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Abstract
1. The identification of geographic areas where the densities of animals are high-

est across their annual cycles is a crucial step in conservation planning. In marine 
environments, however, it can be particularly difficult to map the distribution of 
species, and the methods used are usually biased towards adults, neglecting the 
distribution of other life-history stages even though they can represent a substan-
tial proportion of the total population.

2. Here we develop a methodological framework for estimating population- 
level density distributions of seabirds, integrating tracking data across the main 
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1  | INTRODUC TION

Oceans face a number of threats, including overexploitation, habi-
tat destruction and the introduction of alien species (Halpern et al.,  
2008; Jones et al., 2018). Fisheries are one of the oldest, most 
widespread and principal threats to marine ecosystems (Crowder & 
Norse, 2008; Jennings, Reynolds, & Mills, 1998), and are responsible 
for the decline of many populations of marine megafauna (seabirds, 
marine turtles, marine mammals, sharks and rays) through direct 
competition (Cury et al., 2011; Grémillet et al., 2018), deliberate 
capture for food (Grémillet, Péron, Provost, & Lescroel, 2015) and 
incidental capture (bycatch; Lewison et al., 2014; Scales et al., 2018). 
Furthermore, marine megafauna populations are also exposed to 
other anthropogenic threats, including climate change (Fuentes et al.,  
2015; McCauley et al., 2015) and pollution, for example marine pol-
lutants, oil spills and plastics (Rigét, Bignert, Braune, Stow, & Wilson, 
2010; Thompson et al., 2004; Votier et al., 2005). Many megafauna 

species, such as pelagic seabirds, have wide at-sea distributions, 
are near the apex of the food chain and are often easier to moni-
tor than lower trophic level organisms, and so are considered to be 
useful indicators for the general health of the marine environment  
(Durant et al., 2009; Parsons et al., 2008).

Understanding how marine megafauna overlap and interact with 
threats in space and time is crucial for their conservation. Historically, 
the spatial distribution of pelagic seabirds was mapped based on 
static range maps or presence–absence data, both of which have 
implicit spatial biases. Most analyses based on range maps simplis-
tically assume homogeneous distribution within the species range 
(Williams et al., 2014); however, most marine animals have distinctly 
heterogeneous distributions. Indeed, the identification of areas with 
highest densities of individuals is paramount for conservation plan-
ning (Hays et al., 2019; Johnston et al., 2015) and is particularly rel-
evant for seabirds, which can have large ranges but often aggregate 
in particular areas (Oppel et al., 2018). The predominant methods for 

life-history stages (adult breeders and non-breeders, juveniles and immatures). 
We incorporate demographic information (adult and juvenile/immature sur-
vival, breeding frequency and success, age at first breeding) and phenological 
data (average timing of breeding and migration) to weight distribution maps 
according to the proportion of the population represented by each life-history 
stage.

3. We demonstrate the utility of this framework by applying it to 22 species of 
 albatrosses and petrels that are of conservation concern due to interactions with 
fisheries. Because juveniles, immatures and non-breeding adults account for  
47%–81% of all individuals of the populations analysed, ignoring the distributions 
of birds in these stages leads to biased estimates of overlap with threats, and may 
misdirect management and conservation efforts. Population-level distribution 
maps using only adult distributions underestimated exposure to longline fishing 
effort by 18%–42%, compared with overlap scores based on data from all life-
history stages.

4. Synthesis and applications. Our framework synthesizes and improves on previous 
approaches to estimate seabird densities at sea, is applicable for data-poor situa-
tions, and provides a standard and repeatable method that can be easily updated 
as new tracking and demographic data become available. We provide scripts in 
the R language and a Shiny app to facilitate future applications of our approach. 
We recommend that where sufficient tracking data are available, this framework 
be used to assess overlap of seabirds with at-sea threats such as overharvesting, 
fisheries bycatch, shipping, offshore industry and pollutants. Based on such an 
analysis, conservation interventions could be directed towards areas where they 
have the greatest impact on populations.

K E Y W O R D S

albatrosses, at-sea threats, conservation, distributions, longline fisheries, megafauna, petrels, 
seabird density



estimating presence–absence and densities of animals at sea have 
been through ship-based surveys and electronic devices attached to 
individual animals (Eguchi, Gerrodette, Pitman, Seminoff, & Dutton, 
2007; Tremblay et al., 2009). Ship-based surveys can provide a good 
overview of the space use of a species representing all life-history 
stages combined; however, they are often restricted to the surveyed 
area and cannot adequately describe the at-sea distribution of sea-
birds from a particular breeding location because the observed indi-
viduals are of unknown provenance (Mott & Clarke, 2018; Sansom, 
Wilson, Caldow, & Bolton, 2018). Tracking data have therefore 
proved vital in complementing traditional surveys and overcoming 
several of these limitations, improving our knowledge of how ani-
mals interact with their environment and facilitating a better under-
standing of the spatio-temporal distribution of seabirds and overlap 
with marine threats (Hays et al., 2016; Oppel et al., 2018; Sequeira 
et al., 2018).

Although utilization distributions (i.e. probability distributions 
of space use; Fieberg & Kochanny, 2005) based on tracking data  
can improve spatial priority setting compared to presence–absence  
data, range maps and ship-based surveys, studies using this ap-
proach generally cannot extrapolate densities to the population 
level due to common biases in data collection. Tracking devices 
often have to be recovered to retrieve the data, so data collection 
has generally focussed on life-history stages or periods of the an-
nual cycle (such as adult breeders during the breeding season) for 
which deployment and retrieval are most straightforward (Hays 
et al., 2016; Hazen et al., 2012). As a result, juveniles, immatures 
and non-breeding adults are generally under-represented because 
they spend extensive periods at sea and return to colonies only 
for short periods (Gutowsky et al., 2014; Phillips, Lewis, González-
Solís, & Daunt, 2017). However, for long-lived species such as 
most seabirds, non-breeding individuals represent typically a large 
proportion of the total population (Saether & Bakke, 2000). As 
non-breeding individuals generally disperse more widely they may 
encounter a greater number of threats (Weimerskirch, Åkesson, & 
Pinaud, 2006). As such, evaluations of risk posed by spatially het-
erogeneous threats (such as bycatch in fisheries or exposure to pol-
lutants) based solely on data from breeding adults are likely to bias 
or underestimate risk.

Previous studies have incorporated data from multiple life- 
history stages to investigate overlap of seabirds with fisheries (e.g. 
BirdLife International, 2004; Clay et al., 2019; Tuck et al., 2011, 
2015). By using detailed information on migratory and breeding 
schedules, demographic parameters from population models and 
extensive tracking datasets, Clay et al. (2019) were able to compare 
population-level distributions of four seabird species from South 
Georgia with industrial fisheries in the Southern Ocean. Their meth-
odology, however, is not widely applicable to data-poor situations 
where less information is available on demographic parameters and 
tracking data are often not available for all life-history stages. In this 
study, we simplify the approach of Clay et al. (2019) to provide a 
coherent and generalizable framework to estimate the density dis-
tribution of seabird species at sea, including for data-poor situations, 

through combining tracking data, outputs from demographic models 
and information on the timings of major events in the annual cycle 
(i.e. phenology). Our approach is broadly applicable to other species 
and sites, and can be used to assess the potential exposure of sea-
birds to a variety of threats by adequately representing the distribu-
tion and abundance of all life-history stages that may be affected. 
Here, we expand on Clay et al. (2019) by providing all the details of 
the analytical steps of the framework as r scripts and a Shiny app, 
and by presenting the results of the application of this framework to 
22 seabird species of global conservation concern, to identify mul-
tispecies hotspots of use at a global scale. Lastly, as many of these 
species are by-caught in pelagic longline fisheries, we use overlap 
with fisheries as a relevant case study for examining how disregard-
ing the distribution of particular life-history stages can lead to biases 
in threat assessment.

2  | MATERIAL S AND METHODS

2.1 | Overview of the framework for estimating 
density maps

Our framework consists of six steps, which require data on phe-
nology and demography, and tracking data that have been cleaned 
and standardized according to established protocols (Lascelles et 
al., 2016). See Appendix S1 for details on the species used here and 
for tracking data compilation and standardization. The steps are: 
(a) estimating the proportion of the population in each life-history 
stage using age- and stage-structured population matrix models 
(Abraham, Yvan, & Clements, 2016; Caswell, 2001); (b) estimating 
utilization distributions (UDs) from tracking data for each species, 
breeding site, device type, age, class and stage of the annual cycle 
(hereafter referred to as ‘data group’); (c) assessing the represent-
ativeness of each data group; (d) combining data group UDs and 
weighting them based on phenological data to produce monthly 
distribution maps; (e) using the outputs of (a) to weight monthly 
distribution maps for each life-history stage by the proportion of 
the total population represented; (f) aggregating monthly distribu-
tion maps in relation with time and space to the spatio-temporal 
resolution of management interest. All analyses were carried out in 
r software version 3.3.2 (R Core Team, 2016), and r scripts to repli-
cate the analyses are provided via https ://github.com/anaca rneir o/ 
Densi tyMaps.

2.2 | Step 1: Using demographic data to estimate 
life-history structure of populations

For each population (i.e. each species at each island or island group), 
estimates of annual survival (juvenile/immature and adult), breeding 
frequency (approximate proportion of the adult population breed-
ing each year), breeding success and age at first breeding were ob-
tained from the literature (Appendix S2). We used these parameters 

https://github.com/anacarneiro/DensityMaps
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to construct an age- and stage-structured Leslie–Lefkovitch matrix 
population model. We calculated the age- and stable-stage distribu-
tions, which we used to estimate the proportion of the population 
represented by each life-history stage in a given year (Abraham et al.,  
2016; Caswell, 2001). The model was based on a three-stage life 
cycle comprising juveniles (first year at sea after fledging), immatures 
(from the beginning of second year at sea until recruitment into the 
breeding population), and adults (Appendix S3). Estimates of breeding 
frequency were used to split adults into breeding and non-breeding 
birds (those not attempting to breed in a given year), and estimates 
of breeding success were used to further split successful and failed 
breeders (Appendix S3). To convert these proportions into numbers of 
birds, we used estimates of the annual breeding population (number of 
breeding pairs) for each island or island group (using the same defini-
tion as in Agreement on the Conservation of Albatrosses and Petrels 
(ACAP) breeding site database; Phillips et al., 2016) from ACAP species 
assessments and other sources (Appendix S2). The number of non-
breeding birds (juveniles, immatures and non-breeding adults) was ex-
trapolated from the number of breeding pairs, given the proportion of 
the total population estimated to be represented by breeding adults 
(Appendix S3).

2.3 | Step 2: Estimating utilization distributions with 
tracking data

For each data group, we estimated kernel UDs using the adehabitathr  
package (Calenge, 2006; Appendix S4). Given the wide-ranging for-
aging distributions of our focal species, a fixed smoothing parameter 
(h) of 50 km was used for platform terminal transmitters (PTT) and 
global positioning system (GPS) data, and 200 km for global location 
sensing (GLS) data (BirdLife International, 2004). Tracking data from 
breeding sites were assumed to represent the distributions of the 
wider island or island group (‘population’), but if data from several 
sites within an island or island group were available we combined 
those and weighted them in proportion to the total number of indi-
viduals at each site (Appendix S4).

2.4 | Step 3: Assessing the representativeness of 
each data group

We assessed representativeness (i.e. whether the tracked sample 
encapsulate the variation in the wider population) of each data 
group following the bootstrapping methods described in Lascelles 
et al. (2016) and Oppel et al. (2018). Briefly, for an increasing num-
ber of individuals, we took a random subset, calculated the 50% 
UD and quantified the proportion of the remaining data that fell 
within this area (Lascelles et al., 2016). Preference was given to GPS 
and PTT data; UDs derived from GLS data were only used when 
GPS and PTT data were not available. If a data group included ei-
ther fewer than 5 individuals or representativeness was lower than 
70%, we combined GPS and PTT with GLS data to increase sample 

sizes by weighting the UDs by the proportion of all individuals rep-
resented by each sample. Juvenile and immature data, when avail-
able, were used regardless of their representativeness. A grid cell 
size of 10 × 10 km was used for all device types to enable UDs to 
be combined.

2.5 | Steps 4–5: Estimating temporal changes in 
distribution by incorporating phenology

We used phenological data obtained from the literature or provided 
by researchers to calculate monthly distributions for each life- 
history stage. Monthly distributions were calculated for the five dis-
tinct life-history stages: juveniles, immatures, successful and failed 
adult breeders (during the breeding and non-breeding seasons) and 
non-breeders (adults skipping breeding for the year; during the 
breeding and non-breeding seasons). A UD for each life-history 
stage and month was calculated by combining the UDs estimated 
from the relevant data groups according to phenology (Appendix 
S5). The UDs for each data group were weighted by the average 
number of days spent in the respective stage of the annual cycle 
in that month, which was calculated using average start dates and 
durations of each stage. The resulting monthly distribution maps for 
each life-history stage were multiplied by the total number of birds 
in each life-history stage based on the outputs of the demographic 
models for a given population.

When tracking data were not available to create monthly dis-
tribution maps, we used stage replacements (Appendix S5). The 
potential bias generated by these replacements was investigated 
(see ‘adequacy of stage replacements’ below). At least one data 
group was required for both the breeding (e.g. incubation, brood-
guard, etc.) and non-breeding periods to create distribution maps. 
To explore the use of phenological metadata to create the monthly 
distributions, we have created an interactive app in r Shiny, which 
is available at https ://github.com/lizzi epear/ seabi rd-pheno logy.

2.6 | Step 6: Spatial and temporal aggregation of 
distribution grids

The resulting monthly distributions for each life-history stage were 
given equal weightage in generating seasonal and yearly distribution 
maps for each of the islands and island groups (other temporal com-
binations derived from the monthly distribution maps can be gener-
ated). We aggregated distribution maps to a 5 × 5 degree resolution 
to overlay with logbook fishing effort data (below), but aggregation 
to a finer resolution is also feasible within our framework. We note 
that the spatial resolution of the calculated distribution maps should 
relate to the spatial scale of interest (e.g. threat, extent of manage-
ment area) and to the resolution of the tracking data. Here we pre-
sent seasonal and annual at-sea distributions as maps, with each 
5 × 5 degree cell coloured according to the percentage of the popu-
lation using that cell during a given season or year (Appendix S6).

https://github.com/lizziepear/seabird-phenology


2.7 | Adequacy of stage replacements

To test whether our replacements adequately represent the distri-
butions of juveniles and immatures, we quantified the similarity of 
UDs between the results of our framework and maps using stage 
replacements (i.e. adult distribution replacing juvenile and imma-
ture distributions—see Appendix S5). For these comparisons, we 
only considered populations and year quarters where tracking data 
from juveniles and immatures were available (n = 36). Our expecta-
tion was that if the degree of overlap between distributions using 
real data and using stage replacements was high, then these re-
placements are adequate. We used Bhattacharyya's affinity index 
to quantify overlap; ranging from 0 (no overlap) to 1 (identical UDs), 
it is considered to be the most appropriate index for quantifying 
the degree of similarity among UD estimates (Fieberg & Kochanny, 
2005).

2.8 | Testing the framework—assessment of overlap 
with pelagic longline fisheries

Fishing effort data were collated for all tuna Regional Fisheries 
Management Organizations which includes the Western and Central 
Pacific Fisheries Commission, the Commission for the Conservation 
of Southern Bluefin Tuna, the International Commission for the 
Conservation of Atlantic Tunas, Indian Ocean Tuna Commission and 
Inter-American Tropical Tuna Commission. Fishing effort data (rep-
resented by the number of hooks set) were averaged for the 10 most 
recent years (2007–2016, based on data availability), for each season 
and 5 × 5 degree cell.

To understand the potential management and conservation im-
plications of accounting for all life-history stages in density distri-
bution maps, we compared metrics of overlap of pelagic longline 
fisheries with seabird distributions estimated using the framework 
presented here (i.e. all life-history stages) against overlaps with dis-
tributions estimated based on (a) just using data from adult breed-
ers and (b) just adult breeders and non-breeders (i.e. all adults). We 
used the steps described above to estimate these distributions but 
excluding (a) adult non-breeders, juveniles and immatures, and (b) 
juveniles and immatures, when aggregating distribution maps. To 
enable comparisons between distributions featuring differing num-
bers of life-history stages (e.g. just adult breeders vs. all life-history 
stages), all maps were scaled to the estimated number of birds com-
prising the whole population. Furthermore, we conducted another 
test to determine how fisheries overlap varies if (c) stage replace-
ments are used for juvenile and immature data. Overlap was com-
pared between population-level distributions based on real juvenile 
and immature data and those using replacements. We focused our 
comparisons on the populations and year quarters for which we 
had a good representation of all life-history stages.

Overlap between birds and pelagic longline fisheries was calcu-
lated from quarterly seabird distributions and fishing effort raster 
maps by multiplying the number of hooks set for each 5 × 5 degree 

cell by the number of individuals using the same cell. Prior to the over-
lap we excluded cells which contained less than 0.1% of the total for 
each life-history stage and year quarter, to avoid the confounding ef-
fect of high overlaps resulting from cells with a very small number of 
birds but with a very high pelagic longline fishing effort. Average rel-
ative differences in overlap score between the full framework and (a) 
scaled adult breeders, (b) scaled adult breeders and non-breeders and 
(c) stage replacements were calculated per quarter and averaged per 
season (summer being an average of quarters 1 and 4, and winter the 
average of quarters 2 and 3) for comparisons.

3  | RESULTS

Population models revealed that adult breeders generally rep-
resented less than 50% of the total number of individuals of any 
population (mean: 35%; range 19%–53%). Juveniles and immatures 
accounted for more than 50% of the population in 16 (44%) out of 36 
populations, and more than 40% in 29 (81%) populations (Figure 1). 
Adult non-breeders represented an average of 18% of the total 
number of individuals of any population (range 7%–39%; Figure 1).

We estimated the distribution of 22 species of albatrosses and 
petrels, 68% (n = 15) of which were from populations which cumula-
tively represented >50% of their species’ global population numbers 
(Appendix S2). In total, the analyses included 4,281 tracked individuals 
from 18 breeding sites and 15 islands or island groups (Appendix S7). 
The analyses of tracking data representativeness showed that sam-
ple sizes were adequate for the majority of adult breeding datasets, 
except for the prelaying stage where data from only seven out of 36 
populations were available (Appendix S7). Adult distributions during 
the non-breeding season were available for all 36 populations, most 
of which (33 out of 36) were representative (Appendix S7). Juvenile 
and immature data were lacking for several populations; consequently, 
adult distributions were used as replacements for 55% of populations.

When all life-history stages were incorporated, the combined pop-
ulation-level distributions of all species were generally less centred on 
breeding sites than if only adult breeders were considered (particularly 
obvious in the Atlantic; Figure 2). The inclusion of adult non-breeders 
in distributions better documented the importance of the Humboldt 
Current throughout the year. There was also greater importance of 
the south Brazilian Shelf and the Benguela Current when juveniles 
and immatures were taken into account (Figure 2). We visualized the 
distributions of several populations for which we had complete data-
sets (e.g. wandering albatross Diomedea exulans from Crozet; Figure 3) 
and for these, the importance of several regions, such as waters off 
Australia, New Zealand and Chile, only became clear when including 
adult non-breeders (20% of the population), juveniles (9% of the popu-
lation) and immatures (44% of the population) in the distribution map. 
Similarly, the importance of south Brazilian waters for black-browed al-
batrosses Thalassarche melanophris from the Falkland Islands was only 
evident when taking into account the juveniles (12% of the population) 
and immatures (40% of the population) in distribution maps, as adults 
rarely forage that far north (Figure 4).



Although the inclusion of juveniles and immatures in the distribution 
maps revealed important areas for certain populations that are not cap-
tured by other life-history data combinations, our assessment of the va-
lidity of stage replacements for juvenile and immature data showed them 
to be, in many cases, adequate in the absence of those datasets. Spatial 
overlap between the distributions including juvenile and immature data 
compared with those using the distribution of adults was always relatively 
high (Bhattacharyya's affinity index >0.60, mean 0.91). However, we were 
only able to test for the adequacy of stage replacements in a limited sam-
ple of quarterly distributions for which we had either juvenile or immature 
tracking data available (36 out of 144 quarterly population-level maps).

3.1 | Overlap of seabirds with pelagic 
longline fisheries

Population-level density distribution maps using only adult distri-
butions suggested substantially lower exposure to longline fishing 

effort than the overlap estimated with our framework. The com-
parisons of the overlap between the distributions of all life-history 
stages with (a) adult breeders and (b) all adults, with pelagic longline 
fisheries resulted in an average underestimation of the total fish-
eries overlap by (a) 36.2% (42.4% in winter and 28.6% in summer) 
and (b) 28.3% (36.3% in winter and 18.3% in summer) respectively 
(Appendix S8). Finally, when comparing fisheries overlap between 
real population-level distributions using juvenile and immature data, 
and those using (c) stage replacements, the latter underestimated 
fisheries overlap by an average of 17.9% (29.1% in winter and 4% in 
summer; Appendix S8).

For example, areas such as the south Brazilian coast used by 
juvenile and immature black-browed albatrosses during winter 
also have a high concentration of fishing effort; as a result, ex-
posure risk for these life-history stages is higher than for adults 
(Figure 5; Appendix S9). Including the juvenile and immature 
distribution increased the exposure by an average of 1.4 mil-
lion hooks compared to the baseline assumption that the entire 

F I G U R E  1   The proportion of the population represented by each major life-history stage for 22 species of albatrosses and petrels (36 
populations) breeding in the Southern Ocean. Five distinct life-history stages were considered here: juveniles during their first year at sea, 
immatures (from second year at sea until recruitment into the breeding population), adult breeders (further split into successful and failed 
breeders) and adult non-breeders (birds not attempting to breed in a given year)



population would use only the areas frequented by adult birds. 
Similarly, when considering juvenile and immature distributions, 
the wandering albatross population from Crozet encounters 2.4 
and 5.7 times as many hooks on average during summer and 
winter, respectively, than when population-level distributions 
were based on adult data only (1.7 and 10.7 million hooks more; 
Figure 6; Appendix S9).

4  | DISCUSSION

This study presents a detailed framework which allows the estima-
tion of seabird density distributions at different spatial and temporal 
resolutions across the main life-history stages. By incorporating de-
mographic parameters and counts of breeding adults, our approach 
allows the abundance of non-breeding individuals to be estimated. 

F I G U R E  2   The quarterly and year-round density distributions of 22 species of albatrosses and petrels (36 populations) breeding in the 
Southern Ocean. Equal weightage is given to each of the 36 populations (i.e. the proportions of each population are averaged) and are 
illustrated as relative density. The colour gradient refers to the percentage of the population represented within each 5 × 5° grid. Darker 
shades (of blue) depict a greater density of birds. Density distribution maps are based on data for (a) adult breeders (successful and failed 
breeders), (b) adult breeders and non-breeders (the latter representing birds not attempting to breed this year), and (c) all life-history stages 
(which includes information for adult breeders and non-breeders, juveniles and immatures)
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F I G U R E  3   The seasonal density distributions of wandering albatrosses from Crozet. The colour gradient refers to the percentage of the 
population represented within each 5 × 5° grid. Darker shades (of blue) depict a greater density of birds. Maps are based on data for (a) adult 
breeders (successful and failed breeders), (b) adult breeders and non-breeders (the latter representing birds not attempting to breed this 
year), and (c) all life-history stages (which includes information for adult breeders and non-breeders, juveniles and immatures)
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F I G U R E  5   The seasonal overlap of 
black-browed albatrosses from Falkland 
Islands with pelagic longline fisheries 
averaged across years (2007–2016). 
Darker shades [of red] depict a greater 
overlap. The colour gradient refers to 
the number of individuals multiplied 
by number of hooks within each 5 × 5° 
grid. Maps are based on data for (a) adult 
breeders (successful and failed breeders; 
during the breeding and non-breeding 
seasons), (b) adult non-breeders (birds 
not attempting to breed this year), and (c) 
juveniles and immatures
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F I G U R E  4   The seasonal density 
distributions of black-browed albatrosses 
from Falkland Islands. The colour gradient 
refers to the percentage of the population 
represented within each 5 × 5° grid. 
Darker shades (of blue) depict a greater 
density of birds. Maps are based on data 
for (a) adult breeders (successful and failed 
breeders), (b) adult breeders and non-
breeders (the latter representing birds 
not attempting to breed this year), and 
(c) all life-history stages (which includes 
information for adult breeders and non-
breeders, juveniles and immatures)
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We demonstrate that these life-history stages constitute >50% of 
all individuals within a population, and so neglecting them likely bi-
ases estimation of threats to species with age- and stage-structured 
populations (Clay et al., 2019; Saether & Bakke, 2000). Because our 
framework is based on standardized data derived from the Seabird 
Tracking Database and provides r codes, at-sea distributions can 
be rapidly updated when new data become available. We apply 
our framework to albatross and petrel populations, yet many ma-
rine megafauna share similar life-history traits (i.e. they are gener-
ally long-lived with delayed reproduction, and may not breed every 
year) resulting in populations which are age- and stage-structured, 
with different life-history stages often having different movement 
strategies (e.g. juveniles are often more dispersive than adults; Hays 
& Hawkes, 2018; Hays & Scott, 2013). This framework can there-
fore easily be modified for use with other groups, which have similar 
life histories, and for which some information on all key life-history 
stages is available.

Our results showed that some important areas for albatrosses and 
petrels were omitted when not accounting for all life-history stages 
in the distributions. The appropriate weighting of the distributions by 
the number of individuals in each life-history stage resulted in popula-
tion-level distributions that were much less centred on breeding col-
onies than when only adult breeders were considered. For example, 
the importance of the south Brazil shelf for several populations was 
only highlighted when all life-history stages were included. Similarly, 
the importance of other areas such as the coast of Uruguay, the 
Tasman Sea between Australia and New Zealand, and the Benguela 
Current off South Africa was greater when non-breeding adults, ju-
veniles and immatures were included in distribution maps. For exam-
ple, use of the south Brazil shelf by black-browed albatrosses during 
mid-autumn and winter is only shown when incorporating juveniles 
and immatures in distribution maps (Bugoni & Furness, 2009; Bugoni, 
Mancini, Monteiro, Nascimento, & Neves, 2008). Indeed, juveniles 
of several species of albatrosses and petrels disperse more widely 
and more to the north of the species range, often to less produc-
tive waters than adults (Riotte-Lambert & Weimerskirch, 2013; 
Weimerskirch et al., 2014). Similarly, the often substantial individual 

variability among juvenile and immature birds can be difficult to cap-
ture with limited tracking effort (Clay, 2017), but as immatures age, 
their distributions become increasingly similar to those of adults (de 
Grissac, Börger, Guitteaud, & Weimerskirch, 2016; Weimerskirch, 
2018). Accounting for all life-history stages in distribution maps 
may be even more relevant for near-obligate biennial breeders such 
as the great Diomedea spp., sooty Phoebetria spp. and grey-headed 
Thalassarche chrysostoma albatrosses because a proportion of indi-
viduals spend the non-breeding (sabbatical) period entirely at sea, 
and so segregation between different life-history stages is likely to 
be higher than in annual breeders. Also, the post-fledging movements 
of juvenile birds generally take them away from their natal colonies to 
reduce competition with breeding adults, which are present around 
the colony throughout the year (Gutowsky et al., 2014; Weimerskirch 
et al., 2006). Therefore, the resulting density distributions from our 
framework will better reflect spatial patterns of entire populations 
throughout the year.

While the aim of our study was not to characterize the distribu-
tions of each life-history stage, we emphasize that ignoring those 
classes when assessing overlap with threats is likely to bias esti-
mates of the risks. Using fisheries bycatch as an example, we showed 
that the overlap between seabird distributions and pelagic longline 
fishing effort resulted in substantially lower estimated risk when 
more dispersive life-history stages (immatures, juveniles and adult 
non-breeders) were not included. For instance, the increased over-
lap between black-browed albatrosses and pelagic longline fishing 
effort corroborates the high capture rates in the south Brazil shelf 
area reported by on-board observers (Bugoni et al., 2008; Jiménez, 
Domingo, & Brazeiro, 2009; Jiménez et al., 2016). We noted a similar 
pattern in wandering albatrosses, whereby juvenile, immature and 
non-breeding adults (especially females) generally favour lower lat-
itudes and are much more likely to encounter longline tuna vessels 
(Riotte-Lambert & Weimerskirch, 2013; Weimerskirch et al., 2014). 
We acknowledge that the spatio-temporal resolution of our results 
is relatively coarse and provides an estimate of potential, not real 
risk. Several studies focusing on fisheries bycatch, however, have 
found a relationship between indices of seabird-fisheries overlap 

F I G U R E  6   The seasonal overlap of wandering albatrosses from Crozet with pelagic longline fisheries averaged across years (2007–2016). 
Darker shades [of red] depict a greater overlap. The colour gradient refers to the number of individuals multiplied by number of hooks 
within each 5 × 5° grid. Maps are based on data for (a) adult breeders (successful and failed breeders; during the breeding and non-breeding 
seasons), (b) adult non-breeders (birds not attempting to breed this year), and (c) juveniles and immatures
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and bycatch rates or hotspots (Clay et al., 2019; Jiménez et al., 2016), 
suggesting that our analysis nevertheless provide a crucial tool for 
conservation.

Our approach highlights the need to better understand the dis-
tribution of immature and juvenile birds. However, we recognize 
that the availability of such data is often limited. Our study also 
showed that adult non-breeding distribution can approximate ju-
venile and immature distribution and improve maps which do not 
consider these life-history stages. However, replacements tended 
to underestimate overlap with threats compared to maps using 
data from all life-history stages. Furthermore, the validity of as-
suming non-breeding distributions as a replacement for juvenile 
and immature phases is likely species-specific. The use of stage 
replacements may be more appropriate when segregation be-
tween life-history stages is low (Clay, Pearmain, McGill, Manica, & 
Phillips, 2018; Péron & Grémillet, 2013). However, using stage re-
placements when the distribution differs markedly among stages 
(Campioni, Granadeiro, & Catry, 2017; de Grissac et al., 2016) may 
omit critical marine areas. While our framework aims to make the 
most use of existing datasets, we emphasize that population-level 
distributions will be most accurate when tracking data from all 
major life-history stages are available. As such, we recommend 
researchers and conservation practitioners fill data gaps to gain 
a better understanding of the space use and threats faced by ne-
glected life-history stages.

Additionally, we used average values for demographic and phe-
nological parameters from the literature. For populations with wide 
confidence intervals in demographic parameters, we recommend 
analyses of the sensitivity of results to changes in poorly known 
parameters and consideration of this uncertainty when planning 
conservation interventions (e.g. lower survival of juveniles may un-
derestimate their use of certain areas). We also recommend  future 
studies to adapt our simple demographic model in cases where 
more detailed demographic, phenological, or spatial distribution 
data are available. For example, sex-specific differences in at-sea 
distributions are apparent in many seabirds, resulting in biased 
bycatch rates (Gianuca, Phillips, Townley, & Votier, 2017; Jiménez  
et al., 2016). If data exist to characterize sex-specific survival and 
spatial distribution, then our basic model could be expanded readily 
to incorporate such differences and improve the assessment of risk 
exposure.

This study highlights the value of combining tracking and phe-
nology data with demographic models and provides a generalizable 
framework for estimating the density of seabirds at sea. It is likely 
that many as yet unidentified hotspots of threats to marine mega-
fauna may be found when explicitly incorporating all life-history 
stages. We recommend use of our distribution maps to improve 
and enforce bycatch mitigation measures in those areas where large 
proportions of threatened seabird populations occur. We also rec-
ommend this framework be applied to other marine megafauna, 
different threats or other spatial scales (i.e. using high resolution 
fisheries data) to gain a more complete understanding of multispe-
cies risk zones and periods.
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reported catch). Annual and quarterly population-level density 
distributions maps are available via the Dryad Digital Repository 
https ://doi.org/10.5061/dryad.z612j m685 (Carneiro et al., 2019).
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