ) 

}

e max (S) = max 

{

1 −
d c − d med 

d ext − d med 
, 1 −

ROAD M−1 (x i, j ) 

(M − 1) × ( I max − I min ) 

}

(13) 

Then, the expected payoff matrix is constructed as: 

E = 

[

E[ N] 
E[ S] 

]

= 

[

[ e min (N) , e max (N) ] 
[ e min (S) , e max (S) ] 

]

(14) 

Here, the expected payoffs E [ N ] and E [ S ] are imprecise since they 

belong to the interval [ e min ( ·), e max ( ·)] where the lower and upper 

bounds represent the pessimistic and optimistic attitudes, respec- 

tively. 

Then, divide each bound of intervals by the max of the bounds, 

i.e., e MAX = max { e max (N) , e max (S) } , to get a new normalized impre- 

cise expected payoff vector E Imp : 

E Imp = 

[

[ e min (N) / e MAX , e max (N) / e MAX ] 
[ e min (S) / e MAX , e max (S) / e MAX ] 

]

= 

[

[ a 1 , b 1 ] 
[ a 2 , b 2 ] 

]

(15) 

In the final, convert the normalized imprecise expected payoff

vector E Imp into BBAs according to a very natural and simple trans- 

formation [34,36] . The generation of a BBA associated to the hy- 

pothesis θ i , ( θ1 = N, θ2 = S) from any imprecise value [ a i , b i ] ⊆ [0, 

1] is generated as:
⎧

⎨ 

⎩ 

m i ( θi ) = a i 
m i ( ̄θi ) = 1 − b i 
m i ( θi ∪ θ̄i ) = b i − a i 

(16) 

θ̄i is the complement of θ i in �. With such a conversion, one sees 

that Bel ( θi ) = a i , P l ( θi ) = b i and the uncertainty is represented by 

the length of the interval [ a i ,b i ]. 

2) Fusion based detection : By using the COWA-ER method, we can

obtain two BBAs: m 1 and m 2 . The generated BBAs can be com- 

bined using Eq. (5) , that is m (·) = [ m 1 � m 2 ](·) . Once m is com- 

puted, we use the pignistic probability transformation in (6) to

transform m into a probability measure BetP. If BetP( N ) ≥0.5,

the center pixel should be detected as the impulse noise.

Here we consider the same example showed in Fig. 9 . The value 

of ε in Eq. (13) is 0.1. The BBAs generated from modeling method 

II are: 
{ 
m 1 (N) = 0 . 6768
m 1 (S) = 0 
m 1 (�) = 0 . 3232 

and 

{ 
m 2 (N) = 0 . 6055
m 2 (S) = 0 . 1109 
m 2 (�) = 0 . 2836 

The combined BBA is: 
{ 
m (N) = 0 . 8622 
m (S) = 0 . 0388 
m (�) = 0 . 0990 

Then, we get the pignistic probability BetP (N) = 0 . 9117 and the 

center pixel is finally detected as the impulse noise because 

BetP( N ) > 0.5. 

When modeling the uncertainty of noise detection, the two pro- 

posed methods use the same information (extreme criterion and 

discontinuity criterion) but generate belief functions in different 

ways. Either of these two methods can be an alternative to the 

other in many cases but they might generate different detection 

results in some special situations. 

3.2.3. Different detection results with contradictory evidences 

In many cases, the two proposed methods generate same de- 

tection results since they describe the extreme criterion and dis- 

continuity criterion in very similar ways and both of their com- 

bined evidences will assign a larger belief to the same candidate 

(noise or signal). However, when these two evidence sources are 

highly contradictory (extreme criterion and discontinuity criterion 

give very different supports to the target pixel), the two proposed 

methods might generate different detection results as illustrated in 

the following two different examples that the evidence sources are 

highly contradictory. 

1) Detection results for situation 1

Situation 1 describes the situation when the target pixel is a

signal in a dark area close to an edge where the pixels at

the other side of the edge have higher intensities as shown in

Fig. 10 .

According to the extreme criterion and discontinuity criterion,

the two BBAs generated by evidential modeling method I using

Eqs. (10) and (12) are:

{ 
m 1 (N) = 0 . 9548
m 1 (S) = 0 . 0235 
m 1 (�) = 0 . 0217 

and 

{ 
m 2 (N) = 0 . 0039
m 2 (S) = 0 . 9440 
m 2 (�) = 0 . 0521 
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Fig. 10. Highly contradictory situation 1.

Fig. 11. Highly contradictory situation 2. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this ar- 

ticle.)

In this situation, the proposition that the target pixel should 

be detected as noise obtained very different supports from the ex- 

treme criterion ( m 1 ( N ) is large) and discontinuity criterion ( m 2 ( N ) 

is small) since the target pixel’s intensity is very close to the 

extreme value 0, but at the same time, the target pixel has 

many neighborhoods have the similar intensities. After the evi- 

dence combination and probability transformation, we finally get 

BetP (N) = 0 . 5491 and the target pixel is false alarmed as noise 

since BetP ( N ) > 0.5. 

The evidential modeling method II deals with these two highly 

contradictory evidences in different ways. According to Eqs. 13 and 

14 , the expected payoff matrix is generated as: 

E = 

[

E[ N] 
E[ S] 

]

= 

[

[ 0 . 0039 , 0 . 9548 ] 
[ 0 . 0235 , 0 . 9440 ] 

]

Then, we get the normalized expected payoff vector: 

E Imp = 

[

E[ N] 
E[ S] 

]

= 

[

[ 0 . 0 041 , 1 . 0 0 0 0 ] 
[ 0 . 0246 , 0 . 9887 ] 

]

The generated BBAs are: 
{ 
m 1 (N) = 0 . 0041 
m 1 (S) = 0 
m 1 (�) = 0 . 9959 

and 

{ 
m 2 (N) = 0 . 0113 
m 2 (S) = 0 . 0246 
m 2 (�) = 0 . 9641 

After the evidence combination and probability transformation, 

we finally get BetP (N) = 0 . 4954 and the target pixel is successfully 

detected as signal since BetP ( N ) < 0.5. For this example, the detec- 

tion result generated by the proposed method II is more reason- 

able. 

2) Detection results for situation 2

Situation 2 describes the highly corrupted situation when the

target pixel is noise and the neighborhood signal pixels (col- 

ored with green) have similar intensities with the target pixel

as shown in Fig. 11 .

According to Eqs. (10) and (12) , the two BBAs generated by ev- 

idential modeling method I are: 
{ 
m 1 (N) = 0 . 7914 
m 1 (S) = 0 . 1049 
m 1 (�) = 0 . 1037 

and 

{ 
m 2 (N) = 0 . 0141 
m 2 (S) = 0 . 7296 
m 2 (�) = 0 . 2564 

In this situation, the proposition that the target pixel should 

be detected as noise obtained very different supports from the ex- 

treme criterion ( m 1 ( N ) is large) and discontinuity criterion ( m 2 ( N ) 

is small) since the target pixel’s intensity is close to the extreme 

value 255, but at the same time, there are many neighborhoods 

have the similar intensities with the target pixel. After the evi- 

dence combination and probability transformation, we finally get 

BetP (N) = 0 . 5432 and the target pixel is successfully detected as 

noise since BetP ( N ) > 0.5. 

The evidential modeling method II deals with these two 

highly contradictory evidences in different ways. According to 

Eqs. (13) and (14) , the expected payoff matrix is generated as: 

E = 

[

E[ N] 
E[ S] 

]

= 

[

[ 0 . 0141 , 0 . 7914 ] 
[ 0 . 1049 , 0 . 7296 ] 

]

Then, we get the normalized expected payoff vector: 

E Imp = 

[

E[ N] 
E[ S] 

]

= 

[

[ 0 . 0178 , 1 . 0 0 0 0 ] 
[ 0 . 1325 , 0 . 9219 ] 

]

The generated BBAs are: 
{ 
m 1 (N) = 0 . 0178 
m 1 (S) = 0 
m 1 (�) = 0 . 9822 

and 

{ 
m 2 (N) = 0 . 0781 
m 2 (S) = 0 . 1325 
m 2 (�) = 0 . 7894 

After the evidence combination and probability transforma- 

tion, we finally get BetP (N) = 0 . 4809 and the target pixel is miss- 

detected as signal since BetP ( N ) < 0.5. For this example, the detec- 

tion result generated by the proposed method I is more reasonable. 

From the above, the two proposed methods are likely to gener- 

ate different detection results in highly contradictory situations. 

4. Adaptive median filtering

After the noise detection, we focus on the filter implementa- 

tion. It should be better that only the corrupted pixels will un- 

dergo the filtering. The size of the filtering window influences the 

filtering performance a lot, and the optimal window size is usu- 

ally determined by the detection result. Therefore, in this paper we 

further propose an adaptive switch median filtering method, which 

adaptively determines the size of filtering window according to the 

detection result. 

For a given pixel at ( i, j ), the filtering window with a size of 

w F ×w F centered at it is: 

W F (i, j) = { x i −s, j−t | − ( w F − 1) / 2 ≤ s, t ≤ ( w F − 1) / 2 } (17) 

where x i −s, j−t is the intensity of the pixel at (i − s, j − t) . 

Generally, in order to preserve details better, the size of filtering 

window should be as small as possible if there are enough signal 

pixels in the filtering window to help determine the filtered value. 

In the current filtering window W F ( i, j ), the proportion of the de- 

tected signal pixels is: 

S W F 
pro = 

S W F 
num

w F × w F 
(18) 

where S 
W F 
num is the number of the detected signal pixels in W F ( i, j ).

If the proportion of signal pixels in the current filtering window, 

i.e., S 
W F 
pro is small, the size of the filtering window should be ex- 

panded to see if the proportion is large enough in a larger filtering 

window. 
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Table 1

Estimation results of noise density (%).

Actual 10 20 30 40 50 60 70 80 90

Method I 10.01 19.98 29.99 40.00 50.01 60.01 70.00 80.01 90.01

Method II 10.01 19.98 29.98 39.99 49.99 59.99 70.00 80.00 90.00

When the noise density is large, S 
W F 
pro is likely to be small. Thus,

the minimum S 
W F 
pro required for not extending the filtering window

size should be reduced with the increase of the noise density to 

avoid over smoothing. Therefore, the noise density should be esti- 

mated first. 

4.1. Noise density estimation 

The noise density is estimated according to the noise detection 

result: 

ˆ d N = 
N num

P num 
. (19) 

Here, N num is the total number of the detected noise pixels and 

P num is the total number of the pixels in the image. 

The performance of noise density estimation for corrupted Lena 

images are presented in Table 1 , where method I and method 

II represent the two proposed evidential modeling methods re- 

spectively. In this experiment, noise pixels take values in the sets 

of S 1 = { 0 , 1 , . . . , 10 } and S 2 = { 245 , 246 , . . . , 255 } , i.e., α = 10 . The

values of ε in Eqs. (10) and (13) are 0.1. The size of W D is 11 ×11 

based on a great deal of tests. According to Table 1 , the estima- 

tion results are very close to the actual noise densities indicating 

that our detection methods are effective, and they can be used to 

determine the size of filtering window. 

4.2. Filtering method 

According to the estimated noise density ˆ d N and the proportion 

of the detected signal pixels S 
W F 
pro , the condition of judging whether

the current filtering window should be expanded or not, is set as: 

S W F 
pro > (1 − ˆ d N ) × β (20) 

Here, β is a scale factor taking value in the range of (0, 1). We set 

it as 1/4 based on a great deal of tests on various images. When 

the noise density is small, the minimum required S 
W F 
pro for not ex- 

panding the current filtering window is large; when the noise den- 

sity is large, the minimum required S 
W F 
pro is small.

Our filtering method can be outlined below: 

Step (1) Set the initial size of filtering window w F ×w F to 3 ×3 

and set the maximum window size to w max 
F × w max 

F . 

Step (2) Set a filtering window W F ( i, j ) centered at the target pixel 

at ( i, j ) with current size of w F ×w F . 

Step (3) If the proportion of the detected signal pixels in the filter- 

ing window, i.e., S 
W F 
pro satisfies the criterion in Eq. (20) , go

to Step (5). 

Step (4) Extend the filtering window size to ( w F + 1) × ( w F + 1) 

and repeat Steps (2) and (3) until the current filtering 

window size reaches w max 
F × w max 

F . 

Step (5) Apply a median filtering to the current fil- 

tering window. The output intensity Y i, j = 

median 
{

x i −s, j−t | x i −s, j−t ∈ W D F (S) 
}

, where W D F (S) is the 

set of all detected signal pixels in the current filtering 

window. 

The maximum window size is empirically given in Table 2 

based on a large quantities of tests on various images. In Table 2 , 

different window sizes are suggested for different noise density 

levels. 

Table 2

Recommended maximum size of filtering

window.

Estimated noise density w max 
F × w max 

F 

0% < ˆ d N ≤ 30% 3 ×3 

30% < ˆ d N ≤ 50% 5 ×5 

50% < ˆ d N ≤ 70% 7 ×7 
ˆ d N > 70% 9 ×9 

5. Experiments

The adaptive switching median filtering method we proposed 

includes two components: the impulse noise detection and the 

adaptive filtering process. Since the noise detection plays a key 

role in the final denoising performance, we first evaluate the 

performance of the noise detection. Then, we evaluate the fil- 

tering performance of our proposed adaptively median filtering 

and the whole denoising performance of our proposed ASMF- 

DBER method, respectively. Furthermore, the computational cost 

and sensitivity of the parameters’ setting of ASMF-DBER will be 

discussed. We will also check the adaptability of our ASMF-DBER 

for the value of α in the impulse noise model, which in fact con- 

trols the intensity range that the noise pixels take values in. 

Experiments are carried out using several monochrome im- 

ages ( Fig. 12 ). The experiment results of several existing methods, 

i.e., BDND [18] , IBDND [19] , ACWM [20] , ASWM [23] , ROR-NLM

[25] and WCSR [24] are also provided for comparison. 

5.1. Performance evaluation of noise detection 

For the two proposed noise detection methods (method I and 

method II) based on two different evidential modeling methods 

respectively, we evaluate their performances using corrupted Lena 

image and the results are shown in Table 3 . The performances of 

ACWM, BDND, ASWM and ROR-NLM methods are also provided for 

comparison. The performance evaluation indices used here include 

the false alarm rate (FAR), miss-detection rate (MDR) and accuracy 

rate (AR): 

FAR = 
F A num

S A num 

, (21) 

MDR = 
M D num

N A num 

, (22) 

AR = 
P num − F A num − M D num

P num 
. (23) 

Here, FA num is the number of the actual signal pixels being de- 

tected as the noise, MD num is the number of the actual noise pixels 

being detected as the signal, S A num is the number of the actual sig- 

nal pixels, N A num is the number of the actual noise pixels, and P num 

is the number of pixels in the image. 

In this experiment, α = 10 , i.e., noise pixels take values in 

S 1 = { 0 , 1 , . . . , 10 } and S 2 = { 245 , 246 , . . . , 255 } . Values of ε in

Eqs. (10) and (13) are 0.1. The size of W D is empirically determined 

as 11 ×11 based on a great deal of tests. 

As shown in Table 3 , when the noise density is no larger than 

60%, the accuracy rates of these methods are all larger than 80%. 
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Fig. 12. Monochrome images for experiments. (a) Lena. (b) Barbara. (c) Baboon. (d) Boat. (e) Cameraman.

Table 3

Comparison of the noise detection performances for corrupted Lena images (%).

Noise density Performance ACWM BDND ASWM ROR-NLM Method I Method II

10% FAR 0.291 0.003 0.654 1.020 0.004 0.003

MDR 0.302 0.023 0.317 0.019 0.237 0.191

AR 99.708 99.995 99.380 99.080 99.973 99.978

20% FAR 0.608 0.002 0.927 1.176 0.004 0.002

MDR 0.967 0.264 0.485 0.086 0.116 0.122

AR 99.320 99.946 99.161 99.042 99.974 99.974

30% FAR 1.263 0.004 1.372 1.341 0.003 0.002

MDR 2.995 1.123 0.855 0.157 0.046 0.107

AR 98.217 99.660 98.783 99.014 99.984 99.967

40% FAR 2.923 0.003 2.370 1.433 0.006 0.002

MDR 6.975 2.941 1.924 0.414 0.004 0.042

AR 95.456 98.822 97.808 98.975 99.995 99.982

50% FAR 6.191 0.010 13.893 5.663 0.014 0.002

MDR 12.864 6.057 3.492 1.634 0.003 0.027

AR 90.473 96.967 91.308 96.351 99.992 99.986

60% FAR 12.063 0.014 13.892 5.665 0.012 0.002

MDR 20.921 10.387 11.785 6.513 0 0.005

AR 82.622 93.762 87.372 93.826 99.995 99.996

70% FAR 21.176 0.047 29.166 18.784 0.037 0.004

MDR 30.789 15.587 22.981 18.742 0 0.002

AR 72.095 89.075 75.164 81.245 99.989 99.997

80% FAR 33.869 0.137 52.535 43.370 0.064 0.006

MDR 41.782 21.976 36.742 35.514 0 0.001

AR 59.801 82.392 60.099 62.915 99.987 99.998

90% FAR 50.239 0.852 76.716 74.130 0.114 0.004

MDR 52.852 29.431 38.678 48.875 0.001 0.001

AR 47.409 73.427 57.518 48.600 99.988 99.999

When the noise density is larger than 60%, the accuracy rates 

of ACWM, BDND, ASWM and ROR-NLM methods drop rapidly. 

However, our proposed methods still achieve high accuracy rates 

( ≥90%). 

5.2. Performance of filtering 

To evaluate the filtering performance, we compare the filter- 

ing performance of the proposed adaptive median filtering method 

with the standard median filtering (SMF) used in ACWM, ASWM 

and the filters used in BDND, IBDND (adaptive weighted median 

filter), ROR-NLM and WCSR, respectively. In this experiment, α = 

10 and all the filters are used on the detected noise pixels gener- 

ated by the proposed noise detection method I. The experimental 

result is shown in Fig. 13 , where F ROR −NLM , F BDND , F IBDND and F WCSR 

denote the filters used in ROR-NLM, BDND, IBDND and WCSR algo- 

rithms respectively. 

According to Fig. 13 , when the noise density is no larger than 

30%, the proposed filter has similar performance with the filters 

used in IBDND and WCSR. With the increase of the noise density, 

the proposed filter generates better performance than other filters. 

5.3. Performance of denoising 

To verify the whole denoising performance of our proposed 

ASMF-DBER, we compare the denoising performance of our pro- 

posed ASMF-DBER with ACWM, ASWM, ROR-NLM, BDND, IBDND 

and WCSR using PSNR and SSIM as shown in Figs. 14 and 15 , 

respectively. In this experiment, α = 10 and the size of detection 

window W D is 11 ×11. ASMF-DBER I and II represent the denoising 

results based on the two proposed detection methods, respectively. 

When the noise density is low ( ≤20%), BDND, IBDND, and the 

proposed methods have similar denoising performances since they 

all can obtain high detection accuracy rates in low corrupted sit- 

uations (as illustrated in Table 3 for Lena image) and have similar 

denoising performances when the noise detection results are accu- 

rate enough (as shown in Fig. 13 when only the actual noise pixels 

are filtered). 

BDND and IBDND have better performance for Lena, Baboon 

and Boat images when the noise density is 10%. These images 

have no intensities close to extreme values (0 and 255). BDND 

and IBDND method can obtain better performance easily since they 

only uses extreme criterion when detecting impulse noise. 

WCSR method has very good performance on Barbara image 

when the noise density is 10%. The reason is that Barbara im- 
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Fig. 13. Comparison of filtering performances using PSNR for corrupted Lena im- 

ages.

age has big areas with regular texture. When the noise den- 

sity is low, since the noise detection result is accurate enough, 

WCSR can reconstruct the texture very well using the trained 

dictionaries. 

With the increase in noise density, the PSNR of BDND, IBDND 

and WCSR are much lower than that they achieved in Fig. 13 when 

only the actual noise pixels, but not the detected noise pixels, are 

filtered. That means, when carrying out the filtering on the de- 

tected impulse noise pixels, the detection result affects the whole 

denoising performance significantly. BDND, IBDND and WCSR fail 

to achieve satisfied filtering performances because of their poor 

detection results. 

The subjective quality comparisons of filtered images are illus- 

trated from Figs. 16–19 . The false alarmed pixels and miss-detected 

pixels of the two proposed methods are colored with red and 

green, respectively. Except for Cameraman image, other test im- 

ages do not have many false alarms and miss-detections. In or- 

der to highlight the colored pixels in these images, we circled the 

colored pixels using the corresponding colors (red for false alarms 

and green for miss-detections). 

From the comparisons of quantitative results and visually sub- 

jective qualities, we can see that the proposed ASMF-DBER al- 

gorithms obtain superior denoising results compared with other 

switch median filters and the sparse representation based method. 

Particularly, in the high noise density cases, ASMF-DBER has obvi- 

ous advantages over others. 

For cameraman image, the pixels around the edge of the “cam- 

eraman” would obtain highly contradictory evidence supports from 

the extreme criterion and discontinuity criterion, as the highly 

contradictory situation 1 ( Fig. 10 ), and the proposed two detec- 

tion methods are likely to obtain different detection results. In 

Fig. 17 , ASMF-DBER II has more false alarms than ASMF-DBER I at 

these pixels, so that the denoising performance of ASMF-DBER I 

for Cameraman image is not so good as ASMF-DBER II, as shown 

in Figs. 14 (e) and 15 (e). 

Among these algorithms, WCSR has the most parameters (8 pa- 

rameters) to be determined and some of them are sensitive with 

the noise density, what is a challenge for WCSR to obtain a satis- 

fied denoising result. 

From the above colored incorrect detections of the proposed 

two methods and Table 3 , we can find that ASMF-DBER I gen- 
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Fig. 14. Comparisons of denoising performances using PSNR. (a) Lena. (b) Barbara. (c) Baboon. (d) Boat. (e) Cameraman.
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Fig. 15. Comparisons of denoising performances using SSIM. (a) Lena. (b) Barbara. (c) Baboon. (d) Boat. (e) Cameraman.

Fig. 16. Denoising results for Lena image (noise density is 30%). (a) Corrupted image. (b) ASWM. (c) ROR-NLM. (d) BDND. (e) IBDND. (f) WCSR. (g) ASMF-DBER I. (h) ASMF- 

DBER II. (i) Colored detection results of ASMF-DBER I. (j) Colored detection results of ASMF-DBER II. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

erates more false alarms than ASMF-DBER II and ASMF-DBER 

II generates more miss-detections than ASMF-DBER I. There- 

fore, in practical applications, if the user relatively more empha- 

sizes low miss-detection rate, we suggest ASMF-DBER I; if the 

user relatively more emphasizes low false-alarm rate, we suggest 

ASMF-DBER II. 

5.4. Sensitivity of parameters’ setting 

There are two parameters to determine in our method. One is 

the detection window size and the other one is β in Eq. (20) used 

for deciding whether the current filtering window should be ex- 

panded or not. To discuss the sensitivity of the setting of these 
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Fig. 17. Denoising results for Cameraman image (noise density is 40%). (a) Corrupted image. (b) ASWM. (c) ROR-NLM. (d) BDND. (e) IBDND. (f) WCSR. (g) ASMF-DBER I. (h)

ASMF-DBER II. (i) Colored detection results of ASMF-DBER I. (j) Colored detection results of ASMF-DBER II. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Fig. 18. Denoising results for Barbara image (noise density is 70%). (a) Corrupted image. (b) ASWM. (c) ROR-NLM. (d) BDND. (e) IBDND. (f) WCSR. (g) ASMF-DBER I. (h)

ASMF-DBER II. (i) Colored detection results of ASMF-DBER I. (j) Colored detection results of ASMF-DBER II. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

two parameters, we compare the denoising performances of all the 

combinations of the two parameters. The comparison results for 

the two proposed denoising methods are shown in Tables 4 and 

5 , respectively. In this experiment, β changes with an incremental 

step 1/8 from 1/8 to 7/8. The detection window size is set as 5 ×5, 

7 ×7, 9 ×9, 11 ×11 or 13 ×13. 

From Tables 4 and 5 , the filtering performance is not very sen- 

sitive to the setting of β . When the noise density is 10% or 20%, all 

the β generate the same performance since the limited maximum 

filtering window is 3 ×3 when the estimated noise density is no 

larger than 30% according to Table 2 . With the increase of the noise 

density, the denoising performance becomes poorer when selecting 

small size of detection window. When the noise density is higher 

than 70%, large detection windows (larger than 7 ×7) achieve ob- 

vious better denoising performance than small detection windows 

(no larger than 7 ×7). When the size of detection window is set as 

11 ×11, and β is set as 1/4, we can usually obtain the best denois- 

ing performance. 
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Table 4

Denoising performances of ASMF-DBER I for different detection window size and β .

Noise Density 10% 20% 30% 40% 50% 60% 70% 80% 90%

5 ×5 β = 1 / 8 41.50 38.27 35.96 34.22 32.56 30.96 29.07 23.04 13.36

β = 1 / 4 41.50 38.27 35.96 34.26 32.59 30.96 29.09 23.07 13.36

β = 3 / 8 41.50 38.27 35.96 34.24 32.59 31.08 29.40 23.08 13.39

β = 1 / 2 41.50 38.27 35.96 34.24 32.43 31.08 29.42 23.13 13.39

β = 5 / 8 41.50 38.27 35.96 34.16 32.43 30.68 29.37 25.30 13.46

β = 3 / 4 41.50 38.27 35.96 33.73 32.30 30.63 28.84 25.30 13.46

β = 7 / 8 41.50 38.27 35.96 33.73 32.30 30.31 28.73 25.36 13.45

7 ×7 β = 1 / 8 41.77 38.56 36.12 34.35 32.63 31.04 29.59 27.61 20.34

β = 1 / 4 41.77 38.56 36.12 34.40 32.66 31.04 29.60 27.67 20.35

β = 3 / 8 41.77 38.56 36.12 34.37 32.66 31.15 29.60 27.67 20.35

β = 1 / 2 41.77 38.56 36.12 34.37 32.50 31.15 29.59 27.70 20.73

β = 5 / 8 41.77 38.56 36.12 34.30 32.50 30.73 29.54 27.51 20.80

β = 3 / 4 41.77 38.56 36.12 33.82 32.36 30.68 28.88 27.49 20.80

β = 7 / 8 41.77 38.56 36.12 33.82 32.36 30.35 28.70 27.38 21.08

9 ×9 β = 1 / 8 41.96 38.70 36.18 34.37 32.63 31.05 29.58 27.70 24.28

β = 1 / 4 41.96 38.70 36.18 34.42 32.67 31.05 29.61 27.73 24.33

β = 3 / 8 41.96 38.70 36.18 34.40 32.67 31.16 29.59 27.74 24.33

β = 1 / 2 41.96 38.70 36.18 34.40 32.48 31.16 29.59 27.73 24.66

β = 5 / 8 41.96 38.70 36.18 34.30 32.48 30.74 29.53 27.43 24.70

β = 3 / 4 41.96 38.70 36.18 33.82 32.21 30.69 28.88 27.40 24.70

β = 7 / 8 41.96 38.70 36.18 33.82 32.12 30.36 28.70 27.28 24.66

11 ×11 β = 1 / 8 41.92 38.76 36.23 34.38 32.62 31.05 29.58 27.71 25.07

β = 1 / 4 41.92 38.76 36.23 34.43 32.65 31.05 29.61 27.75 25.13

β = 3 / 8 41.92 38.76 36.23 34.41 32.65 31.16 29.59 27.75 25.13

β = 1 / 2 41.92 38.76 36.23 34.41 32.47 31.16 29.59 27.74 25.25

β = 5 / 8 41.92 38.76 36.23 34.31 32.47 30.74 29.53 27.45 25.29

β = 3 / 4 41.92 38.76 36.23 33.83 32.18 30.69 28.88 27.44 25.29

β = 7 / 8 41.92 38.76 36.23 33.83 32.10 30.36 28.70 27.32 25.18

13 ×13 β = 1 / 8 41.99 38.74 36.21 34.37 32.62 31.04 29.56 27.69 25.09

β = 1 / 4 41.99 38.74 36.22 34.41 32.64 31.04 29.58 27.73 25.15

β = 3 / 8 41.99 38.74 36.22 34.35 32.64 31.15 29.55 27.74 25.15

β = 1 / 2 41.99 38.74 36.20 34.35 32.47 31.15 29.55 27.72 25.25

β = 5 / 8 41.99 38.74 36.20 34.23 32.46 30.72 29.48 27.41 25.29

β = 3 / 4 41.99 38.74 35.90 33.76 32.18 30.67 28.80 27.39 25.29

β = 7 / 8 41.99 38.74 35.52 33.76 32.10 30.33 28.62 27.29 25.18

Table 5

Denoising performances of ASMF-DBER II for different detection window size and β .

Noise Density 10% 20% 30% 40% 50% 60% 70% 80% 90%

5 ×5 β = 1 / 8 41.77 38.29 35.87 33.87 32.31 30.63 28.38 22.67 13.23

β = 1 / 4 41.77 38.29 35.87 33.89 32.34 30.63 28.39 22.70 13.23

β = 3 / 8 41.77 38.29 35.87 33.78 32.34 30.70 28.90 22.70 13.26

β = 1 / 2 41.77 38.29 35.87 33.78 32.17 30.70 28.91 22.75 13.26

β = 5 / 8 41.77 38.29 35.87 33.66 32.17 30.40 28.90 24.82 13.32

β = 3 / 4 41.77 38.29 35.87 33.26 32.08 30.35 28.49 24.82 13.32

β = 7 / 8 41.77 38.29 35.87 33.26 32.08 30.18 28.40 24.95 13.65

7 ×7 β = 1 / 8 42.04 38.56 36.11 34.09 32.53 30.98 29.44 27.45 19.78

β = 1 / 4 42.04 38.56 36.11 34.11 32.56 30.99 29.44 27.51 19.78

β = 3 / 8 42.04 38.56 36.11 34.00 32.56 31.00 29.35 27.51 19.78

β = 1 / 2 42.04 38.56 36.11 34.00 32.38 31.00 29.35 27.51 20.18

β = 5 / 8 42.04 38.56 36.11 33.86 32.38 30.62 29.32 27.41 20.24

β = 3 / 4 42.04 38.56 36.11 33.44 32.27 30.57 28.76 27.40 20.24

β = 7 / 8 42.04 38.56 36.11 33.44 32.27 30.19 28.64 27.31 21.50

9 ×9 β = 1 / 8 42.13 38.73 36.24 34.16 32.58 31.04 29.49 27.60 24.56

β = 1 / 4 42.13 38.73 36.24 34.18 32.62 31.04 29.49 27.64 24.60

β = 3 / 8 42.13 38.73 36.24 34.06 32.62 31.06 29.40 27.65 24.60

β = 1 / 2 42.13 38.73 36.24 34.06 32.43 31.05 29.39 27.64 24.86

β = 5 / 8 42.13 38.73 36.24 33.93 32.43 30.66 29.37 27.46 24.93

β = 3 / 4 42.13 38.73 36.24 33.50 32.32 30.62 28.79 27.44 24.93

β = 7 / 8 42.13 38.73 36.24 33.50 32.32 30.22 28.64 27.35 24.88

11 ×11 β = 1 / 8 42.15 38.77 36.27 34.18 32.61 31.05 29.50 27.60 24.97

β = 1 / 4 42.15 38.77 36.27 34.20 32.64 31.06 29.50 27.65 25.01

β = 3 / 8 42.15 38.77 36.27 34.09 32.64 31.07 29.41 27.65 25.01

β = 1 / 2 42.15 38.77 36.27 34.09 32.45 31.06 29.40 27.64 25.12

β = 5 / 8 42.15 38.77 36.27 33.95 32.45 30.68 29.38 27.46 25.17

β = 3 / 4 42.15 38.77 36.27 33.52 32.34 30.63 28.79 27.44 25.17

β = 7 / 8 42.15 38.77 36.27 33.52 32.34 30.24 28.67 27.35 25.09

13 ×13 β = 1 / 8 42.20 38.79 36.27 34.19 32.60 31.05 29.50 27.60 24.97

β = 1 / 4 42.20 38.79 36.27 34.20 32.63 31.06 29.50 27.65 25.01

β = 3 / 8 42.20 38.79 36.27 34.09 32.63 31.07 29.41 27.65 25.01

β = 1 / 2 42.20 38.79 36.27 34.09 32.44 31.06 29.41 27.64 25.12

β = 5 / 8 42.20 38.79 36.27 33.96 32.44 30.68 29.36 27.46 25.16

β = 3 / 4 42.20 38.79 36.27 33.52 32.33 30.63 28.71 27.45 25.16

β = 7 / 8 42.20 38.79 36.27 33.52 32.33 30.24 28.54 27.36 25.09
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Fig. 19. Denoising results for Baboon image (noise density is 90%). (a) Corrupted image. (b) ASWM. (c) ROR-NLM. (d) BDND. (e) IBDND. (f) WCSR. (g) ASMF-DBER I. (h)

ASMF-DBER II. (i) Colored detection results of ASMF-DBER I. (j) Colored detection results of ASMF-DBER II. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 20. Comparisons of denoising performance using PSNR for Lena images corrupted by the impulse noise with various values of α. (a) α = 0 . (b) α = 5 . (c) α = 15 . (d) 

α = 20 . 

Table 6

Average execution time of eight algorithms for corrupted Lena image with different noise densities (unit second).

Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%

ACWM 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

ASWM 27.9 28.9 29.3 29.4 36.7 37.5 44.1 50.3 63.2

ROR-NLM 68.5 84.5 100.1 115.7 131.5 144.2 151.0 147.2 137.6

BDND 75.6 74.7 74.9 75.5 75.9 76.6 77.5 77.4 77.7

IBDND 75.8 75.0 74.4 76.0 76.2 76.7 77.2 76.9 77.2

WCSR 3281.3 3288.5 3297.8 3293.3 3328.3 3298.6 3312.7 3326.0 3219.6

ASMF-DBER I 87.8 88.4 95.7 98.5 101.3 111.3 111.5 124.9 126.3

ASMF-DBER II 88.3 88.8 96.3 99.2 102.0 113.1 114.0 125.4 127.1

5.5. Computational cost 

The computational cost is an important index to evaluate an 

algorithm. We timed the computational costs of ACWM, ASWM, 

ROR-NML, BDND, IBDND, WCSR and the proposed methods by run- 

ning the algorithms on a Windows 7 Enterprise system equipped 

with Intel Core i7-4790 CPU at 3.60 GHz and 8.00GB DDR-III mem- 

ory. The comparison of their average execution time for corrupted 

Lena images with size of 512 ×512 are shown in Table 6 . Each aver- 

age execution time is calculated from 10 runs of experiments. Ac- 

cording to Table 6 , the computational cost of the proposed meth- 

ods varies from 80 to 130 s with the increase of noise density. The 

sparse representation based method WCSR is most time consuming 

(more than 30 0 0 s) and the proposed methods need more compu- 

tational cost compared with ACWM, ASWM, BDND and IBDND al- 

gorithms. To some extent, the better denoising performance of the 

proposed methods is at the cost of more computational cost. 

5.6. Adaptability for different impulse noise models 

In order to further check the adaptability of ASMF-DBER for the 

different values of α in noise model, i.e., the different intensity 

ranges for impulse noise, we use PSNR for Lena images corrupted 

by the impulse noise with other values of α, the quantitative re- 
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sults are shown in Fig. 20 . Furthermore, we also compare the re- 

sults obtained using a recent alternative fusion rule PCR6 [37] (Pro- 

portional Conflict Redistribution rule No. 6) when combining the 

generated BBAs m 1 and m 2 in our ASMF-DBER I and ASMF-DBER 

II methods. These two results are denoted by ASMF-DBER I (PCR6) 

and ASMF-DBER II (PCR6) respectively. 

As shown in Fig. 20 , the PSNR of ASMF-DBER results are rela- 

tively high when α varies between 0 and 15. Although they drop 

slightly when α = 20 , they are still higher than other methods in 

general. 

6. Conclusion

To deal with the problem of the impulse noise reduction, first, 

we propose two impulse noise detection methods based on evi- 

dential reasoning before filtering. Second, we design an adaptive 

switching median filtering method, which adaptively determines 

the size of filtering window according to detection results. The 

subjective and objective analyses from our experimental results 

verify that our new proposed detections approaches and related 

filtering algorithms have superior performance compared with ex- 

isting algorithms. 

The generation of BBAs is crucial in evidential reasoning, how- 

ever there is no general theoretical method for BBA generation. In 

this paper, we use two types of BBA generation methods in evi- 

dential modeling for the uncertainties encountered in the impulse 

noise detection and have evaluated their performances. In future 

work, we will focus on other BBA generation methods, which can 

better depict the uncertainty encountered in the impulse noise 

detection. Other evidence combination rules will also be used to 

make comparisons. We will also do more theoretical analyses on 

the determination of parameters used in our algorithm. Further- 

more, we will apply our impulse noise detection method to sparse 

representation based filtering approach to deal with more compli- 

cated noise models, such as the impulse/Gaussian mixed noise. 
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