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Belief Interval-Based Distance Measures
in the Theory of Belief Functions

Deqiang Han, Member, IEEE, Jean Dezert, and Yi Yang

Abstract—In belief functions related fields, the distance
measure is an important concept, which represents the degree of
dissimilarity between bodies of evidence. Various distance mea-
sures of evidence have been proposed and widely used in diverse
belief function related applications, especially in performance
evaluation. Existing definitions of strict and nonstrict distance
measures of evidence have their own pros and cons. In this
paper, we propose two new strict distance measures of evi-
dence (Euclidean and Chebyshev forms) between two basic belief
assignments based on the Wasserstein distance between belief
intervals of focal elements. Illustrative examples, simulations,
applications, and related analyses are provided to show the ratio-
nality and efficiency of our proposed measures for distance of
evidence.

Index Terms—Belief interval, dissimilarity, distance of evi-
dence, evidence theory, the theory of belief functions.

I. INTRODUCTION

THE theory of belief functions, also called
Dempster–Shafer evidence theory (DST) [1], is an

important mathematical framework for uncertainty modeling
and reasoning. It has been applied to information fusion [2],
pattern recognition [3], [4], multiple-attribute decision mak-
ing [5], fault diagnosis [6], etc. DST has some limitations
(see [7]–[9] for discussions). Generalized or refined theories
were proposed including transferable belief model [10] and
Dezert–Smarandache theory [7], [11], etc.

In DST, the basic belief assignment (BBA) is a common
way for modeling (epistemic) uncertainty. The distance of evi-
dence is a crucial metric for measuring the distance between
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two BBAs. It indicates a BBA is “far” from or “close” to
another one. In many belief functions related applications,
the distance of evidence is required. Such belief function-
related applications can be categorized into two types. The first
type is the performance evaluation or optimization [12]–[16].
For example, in the performance evaluation of BBA approx-
imation [16], which aims to simplify the BBA to reduce
the computational complexity, the distance of evidence is
needed to measure accuracy of an approximated BBA (the
one closer to the original BBA is better). Furthermore, some
BBA approximation approach is directly based on the distance
minimization [17], therefore, the distance of evidence is indis-
pensable. The second type of applications is to determine the
agreement between sources of information. For example, in
the clustering analysis [4], [18], [19] and the determination
of discounting factors [20], [21], the distance of evidence is
required.

Since the distance of evidence is a very crucial concept
in many applications, it has attracted increasing research
interest recently in the belief functions community. Many
definitions of distance (or dissimilarity) measures have been
proposed in the past two decades [22]. Some of them are
nonstrict distance metrics, although they are often called
“distance.” In practice, Jousselme’s (strict) distance of evi-
dence [13] and Tessem’s (nonstrict) betting commitment
distance [23] (also called the pignistic probability distance)
are most frequently used ones. A fuzzy set-based distance
of evidence was also proposed in our previous work [24].
Jousselme and Maupin [22] provided an excellent survey on
available works on the distance of evidence, where many
definitions are introduced and compared.

Various types of distance of evidence have been proposed
under the geometric interpretation [25] of the DST, where a
BBA is considered as a vector of a Cartesian-alike space and
each focal element is deemed as a base of the space [22].
However, all existing distances of evidence have their own
limitations. First, a strict distance metric should satisfy the
requirements including the non-negativity, nondegeneracy,
symmetry, and triangular inequality. None of the existing dis-
tances of evidence except for Jousselme’s distance can satisfy
all the requirements, i.e., they are not strict distance metrics.
This is due to the switch between theoretical frameworks.
For example, Tessem’s betting commitment distance [23]
first transforms BBAs into pignistic probabilities, and fuzzy
set-based distance of evidence [24] first transforms BBAs into
fuzzy membership functions (FMFs). Such switches between
different frameworks lead to the loss of information, thus
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the distance between BBAs cannot be described precisely
using these measures. Therefore, their strictness cannot be
assured and they may encounter counter-intuitive results when
measuring the distance between different BBAs. Although
Jousselme’s distance is a strict metric and performs well in
many cases, it still has some unsatisfactory behaviors based
on our experiments, e.g., the lack of discriminibility in some
cases and the maximum value problem as pointed out and ana-
lyzed in this paper. Due to the limitations of existing distance
measures, we are motivated to propose better strict distance
measures of evidence. We propose to use belief intervals [1]
[Bel(A), Pl(A)] of each focal element A to describe the close-
ness between BBAs, where Bel(A) and Pl(A) are, respectively,
the belief and plausibility of a focal element A computed
from the given BBA defined on a known frame of discern-
ment (FOD). If we consider that a BBA is used to model
the uncertainty as a whole for all focal elements, then the
belief interval of each focal element in a BBA represents
the uncertainty of the corresponding proposition. If we use
all belief intervals of a BBA as a whole as its “feature”
vector, then the distance between the feature vectors of dif-
ferent BBAs describes the difference between them. Since a
belief interval is an interval number, the distance between
the same focal element’s two belief intervals in two BBAs
can be calculated by Wasserstein’s distance of interval num-
bers [26]. Based on all the distance values between belief
intervals, we design a Euclidean-family distance using the
sum of squares of all belief intervals’ distance values, and a
Chebyshev-family distance using the maximum of all belief
intervals’ distance values, respectively, to measure the dis-
tance between two different feature vectors of belief intervals,
and thus to measure the distance between two BBAs. Our
new definitions directly use the belief intervals defined in
the DST, i.e., there is no switch between different theoret-
ical frameworks. It can be proved that our new proposed
measures of distance of evidence are strict distance metrics
satisfying the requirements of non-negativity, nondegeneracy,
symmetry, and triangle inequality. This paper extends our
preliminary results in [27], where the basic idea of the belief
interval-based distance is briefly introduced and a few illus-
trative examples are provided. In this paper, the limitations
of existing distances are summarized more specifically, and
the causes of these limitations are analyzed. More detailed
formulations, proofs, and theoretical analyses of the new
proposed distance measures are provided. More examples,
simulations, and related analyses are provided for compari-
son between our proposed distances and the existing ones. An
application of the proposed distances of evidence in the BBA
approximation and an application of multiple criteria decision
making (MCDM) using the proposed distance of evidence
is also provided. These are all added values (contributions)
of this paper.

The rest of this paper is organized as follows. Basics
of the theory of belief functions are briefly introduced in
Section II. The geometric interpretation and some commonly
used distance measures of evidence are reviewed in Section III.
Limitations of existing measures are explained based on illus-
trative examples in Section III. In Section IV, two new distance

metrics in DST are proposed based on the belief intervals
and the distance between interval numbers. The proof of our
proposed distance metrics’ strictness, and the comparisons
between our measures and distance bounds are also provided
in Section IV. In Section V, examples, simulations, applications
and related analyses are provided based on the comparison
between new metrics and some existing ones from differ-
ent aspects to show the rationality and efficiency of our new
metrics. Section VI concludes this paper.

II. BASICS OF THEORY OF BELIEF FUNCTIONS

The theory of belief functions was first proposed by
Dempster and then further developed by Shafer, therefore, it
is usually called DST [1]. It has become an important theory
and tool for uncertainty modeling and reasoning.

The basic concept of the theory of belief functions is the
FOD, which represents the discourse domain of the problem
we are interested in. Under the closed-world assumption, the
FOD: � = {θ1, . . . , θn} is defined as a set of n mutually exclu-
sive and exhaustive elements. If a set function m : 2� → [0, 1],
where 2� is the powerset of �,1 satisfies

∑
A⊆�

m(A) = 1, m(∅) = 0 (1)

and if m(A) ≥ 0 holds, then m is called a BBA (or mass
function) over the FOD �. All the sets A ∈ 2� satisfying
m(A) > 0 are called the focal elements. Each focal element
represents a proposition in the FOD. Given a BBA, a body
of evidence (BOE) [1] can be determined, which is defined
as the set of focal elements and their corresponding mass
assignments.

A belief function over the FOD �, denoted by Bel : 2� →
[0, 1], is defined as

Bel(A) =
∑

B⊆A
m(B),∀A ⊆ �. (2)

A plausibility function over the FOD �, denoted by
Pl : 2� → [0, 1], is defined as

Pl(A) =
∑

B∩A
=∅ m(B), ∀A ⊆ �. (3)

The plausibility function and the belief function satisfy [1]

Pl(A) = 1 − Bel
(
Ā
)

(4)

where Ā is the complementary proposition of A ∈ 2�. The
plausibility Pl(A) and the belief Bel(A) constitute a belief
interval [Bel(A), Pl(A)]. The length of the belief interval
[Bel(A), Pl(A)] represents the degree of imprecision for the
proposition or focal element A. The non-null mass value
assigned to � represents the degree of ignorance, i.e., the
“unknown” state. Furthermore, in DST, different uncertainty
measures have been proposed such as nonspecificity [28],
ambiguity measure [29], aggregated uncertainty [30], and
distance-based uncertainty measures [31].

The evidence combination rules are for uncertainty reason-
ing, e.g., Dempster’s rule of combination is used to combine

1The powerset is the set of all subsets of � including the empty set ∅.



different distinct BOEs. Suppose that there are two inde-
pendent BBAs: m1 and m2. The conflict coefficient [1] is
defined as

K �
∑

Ai∩Bj=∅ m1(Ai)m2
(
Bj
)
. (5)

If K < 1, then the combined BBA m can be obtained using
Dempster’s rule of combination

m(A) =
⎧
⎨

⎩

0, A = ∅∑
Ai∩Bj=A m1(Ai)m2(Bj)

1−∑
Ai∩Bj=∅ m1(Ai)m2(Bj)

, A 
= ∅ (6)

where A1, . . . , Ak and B1, . . . , Bl are focal elements of m1 and
m2, respectively. Note that Dempster’s rule of combination is
both commutative and associative, i.e., symmetric.

The obtained BBA is in fact the orthogonal sum of the
original BBAs. Dempster’s rule of combination has been criti-
cized for its counter-intuitive behaviors [9], [32], especially in
high conflict cases. Accordingly, many alternative combination
rules have emerged. See [7], [33] for details.

III. TRADITIONAL MEASURES OF

DISTANCE OF EVIDENCE

How to measure the closeness between two BBAs? This is
crucial for performance evaluation, algorithm optimization and
other belief functions-based applications. The answer is the
distance of evidence. The conflict coefficient K [defined in (5)]
in Dempster’s rule of combination was the only means to quan-
tify the interaction between BBAs for about two decades (from
1967 to 1990). However, this coefficient K (denoted by dC

in the sequel) may be inappropriate to quantify the closeness
between two BBAs as the conflict between two identical BBAs
might not equal to 0.

Example 1: Suppose that the FOD is � = {θ1, . . . , θn}. Two
BBAs defined on � are

m1L({θ1}) = · · · = m1({θn}) = 1/n and m2({θ1})
= · · · = m2({θn}) = 1/n.

Obviously, they are two identical BBAs and dC = 1 − 1/n.
When n becomes large, dC approximates to its upper bound
(i.e., 1). If one considered dC as a distance, such a result would
be somewhat counter-intuitive.

A strict distance metric defined on the set E d(·, ·) : E ×
E → R, (x, y) �→ d(x, y) should satisfy the following.

1) Non-Negativity: d(x, y) ≥ 0.
2) Nondegeneracy: d(x, y) = 0 ⇔ x = y.
3) Symmetry: d(x, y) = d(y, x).
4) Triangle Inequality: d(x, y) + d(y, z) ≥ d(x, z),∀z ∈ E .
Obviously, dC violates the nondegeneracy condition. It is

not difficult to verify that dC only satisfies the non-negativity
and symmetry conditions. Therefore, it is not a strict distance
metric.

Many other definitions2 of distance of evidence were
proposed in the past two decades as reported in Jousselme’s

2To be rigorous, only those definitions satisfying the four requirements
can be called distance. The ones that do not satisfy these four requirements
can only be called “dissimilarity” or “closeness” measures. In the sequel,
for the convenience, all dissimilarity definitions are called distance when no
ambiguity should occur.

Fig. 1. Geometrical interpretation of a BBA.

survey [22]. Most of them can be considered as being estab-
lished under the framework of the geometrical interpretation
of the DST.

A. Geometric Interpretation of the Theory of
Belief Functions

The geometrical interpretation of the DST [25] is as follows.
Suppose that the FOD is � with |�| = n. Let E� be the

2n-dimensional Cartesian space3 spanned by the set of column
vectors {eA, A ⊆ �}. Each vector v of E� could be rewritten
as v = ∑

A⊆� αA · eA. Here αA ∈ R can be considered as the
coordinate of v along the direction of eA.

A BBA m is a vector of E�, which should satisfy∑
A⊆� αA = 1, α∅ = 0, with αA ≥ 0 and αA � m(A) due

to the properties of unity and non-negativity for mass values,
as illustrated in (1).

For example, suppose that the FOD � = {θ1, θ2}. A BBA
m on � is m({θ1}) = 0.3, m({θ2}) = 0.2, m({θ1, θ2}) = 0.5.
Under the closed-world assumption, m is illustrated in Fig. 1.

According to the geometrical interpretation of DST, two
BBAs m1 and m2 are two vectors. That is, m1 and
m2 are two “points” in the evidential Cartesian space. In
the past 30 years, people use all kinds of distance for
Cartesian space like Euclidean distances, Chevbyshev dis-
tances, Minkowski distances, Manhattan distances, etc., to
define the distance between BOEs according to the geomet-
rical interpretation [22]. Note that many available definitions
are nonstrict distance metrics [22]. A few typical measures are
reviewed in detail in the following. Many other definitions can
be found in Jousselme’s survey [22].

B. Selected Existing Distance Measures of Evidence

The earliest distance of evidence is the Tessem’s distance of
betting commitment [23], which is proposed for the evaluation
of BBA approximations.

1) Tessem’s Betting Commitment Distance: The pignistic
probability corresponding to a BBA m is defined by [34]

BetP(A) �
∑

B⊆�

|A ∩ B|
|B| m(B) (7)

3Note that whether the geometric interpretation of the DST satisfies
the strict requirements or properties of the geometric space needs further
justifications. Here we call it as the evidential Cartesian space.



which is a probabilistic transformation [35] from a BBA
for the probabilistic decision making in DST. The betting
commitment distance (or Tessem’s distance) dT is computed
by [23]

dT(m1, m2) � max
A⊆�

{|BetP1(A) − BetP2(A)|}. (8)

It can be reformulated according to the evidential Cartesian
space as

cdT(m1, m2) = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|BetP1(A1) − BetP2(A1)|
|BetP1(A2) − BetP2(A2)|

...

|BetP1(A2n) − BetP2(A2n)|

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= max
A⊆�

{∣∣BetP1
′ · eA − BetP2

′ · eA
∣∣} (9)

where BetPi = [BetPi(A1), BetPi(A2), . . . , BetPi(A2n)]′,
i = 1, 2.

dT is a Chebyshev L∞ alike distance. From the definition of
dT , we can see that there is a switch from the DST framework
to the probability framework when calculating this distance.
The inconsistency between different theoretical frameworks
leads to the loss of information and some unexpected results,
therefore, it is not recommended.

Actually, due to the switch between different frameworks,
Tessem’s distance is not a strict distance metric [36]. It violates
the nondegeneracy condition as shown in Example 2.

Example 2: Suppose that FOD is � = {θ1, . . . , θn}. There
are two BBAs m1 and m2 defined on � including m1({θ1}) =
· · · = m1({θn}) = 1/n and m2(�) = 1. Their corresponding
pignistic probabilities are both P(θ1) = · · · = P(θn) = 1/n.
Therefore, dT(m1, m2) = 0, although they are different BBAs.
Thus, dT does not satisfy the nondegeneracy condition. dT

also does not satisfy the triangle inequality and has other
drawbacks. See details in [36].

2) Fuzzy Membership Function-Based Dissimilarity: First
transform BBAs m1(·) and m2(·) into FMFs4 : μ(1) and μ(2)

as for i = 1, 2

μ(i) = [
μ(i)(θ1), μ

(i)(θ2), . . . μ
(i)(θn)

]

= [
Pl(i)(θ1), Pl(i)(θ2), . . . , Pl(i)(θn)

]
. (10)

According to the dissimilarity definition between FMFs, dF is
defined as [24]

dF(m1, m2) = 1 −
∑n

i=1

(
μ(1)(θi) ∧ μ(2)(θi)

)
∑n

i=1

(
μ(1)(θi) ∨ μ(2)(θi)

) . (11)

In (11), the operator ∧ represents the conjunction (min)
and ∨ represents the disjunction (max).

4The FMF quantifies the membership grade of the element to the fuzzy
set. It is a generalization of the characteristic function in classical set and can
take its values in the interval [0, 1].

It can be reformulated according to the evidential Cartesian
space as

dF(m1, m2)

� 1 −
∑n

i=1 min
(
(Int · m1)

′ · eθi , (Int · m2)
′ · eθi

)
∑n

i=1 max
(
(Int · m1)

′ · eθi , (Int · m2)
′ · eθi

)

(12)

where Int is the intersection matrix, whose element is
Int(A, B) = 1, if A∩B 
= ∅; Int(A, B) = 1, if A∩B = ∅. One
has Pl = Int · m, where Pl is the corresponding plausibility
vector of m.

dF in fact indirectly represents the distance between two
BBAs using the distance between their corresponding FMFs.
Note that dF is not a strict distance metric. First, dF does not
satisfy the nondegeneracy condition due to the switch from the
DST framework to the fuzzy set framework. Given two differ-
ent BBAs, their corresponding FMFs (singleton plausibility)
might be the same as shown in Example 3.

Example 3: Suppose that FOD is � = {θ1, θ2, θ3}. Two
BBAs m1 and m2 defined on � are

m1({θ1, θ3}) = 0.3, m1({θ1, θ2}) = 0.7.

m2({θ1}) = 0.3, m2({θ1, θ2}) = 0.4, m2(�) = 0.3.

Their corresponding singleton plausibilities are the same

μ(1)(θ1) = Pl1({θ1}) = 1.0, μ(1)(θ2) = Pl1({θ2}) = 0.7

μ(1)(θ3) = Pl1({θ3}) = 0.3.

μ(2)(θ1) = Pl2({θ1}) = 1.0, μ(2)(θ2) = Pl2({θ2}) = 0.7

μ(2)(θ3) = Pl2({θ3}) = 0.3.

Therefore, dF(m1, m2) = 0, although m1 and m2 are
different BBAs.

3) Jousselme’s Distance: By borrowing the L2 Euclidean
distance with weighting matrix in Cartesian space, Jousselme’s
distance [13] is defined as

dJ(m1, m2) �
√

0.5 · (m1 − m2)
TJac (m1 − m2) (13)

where the elements Jac(A, B) of Jaccard’s weighting matrix
Jac are defined as

Jac(A, B) = |A ∩ B|
|A ∪ B| . (14)

It has been proved to be a strict distance metric in [37]
and has become the most commonly used one so far; how-
ever, it might cause some unsatisfactory results as shown
in Example 4.

Example 4: Suppose that the FOD is � = {θ1, . . . , θ6}.
Three groups of BBAs are as follows:

{
m1({θ1}) = 1
m2({θ2}) = 1

{
m3({θ1, θ2}) = 1
m4({θ3, θ4}) = 1

{
m5({θ1, θ2, θ3}) = 1
m6({θ4, θ5, θ6}) = 1.



Using Jousselme’s distance, one gets dJ(m1, m2) =
dJ(m3, m4) = dJ(m5, m6) = 1, that is, they all reach the max-
imum value 1. The six BBAs here are all categorical BBAs.5

m1 and m2 each has a unique singleton focal element. The
opinions of m1 and m2 are totally different, and both of them
are specific, i.e., with no ambiguity. The opinions of m3 and
m4 are totally different, however, both of them are not specific
and with ambiguity. The BBAs m5 and m6 carry larger ambi-
guity. Intuitively, it makes sense that the distance between m1
and m2 should be larger than the distance between m3 and
m4; also, the distance between m3 and m4 should be larger
than the distance between m5 and m6. Jousselme’s distance
does not provide this expected behavior.

Furthermore, Jousselme’s distance is relatively insensitive
to the change of BBA in some cases as shown in Example 5.

Example 5: Suppose that FOD is � = {θ1, . . . , θ3}.
Consider the following three BBAs m1, m2, and m3:

m1({θ1}) = m1({θ2}) = m1({θ3}) = 1/3

m2({θ1}) = m2({θ2}) = m2({θ3}) = 0.1, m2(�) = 0.7

m3({θ1}) = m3({θ2}) = 0.1, m2({θ3}) = 0.8.

Since both m1 and m2 have no preference on any single-
ton {θi} and m3 commits more belief to {θ3}, it is intuitively
expected that the distance between m1 and m2 should be
smaller than that between m1 and m3. However, Jousselme’s
distance leads to dJ(m1, m2) = dJ(m1, m3) = 0.4041, which
shows that dJ does not discriminate them well.

In summary, many existing distance measures of evidence
have evident limitations, even for the strict Jousselme’s dis-
tance metric. For Tessem’s distance and FMF-based distance,
there exist the switches between different theoretical frame-
works. With Tessem’s distance, there is a switch from the
framework of DST to the framework of the probability theory;
with FMF-based distance, there is a switch from the frame-
work of DST to the framework of the fuzzy sets theory. These
switches bring the undesired loss of information, which should
be avoided. Jousselme’s distance borrows the distance metric
from the traditional Cartesian space to the evidential Cartesian
space. The strictness of the evidential Cartesian space, i.e., the
geometrical interpretation of DST needs further verification.
Therefore, it is not uncommon to obtain some unsatisfactory
results when using Jousselme’s distance.

Since traditional distances in DST have limitations (or
unsatisfactory behaviors), we propose new strict distance
measures of evidence with better behaviors.

IV. DISTANCE OF EVIDENCE USING BELIEF INTERVALS

As aforementioned, the limitations and nonstrictness of
some existing distances of evidence are caused by the switches
between theoretical frameworks, therefore in our design of
the new distances, no such switch is allowed. In Jousselme’s
distance, there is no switch between different theoretical
frameworks, where only the focal elements and the corre-
sponding mass values are used. Given a BBA, the mass value
for a proposition (or focal element) A represents the basic

5A categorical BBA is a BBA only has one focal element.

belief assigned to A. Besides the mass value m(A), other val-
ues, like Bel(A) and Pl(A), are optional. Furthermore, the
belief interval [Bel(A), Pl(A)] can be used to represent the
degree of imprecision of A. Therefore, the belief interval
[Bel(A), Pl(A)] carries more information of a given proposi-
tion A than the mass value m(A), which is a scalar. Therefore,
we propose to use the belief interval (with more information)
to replace the mass value for achieving better performance.

In DST, besides the BBA (m), the belief function (Bel)
and plausibility function (Pl), there also exist the doubt func-
tion (Dou) and the commonality function (Q) [1]. Given one
function, it can be transformed to any other one of these
five functions according to their definitions and the Möbius
transformations [1]. That is, any one of the five functions has
one-to-one correspondence to the other, therefore, one can also
try to jointly use other functions like the commonality and
doubt for designing new distance measures. In this paper, we
choose the belief interval [Bel(A), Pl(A)],∀A ⊆ �, since the
belief and plausibility are more familiar to people and more
widely used in practice than the doubt and the commonality.
Furthermore, [Bel(A), Pl(A)] has intuitive physical meaning,
i.e., the degree of imprecision for the proposition A.

Suppose that two BBAs m1 and m2 are defined on � =
{θ1, θ2, . . . , θn}. For each focal element Ai ⊆ � (i =
1, . . . , 2n−1), we can calculate the belief interval of Ai for m1
and m2, respectively, which are denoted by [Bel1(Ai), Pl1(Ai)]
and [Bel2(Ai), Pl2(Ai)]. That is, each BBA mj (j = 1, 2) can
also equivalently be modeled by a matrix with the size of
(2n − 1) × 2

⎡

⎢⎣
[Belj(A1), Plj(A1)]
...

...

[Belj(A2n−1), Plj(A2n−1)]

⎤

⎥⎦.

A belief interval can be regarded as a classical interval
number6 included in [0, 1]. Then the above matrix can be
regarded as a vector of interval numbers (belief intervals)

Fej =
⎡

⎢⎣
[Belj(A1), Plj(A1)]
...

...

[Belj(A2n−1), Plj(A2n−1)]

⎤

⎥⎦

=
⎡

⎢⎣
BIj(A1)
...

BIj(A2n−1)

⎤

⎥⎦. (15)

Here Fej can be considered as a generalized feature vector
describing the BBA mj. If we can define the distance between
Fe1 and Fe2, then the distance between m1 and m2 is readily
obtained. Here Fe1 and Fe2 are two generalized vectors whose
elements are intervals.7

6An interval number [a, b] with a ≤ b is actually an interval with the lower
bound a and the upper bound b, where a, b ∈ R. When a = b, an interval
number degenerates to a real number.

7The Fej can be also considered in the evidential Cartesian-alike space,
however, the coordinate of each direction eA is a generalized real number,
i.e., an interval number.



We can borrow the definition of the distance metric for
the vectors in Cartesian space to define the distance of
evidence here.

1) Define the distance between two feature vectors in each
dimension.

2) Combine the distance value for each dimension into a
scalar.

Therefore, in step 1, the distance in each dimension should
be defined, i.e., we must define the distance between two inter-
val numbers. Irpino and Verde [26] proposed a Wasserstein
distance for interval numbers as briefly introduced below.

Suppose that F and G are the corresponding distribu-
tion functions of the random variables f and g, respectively,
Wasserstein L2 metric is defined as [26]

dWass(F, G)
�=
√∫ 1

0

(
F−1(t) − G−1(t)

)2
dt. (16)

For a uniform distribution of points, an interval of reals xi =
[ai, bi] can be expressed as a function of [26]

xi(t) = [ai, bi] = ai + t(bi − ai),∀0 ≤ t ≤ 1. (17)

If one further considers a description of the interval using
its midpoint (ai + bi)/2 and radius (bi − ai)/2, xi can be
rewritten as

xi(t) = ai + bi

2
+ bi − ai

2
(2t − 1),∀0 ≤ t ≤ 1. (18)

Then, Euclidean distance between homologous points of two
intervals x1 = [a1, b1] and x2 = [a2, b2] is defined as [26]

dBI([a1, b1], [a2, b2]) = dWass(x1, x2)

=
√∫ 1

0
[x1(t) − x2(t)]2dt

=
√√√√
∫ 1

0

[ a1+b1
2 − a2+b2

2 +(
b1−a1

2 − b2−a2
2

)
(2t − 1)

]2

dt

=
√[

a1 + b1

2
− a2 + b2

2

]2

+ 1

3

[
b1 − a1

2
− b2 − a2

2

]2

.

(19)

Note that there are also other types of distance between
interval numbers [26]. We choose the Wasserstein distance
in (19) to calculate the distance between belief intervals,
because it is a strict distance metric, which is very crucial
for defining distance measures of evidence. Furthermore, it
has a simple form, and is easy to compute.

According to (19), the distance between two feature vec-
tors Fe1 and Fe2 in terms of each dimension i (i =
1, . . . , 2n − 1), i.e., the distance between two belief intervals
BI1(Ai) : [Bel1(Ai), Pl1(Ai)] and BI2(Ai) : [Bel2(Ai), Pl2(Ai)]
can be obtained. dBI(BI1(Ai), BI2(Ai)) can be regarded as
the distance between m1 and m2 when considering the focal
element Ai only.

Therefore, we can obtain in total 2n − 1 belief interval
distance values for all Ai ⊆ �.

In step 2, we combine all the 2n − 1 distance values into
one scalar, i.e., to get the total distance between Fe1 and Fe2.

In Cartesian space, if we try to measure the distance
between two points, we also calculate the dissimilarity
between each dimension of the two points, and then use some
way to combine the dissimilarity values of different dimen-
sions to a scalar, i.e., the distance value. Euclidean family and
Chebyshev family are two commonly used ways to generate
such a scalar in the Cartesian space. We can borrow this idea
to generate a scalar from the above mentioned 2n − 1 focal
elements’ corresponding dissimilarity values. Therefore, two
commonly used distance definitions—the Euclidean family
and the Chebyshev family—are used to combine the distance
values of all dimensions into a scalar, i.e., the distance value.
Two new distances of evidence are presented next.

A. Euclidean-Family Belief Interval-Based Distance dE
BI

Given two BBAs m1 and m2, our proposed Euclidean-family
belief interval-based distance is a combination of each focal
element’s belief interval distance value. To be specific, it is
a normalized root squared summation of the distance value
between belief intervals in each dimension (focal element), as

dE
BI(m1, m2) �

√
Nc ·

∑2n−1

i=1
[dBI(BI1(Ai), BI2(Ai))]2. (20)

Here Nc denotes the normalization factor to make dE
BI ∈ [0, 1].

Equation (20) can be rewritten as

dE
BI(m1, m2) �

√
Nc · dBI · I(2n−1) · dT

BI

=
√

Nc · dBI · dT
BI (21)

where I(2n−1) is an identity matrix with rank 2n − 1, and

dBI =
⎡

⎢⎣
dBI(BI1(A1), BI2(A1))

...

dBI(BI1(A2n−1), BI2(A2n−1))

⎤

⎥⎦.

Proposition 1: The normalization factor for Euclidean-
family belief interval-based distance dE

BI is Nc = 1/2n−1.
Proof: Suppose that the FOD is {θ1, θ2, . . . , θn}. m1 and m2

are two BOEs. m1({θl}) = 1, l ∈ {1, . . . , n} is a categorical
BBA, which represents the most certain case, i.e., there is no
uncertainty when assign the belief to the singleton proposition
{θl}. The two BBAs

m1({θi}) = 1, m2
({

θj
}) = 1,∀i 
= j, i, j ∈ {1, . . . , n} (22)

are two different and the most certain cases. They have no
common part, i.e., they fully support different singletons,
therefore, the dissimilarity (distance) between them reaches
the maximum.

Assume that A is a focal element.
When |A| = 1, only two belief intervals have dis-

tance value dBI of 1 (i.e., dBI(BI1(θi), BI2(θi)) = 1 and
dBI(BI1(θj), BI2(θj)) = 1 ). The other values are 0.

When |A| > 1, dBI = 1 for those focal elements including
θi or θj (but not including both θi and θj) are 1. dBI = 0 for
the rest.



To be specific,
when |A| = 2, dBI = 1 only for 2 × C1

n−2 focal elements.8

dBI = 0 for the rest;
when |A| = 3, dBI = 1 only for 2 × C2

n−2 focal elements.
dBI = 0 for the rest;

...

when |A| = n−1, dBI = 1 only for 2×Cn−2
n−2 focal elements.

dBI = 0 for the rest;
when |A| = n, the dBI value of unique focal element,

i.e., total set (�) is 0.
So, the summation Sc of all (dBI)

2 is

Sc = 2 × 1 + 2 × C1
n−2 + 2 × C2

n−2 + · · ·
+ 2 × Cn−2

n−2 + 0

= 2 ×
(

C0
n−2 + C1

n−2 + C2
n−2 + · · · + Cn−2

n−2

)

= 2 × 2n−2 = 2n−1. (23)

So, the normalization factor Nc = 1/Sc = 1/2n−1.

B. Chebyshev-Family Belief Interval-Based Distance dC
BI

Given two BBAs m1 and m2, our proposed Chebyshev-
family belief interval-based distance is the maximum of all
belief interval distance values

dC
BI(m1, m2) � max

Ai⊆�,i=1,...,2n−1
{dBI(BI1(Ai), BI2(Ai))}. (24)

Actually, we use the distance of belief intervals for focal ele-
ments instead of their mass assignments to define the distances
of evidence when compared with traditional definitions.

Proposition 2: Euclidean-family belief interval-based dis-
tance dE

BI and Chebyshev-family belief interval-based distance
dC

BI are strict distance metrics.
Proof: dE

BI and dC
BI are defined over belief intervals. Given a

BBA (m(Ai), i = 1, . . . , 2n−1), we can generate a set of belief
intervals ([Bel(Ai), Pl(Ai)]). On the other hand, given a set of
belief intervals ([Bel(Ai), Pl(Ai)]), according to the Möbius
transformation, we can generate a unique BBA (m(Ai), i =
1, . . . , 2n − 1) from Pl(Ai), i = 1, . . . , 2n − 1 or Bel(Ai), i =
1, . . . , 2n − 1. As we know [1], there is a one-to-one mapping
between a set of belief intervals ([Bel(Ai), Pl(Ai)]) and a BBA
(m(Ai), i = 1, . . . , 2n − 1).

According to (20), (21), and (24), it is easy to verify that
dE

BI and dC
BI satisfy non-negativity, nondegeneracy, and sym-

metry conditions. We need to prove the property of triangle
inequality of dE

BI.
Suppose that there are three BBAs m1, m2, m3 defined on

the same FOD with size of n. Because dBI defined in (19) is a
strict distance metric, so, for each Ai (i = 1, . . . , s, s = 2n −1)
there exists

dE
BI(m1(Ai), m2(Ai)) + dE

BI(m2(Ai), m3(Ai))

≥ dE
BI(m1(Ai), m3(Ai)).

8Choose one element θk out of the �′ = � − {θi, θj}(|�′| = n − 2). Then,
together with θi and θj, respectively, to constitute focal element {θk, θi} and
{θk, θj}, respectively. So, the number of focal elements with dBI values of 1
is 2 × C1

n−2. Similarly, we can obtain the values in other cases for A > 1.

Suppose that

dE
BI(m1(Ai), m2(Ai)) = ai; dE

BI(m2(Ai), m3(Ai)) = bi

dE
BI(m1(Ai), m3(Ai)) = ci.

One has

ai + bi ≥ ci ⇒ (ai + bi)
2 ≥ c2

i

⇒ a2
i + b2

i + 2aibi ≥ c2
i

⇒
s∑

i=1

a2
i +

s∑

i=1

b2
i + 2

s∑

i=1

aibi ≥
s∑

i=1

c2
i . (25)

According to Cauchy–Schwarz inequality
√√√√

s∑

i=1

a2
i

s∑

i=1

b2
i ≥

s∑

i=1

aibi. (26)

So
s∑

i=1

a2
i +

s∑

i=1

b2
i + 2

√√√√
s∑

i=1

a2
i

s∑

i=1

b2
i

≥
s∑

i=1

a2
i +

s∑

i=1

b2
i + 2

s∑

i=1

aibi ≥
s∑

i=1

c2
i

⇒
s∑

i=1

a2
i +

s∑

i=1

b2
i + 2

√√√√
s∑

i=1

a2
i

s∑

i=1

b2
i ≥

s∑

i=1

c2
i . (27)

Therefore
s∑

i=1

a2
i +

s∑

i=1

b2
i + 2

√√√√
s∑

i=1

a2
i

s∑

i=1

b2
i

=
⎛

⎝

√√√√
s∑

i=1

a2
i +

√√√√
s∑

i=1

b2
i

⎞

⎠
2

= (
dE

BI(m1, m2) + dE
BI(m2, m3)

)2

⇒ (
dE

BI(m1, m2) + dE
BI(m2, m3)

)2 ≥ (
dE

BI(m1, m3)
)2

⇒ dE
BI(m1, m2) + dE

BI(m2, m3) ≥ dE
BI(m1, m3). (28)

So, the triangle inequality for dE
BI is satisfied.

For dC
BI, we have

dC
BI(m1, m2) + dC

BI(m2, m3) = max
i=1,...,s

ai + max
i=1,...,s

bi

dC
BI(m1, m3) = max

i=1,...,s
ci = ak + bk, k = arg max

i=1,...,s
ci. (29)

There exists

ak + bk ≤ max
i=1,...,s

ai + max
i=1,...,s

bi = dC
BI(m1, m2) + dC

BI(m2, m3)

(30)

that is dC
BI(m1, m2) + dC

BI(m2, m3) ≥ dC
BI(m1, m3).

Consequently, dC
BI satisfies triangle inequality.

In summary, dE
BI and dC

BI are strict distance metrics.
In the traditional geometric interpretation of DST introduced

in Section III, the coordinates of different bases are represented
by mass values (real numbers), while for our new proposed
distances, the coordinates are represented by belief intervals
(interval numbers). Therefore, our new distances are under a
generalized geometric interpretation of evidence theory.



C. Illustrative Example

Example 6: Suppose that the FOD is � = {θ1, θ2, θ3}. Two
BBAs m1, m2 over the FOD are

m1({θ1}) = 0.1, m1({θ2}) = 0.1, m1({θ3}) = 0.05

m1({θ1, θ2}) = 0.1, m1({θ1, θ3}) = 0.05

m1({θ2, θ3}) = 0.1, m1(�) = 0.5

m2({θ1}) = 0.2, m2({θ2}) = 0.3, m2({θ3}) = 0.1

m2({θ1, θ2}) = 0.05, m2({θ1, θ3}) = 0.1

m2({θ2, θ3}) = 0.05, m2(�) = 0.2.

First, the belief intervals are calculated for each focal
element of m1 and m2, respectively

BI1({θ1}) : [0.10, 0.75]

BI1({θ2}) : [0.10, 0.80]

BI1({θ3}) : [0.05, 0.70]

BI1({θ1, θ2}) : [0.30, 0.95]

BI1({θ1, θ3}) : [0.20, 0.90]

BI1({θ2, θ3}) : [0.25, 0.90]

BI1(�) : [1.00, 1.00]

BI2({θ1}) : [0.20, 0.55]

BI2({θ2}) : [0.30, 0.60]

BI2({θ3}) : [0.10, 0.45]

BI2({θ1, θ2}) : [0.55, 0.90]

BI2({θ1, θ3}) : [0.40, 0.70]

BI2({θ2, θ3}) : [0.45, 0.80]

BI2(�) : [1.00, 1.00].

Second, use (19) to compute the distance between belief
intervals of each corresponding focal element in m1 and m2

dBI =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

dBI(BI1({θ1}), BI2({θ1}))
dBI(BI1({θ2}), BI2({θ2}))
dBI(BI1({θ3}), BI2({θ3}))
dBI(BI1({θ1, θ2}), BI2({θ1, θ2}))
dBI(BI1({θ1, θ3}), BI2({θ1, θ3}))
dBI(BI1({θ2, θ3}), BI2({θ2, θ3}))
dBI(BI1(�), BI2(�))

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1000
0.1155
0.1323
0.1323
0.1155
0.1000
0.0000

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, according to (20), dE
BI(m1, m2) is computed by

dE
BI(m1, m2)

=
√

23−1 ×
(

0.10002 + 0.11552 + 0.13232+
0.13232 + 0.11552 + 0.10002 + 02

)

= 0.1429.

According to (24), dC
BI(m1, m2) is computed by

dC
BI(m1, m2) = max

{
0.1000, 0.1155, 0.1323,

0.1323, 0.1155, 0.1000, 0

}

= 0.1323.

D. On Distance Bounds

Here, the distance bounds are analyzed. In Antonucci’s
work [38], a lower bound and an upper bound of a distance

TABLE I
ALGORITHM 1: RANDOM BBA GENERATION—UNIFORM

SAMPLING FROM ALL FOCAL ELEMENTS

Fig. 2. Comparisons between bounds, dJ , dE
BI, and dC

BI.

of evidence were proposed based on the distance of consistent
probabilities. For a BBA m, its consistent set of probability
mass functions (PMFs) is

Km =
{

P

∣∣∣∣
∑

θ∈� P(θ) = 1∑
θ∈A P(θ) ≥ Bel(A),∀A ∈ 2�

}
(31)

where P is a consistent PMF. Given two PMFs P1 and P2,
their Manhattan distance is

δ(P1, P2)
�= 1

2
·
∑

θ∈�
|P1(θ) − P2(θ)|. (32)

Given two BBAs m1 and m2, the lower bound δ and upper
bound δ are defined as

⎧
⎨

⎩

δ(m1, m2) = min
P1∈Km1 ,P2∈Km2

δ(P1, P2)

δ(m1, m2) = max
P1∈Km1 ,P2∈Km2

δ(P1, P2).
(33)

We calculate dE
BI, dC

BI and the strict distance measure dJ

together with the upper and lower bounds to check whether
these measures are beyond the bounds or not. We set |�| = 3
and randomly generate 1000 BBA pairs according to the BBA
generation algorithm [39] in Table I.

The results are shown in Figs. 2 and 3 (zoom in around
lower bound). Results are sorted by increasing values of dJ .
It is experimentally shown that dJ and our proposed dE

BI and
dC

BI are not beyond the lower and upper bounds as shown in
Figs. 2 and 3 in this simulation.

In the next section, experiments and simulations are pro-
vided to show the rationalities of our proposed distance
measures of evidence based on the comparisons with available
measures.



Fig. 3. Comparisons between bounds, dJ , dE
BI, and dC

BI (zoom in around the
lower bound).

TABLE II
BBA m1

TABLE III
BBAS mi , i = 2, . . . , 7

V. EXPERIMENTS, SIMULATIONS, AND APPLICATIONS

To verify the rationality of the proposed distances, numeri-
cal examples, simulations and the applications related to BBA
approximations and MCDM are provided.

In each example below, dJ , dT , dF , dC, dE
BI, and dC

BI are
compared.9

A. Example 7

Suppose that the FOD is � = {θ1, θ2, θ3}. m1 has relatively
large mass value for {θ2} as shown in Table II. Therefore,
intuitively, for mi, i = 2, . . . , 7 listed in Table III, if the mass
assignment for {θ2} is relative large, the distance between m1
and mi intuitively should be relatively small. For m5 and m6,
the mass of focal elements containing {θ2} (i.e., {θ1, θ2} and
{θ2, θ3}) is 0.8. It makes more sense if the distance value with
respect to m5 and m6 decreases.

Calculate the distance between m1 and mi, i = 2, . . . , 7
using different distance definitions as illustrated in Fig. 4. All
the distance measures perform similarly in all seven cases and
agree with the expected behavior as we can see in Fig. 4.

Examples 8–12 drawn from [13] are used for comparing
our proposed measures and available ones.

9dC corresponds to the conflict coefficient K defined in (4).

Fig. 4. Distance between m1 and mi, i = 2, . . . , 7.

Fig. 5. Dissimilarities between m1, m2, and m3 for Example 8.

B. Example 8

Suppose that three BBAs m1, m2, and m3 are defined on
the FOD � = {θ1, . . . , θn} as follows:

m1({θ1}) = m1({θ2}) = · · · = m1({θn}) = 1/n

m2(�) = 1

m3({θk}) = 1, for some k ∈ {1, . . . , n}.
The change of the distance values with the increase of the size
n of FOD are illustrated in Fig. 5.

dT provides undesired result, i.e., with the increase of n,
there always exists dT(m1, m2) = 0. dC cannot discriminate
m1 and m2, and also m2 and m3.

In this example, m1 is a Bayesian BBA, which only has
singleton focal elements; m2 is a vacuous BBA, which only
has the total set � as the unique focal element; and m3 is a
categorical BBA with one singleton focal element, which is
absolutely confident in {θk}.

m1 represents the case with only discord and with zero non-
specificity; m3 represents the crispest case; and m2 represents
the most ambiguous case. So, the distance between m2 and
m3 represents the dissimilarity between the most ambiguous
case and the crispest case; the distance between m1 and m3
represents the dissimilarity between the case with zero non-
specificity and the crispest case; the distance between m1 and
m2 represents the dissimilarity between the case with zero
nonspecificity and the most ambiguous case.



TABLE IV
EXAMPLE 9: RESULTS BASED ON DIFFERENT DISTANCES OF EVIDENCE

Therefore, intuitively, the distance between m2 and m3
should be the largest one. As we can see in Fig. 5, dE

BI(m2, m3)

and dJ(m2, m3) provide satisfactory results, that is

dE
BI(m2, m3) = max

i,j∈{1,2,3}
i
=j

dE
BI

(
mi, mj

)
.

From the decision standpoint, m1 has no inclination to any
choice θi; m2 also has no inclination to any choice θi; m3 has
a clear inclination to the choice θk. Therefore, intuitively, the
dissimilarity between m1 and m2 should be smaller than that
between m1 and m3. As shown in Fig. 5, our proposed dE

BI, dC
BI,

and dF provide satisfactory results according to this standpoint,
i.e., dE

BI(m1, m2) < dE
BI(m1, m3), dC

BI(m1, m2) < dC
BI(m1, m3),

and dF(m1, m2) < dF(m1, m3).
As we observed, dJ cannot discriminate this since

dJ(m1, m2) = dJ(m1, m3) with the increase of n. This is
because one has

dJ(m1, m2) = dJ(m1, m3) =
√

1

2

(
1 − 1

n

)

according to Jousselme’s distance defined in (13).
Based on the analyses above, dE

BI provides rational behaviors
in this example.

C. Example 9 (Example 5 Revisited)

The values of the different distances between m1 and m2,
and between m1 and m3 are given in Table IV.

As aforementioned, both m1 and m2 have no preference
on any singleton {θi} and m3 commits more belief to {θ3},
therefore, it is intuitively expected that the distance between
m1 and m2 should be smaller than that between m1 and m3.

Using Jousselme’s distance, one obtains dJ(m1, m2) =
dJ(m1, m3) = 0.4041 which is unsatisfactory for such a case.
Table IV shows that when using dT , dC, dF , dE

BI, and dC
BI, one

obtains d(m1, m2) < d(m1, m3), which is more reasonable.
However, Tessem’s distance leads to dT(m1, m2) = 0, and it
is counter-intuitive.

D. Example 10

Suppose that the FOD is � = {θ1, . . . , θ10}. A BBA mt

defined on � is

mt(�) = 0.1, mt({θ2, θ3, θ3}) = 0.05, mt({θ7})) = 0.05

mt(At) = 0.8

where At is a varying focal element from {θ1} to �. One sin-
gleton {θi} is added at each step. All the At, ∀t = 1, . . . , 10
are as shown in Table V. The second BBA m∗ has only one
focal element, and it is defined as

m∗({θ1, θ2, θ3, θ4, θ5}) = 1.

TABLE V
EXAMPLE 10: DISTANCE VALUE CHANGES WITH At

Fig. 6. Distance between mt and m∗ for Example 10.

We use different distance measures including dJ , dT , dC,
dF , dE

BI, and dC
BI to calculate the distance between m∗ and mt.

Their behaviors are shown in Fig. 6.
Intuitively, when At starts from the focal element {θ1} to

the focal element {θ1, θ2, θ3, θ4, θ5}, the distance between mt

and m∗ should become smaller. When At = {θ1, θ2, θ3, θ4, θ5},
the distance should reach the minimum value. Then, when the
size of At becomes larger and departs from {θ1, θ2, θ3, θ4, θ5},
the distance value should become larger. As shown in Fig. 6,
dJ , dT , dF and our proposed dE

BI provide expected behaviors.
Since the conflict between mt and m∗ are fixed,

i.e., dC(mt, m∗) = mt({θ7}) · m∗({θ1, θ2, θ3, θ4, θ5}) = 0.05,

the value of dC is fixed to 0.05. Therefore, dC is not a
proper distance. As shown in Fig. 6, our proposed dE

BI per-
forms well; however, dC

BI does not provide a satisfactory
behavior. Although dC

BI reaches its minimum value when
At = {θ1, θ2, θ3, θ4, θ5}, it cannot detect the change of At when
the size of At is smaller than 5 or the size of At is larger than 5.

E. Example 11

Suppose that the FOD is � = {θ1, θ2, θ3, θ4, θ5, θ6}. In
each case of this example, we set a fixed BBA m2, respec-
tively, where m2(B) = 1. B can be considered as a “desired”
focal element. Another BBA m1 is also set, where m1(A) =
1/63,∀A ⊆ �. Let m1 approximate to m2 in some way.
To implement this, at each step, we increase m1(B)’s value
of � = 0.02 and the mass value of other focal elements
(A 
= B,∀A ⊆ �) is decreased of �/62.



Fig. 7. Distance between m1 and m2 for Example 11—case A.

We also let m1 go away from m2. To implement this, at each
step, m1(C), C 
= B,∀C ⊆ � has an increase of � = 0.02 and
the mass value of other focal elements (A 
= C,∀A ⊆ �) has
a decrease of �/62. Therefore, C can be considered as an
“undesired” focal element.

We use different distances between m1 and m2 at each step.
Their behaviors with varying m1 are analyzed.

1) Case A: Here B = {θ2}, i.e., the desired focal element
B is a singleton. With the change of m1(B), m1 is gradu-
ally close to m2. Therefore, if a distance measure becomes
smaller with the change of m1(B), then it behaves as intuitively
expected.

The changes of the different distance measures in the above
procedure are shown in Fig. 7. All the distance measures used
here provide expected behaviors.

2) Case B: Here |B| > 1, e.g., B = {θ1, θ2} or B =
{θ1, θ2, θ3}. That is, the desired focal element B is a compound
focal element. With the change of m1(B), m1 is gradually close
to m2.

Given different |B|, the changes of different distances in the
above procedure are shown in Fig. 8, where all distances used
here provide expected behaviors when B is a compound focal
element.

3) Case C: Here B = {θ4} and C = {θ5}, where the
undesired focal element C is a singleton.

With the change of m1(C), m1 is gradually away from m2. If
a distance measure becomes larger with the change of m1(C),
then it behaves reasonably (i.e., as intuitively expected).

The changes of the different distance measures in the above
procedure are shown in Fig. 9, where all the distance measures
tested here provide expected behaviors.

4) Case D: Here B = {θ6} and the undesired focal element
C = �. With the change of m1(C), m1 is gradually away from
m2. If a distance measure becomes larger with the change of
m1(C), then it behaves as intuitively expected. Fig. 10 shows
the changes of the different distance measures in the above
procedure.

Fig. 8. Distance between m1 and m2 for Example 11—case B.

Fig. 9. Distance between m1 and m2 for Example 11—case C.

As seen in Fig. 10, only dE
BI and dJ behave as expected.

dT never changes in the whole procedure, because the corre-
sponding pignistic probability never change with the increase
of m1(�). dC diminishes significantly with the increase of
m1(�), because as the mass assignment is increasing for the
total set, the conflict between m1 and m2 becomes smaller.
Therefore, dC is only a conflict degree and must not be used
as a proper distance measure.

F. Example 12

Suppose that the FOD is � = {θ1, . . . , θ10}. A BBA mt

defined on � is

mt(�) = 0.1, mt({θ2, θ3, θ3}) = 0.05, mt({θ7})) = 0.05

mt(Bt) = 0.8

where Bt is a varying focal element from {θ1} to �. One sin-
gleton θi is added at each step (steps 1–10). Bt, ∀t = 1, . . . , 10
equals to At as shown in Table V in Example 10.



Fig. 10. Distance between m1 and m2 for Example 11—case D.

TABLE VI
EXAMPLE 10: DISTANCE VALUE CHANGES WITH Bt

Fig. 11. Distance between mt and m∗ for Example 12.

From steps 11–19, Bt is pruned from its first element until
attaining the singleton {θ10} at step 19. All the Bt at differ-
ent steps are shown in Table VI. The second BBA m∗ is
m∗({θ10}) = 1. We test different distance measures including
dJ , dT , dC, dF , dE

BI, and dC
BI to calculate the distance between

m∗ and mt. Their behaviors are shown in Fig. 11.
From steps 1–9, Bt does not include {θ10}. At the step 10,

Bt = {θ1, . . . , θ10}, which first includes {θ10}. After step 10,
all distance values diminish to reach their minimum values
when Bt = {θ10}. This is what we expect intuitively.

At the first stage (steps 1–9), dC does not change when
Bt changes, because the conflict between mt and m∗ never
changes before the step 10, where

dC
(
mt, m∗) = (

mt({θ1, θ2, θ3}
+ mt({θ7}) + mt(Bt)) · m∗({θ10}) = 0.9

)
.

At the second stage (steps 10–19), dC does not change
with the change of Bt. Although with the emergence of {θ10},
dC diminishes, however, its value is fixed up to the final
step, because the degree of conflict never changes after the
decreasing at step 10, where

dC
(
mt, m∗) = (

mt({θ1, θ2, θ3} + mt({θ7})) · m∗({θ10}) = 0.1
)
.

Therefore, dC must not be used as a proper distance
measure. It is just a degree of conflict between two BBAs.

At the first stage, dF provides unsatisfactory behavior. It
slightly increases with the change of Bt, that is, it is insensitive
to the change of Bt in the first stage. At the second stage, dF

provides an expected behavior, i.e., it decreases and reaches
its minimum value at the final step 19.

dC
BI is insensitive to the change of Bt in both first and second

stages. Its value never changes in the first stage and after a
decreasing at the step 10, it remains unchanged in the second
stage.

The major difference between the behaviors of dJ and dE
BI

is in the first stage, where dJ increases while dE
BI decreases.

We think that the decrease makes more sense in fact, and the
reason is as follows. In the first stage, the size of Bt becomes
larger, and thus, the degree of uncertainty, i.e., the ambigu-
ity of mt increases. For two focal elements {θ1} and {θ1, θ2},
although they both do not include {θ10}, the distance from {θ10}
to a more ambiguous case, i.e., {θ1, θ2} intuitively should be
smaller than the distance from {θ10} to a more specific case.
We can make an analogy here. {θ10} is our desired result, while
{θ1} and {θ1, θ2} are two undesired results. A more ambiguous
undesired result should be more preferred than a clear unde-
sired result, i.e., the distance from the desired result to the
more ambiguous undesired result should be intuitively smaller.

With the increase of |Bt|, such a distance should intuitively
further decrease. Therefore, dE

BI provides the correct expected
behavior in this example.

G. Example 13

Suppose that the FOD is � = {θ1, θ2, . . . , θ2n}. Two BBAs
defined on � are

m1 : m1({θ1}) = m1({θ2}) = · · · = m1({θn}) = 1/n

m2 : m2({θn+1}) = m2({θn+2}) = · · · = m2({θ2n}) = 1/n.

In this example, we set n from 1 to 7, i.e., the size of FOD is
from 2 to 14. We use dJ , dT , dC, dF , dE

BI, and dC
BI to calculate

the distance between m1 and m2 given different values of n.
The distance values are shown in Fig. 12. As we can see in
Fig. 12, all the distance measures except for our proposed
dE

BI remain unchanged with the increase of n. Our proposed
dE

BI decreases with the increase of n, which intuitively makes
sense. The reason is as follows. With the increase of n from
k − 1 to k, the cardinality of the FOD, i.e., |�| = 2(k − 1)



Fig. 12. Distance between m1 and m2 for Example 13.

also increases to 2k. Then, the number of all possible “focal”
elements10 increases from 22(k−1) to 2k.

Note that for each BBA, there are only n focal elements
with nonzero mass assignment. When n = k − 1, for each
BBA, there are 2(k − 1) focal elements in total with nonzero
value; when n = 2k, for each BBA, there are 2(k − 1)

focal elements in total with nonzero value. So, the number of
focal elements with nonzero mass assignment increases from
2(k−1) to 2k, i.e., only two more focal elements with nonzero
mass assignment are added.

On the other hand, when n = k − 1, for each BBA, there
are 22(k−1) − (k−1)−1 focal elements in total with zero mass
assignment; when n = k, for each BBA, there are 22k − k − 1
focal elements in total with zero mass assignment. That is,
with the increase of n from k − 1 to k, there are 22k − k − 1 −
(22(k−1) − (k − 1) − 1) = 3 × 4k−1 + 1 more focal elements
with zero mass values.

The common part (focal elements with zero mass assign-
ment) between m1 and m2 is significantly enlarged. At the
same time, their different parts (those focal elements with
nonzero values) only slightly increases of 2. Therefore, their
distance should decrease. So, our proposed dE

BI also behaves
as expected in this case.

H. Brief Summary

According to above examples, our proposed dE
BI behaves

as expected in all the cases, in contrary to other measures
compared. dJ also behaves well in many cases, however, in
some special cases, it provides counter-intuitive behaviors. Our
proposed dC

BI behaves as expected in many cases, however,
it is insensitive to the change of BBA due to the L∞ norm
used in its definition. Other measures like dC, dF , and dT

are not strict distance metrics. They generate counter-intuitive
behaviors in some cases, although they can be used to describe
the dissimilarity between BOEs in particular cases.

Note that the results of the above examples can only show
that our proposed distance measures behave as expected in
those cases in the examples. Whether the rationality of our
proposed measures has more generalized meaning needs fur-
ther theoretical analysis besides the testing based on examples.

10Here focal elements refer to all the subsets of the FOD �. They could
have nonzero mass values or zero mass values.

In the following part, simulation results based on random
experiments are presented.

I. Simulation

In this section, different measures are compared based on
random simulations.

Relationship analyses are helpful for the joint use of
multiple distance measures. Almost all the available distance
measures have their own pros and cons. If one does not trust
any single distance measure, one can use two distance mea-
sures together to construct a 2-D measure to describe the
dissimilarity between two BOEs, e.g., Liu’s 2-D measure [40].
Then how to describe such a complementarity between mem-
bers in a 2-D measure? As referred in Jousselme’s survey [22],
a low correlation (close to 0) between two measures means
that they quantify two distinct (and possibly complementary)
aspects of the distance between two belief functions, while a
high correlation means that they are redundant. Hence, weakly
correlated pairs of distances could be good candidates for 2-D
measures.

The relationships between different measures are described
using scatter plots and the correlation coefficient. The basic
procedure of the simulations is as follows.

Let D denote the set of distance measures used here, which
includes dJ , dT , dC, dF , dE

BI, and dC
BI. Here, we calculate the

correlation between different distance measures as follows.
1) Set the size of FOD to |�| and generate Ns BBAs: ms

(s = 1, . . . , Ns) according to Algorithm 1 [39] in Table I.
2) Generate a reference BBA mr according to Algorithm 1.
3) Pick up a distance pair dx and dy, where dx, dy ∈ D and

calculate (dx(mr, ms), dy(mr, ms)) for all s = 1, . . . , Ns.
4) Draw the scatter plot for (dx(mr, ms), dy(mr, ms)) (s =

1, . . . , Ns) to show the correlation between dx and dy.
5) Compute the correlation coefficient [22] for dx and dy

CR
(
dx, dy

) =

Ns∑
s=1

(
ds

x − d̄x
)(

ds
y − d̄y

)

√
Ns∑

s=1

(
ds

x − d̄x
)2

√
Ns∑

s=1

(
ds

y − d̄y

)2
(34)

where ds
x denotes dx(mr, ms), ds

y denotes dy(mr, ms), d̄x

denotes the mean of ds
x, s = 1, . . . , Ns, and d̄y denotes

the mean of ds
y, s = 1, . . . , Ns. For each pair dx and dy

in D, we calculate their correlation coefficient, to obtain
a correlation matrix CR.

In simulations, we generate five types of BBAs.
1) Complete BBA: A BBA with 2|�| − 1 focal elements

with nonzero mass assignment.
2) Fixed Length BBA: A BBA with a fixed number of focal

elements.
3) Simple Support BBA: m(A) = a, m(�) = 1 − a, where

A ⊂ � and a ∈ [0, 1].
4) Dichotomous BBA: m(A) = a, m(Ā) = b, m(�) = 1 −

a − b, where A ⊂ �, Ā is the complementary set of
A ∈ �, a, b ∈ [0, 1] and a + b ≤ 1.

5) Consonant Support BBA: A BBA with nested focal
elements, e.g., {θ1}, {θ1, θ2}, and {θ1, θ2, θ3}.



Fig. 13. Scatter plots for |�| = 8 using complete BBAs.

One can just make minor modifications to Algorithm 1 to
randomly generate the above types of BBA.

Case A: Here we set |�| = 8. Randomly generate
4000 complete BBAs ms, s = 1, . . . , 4000. The reference
BBA (complete) mr is also randomly generated. According
to the above simulation steps, we can obtain the scatter plots
between each pair of distance measures in D = {dJ , dT , dC,
dF , dE

BI, dC
BI} as shown in Fig. 13, where their corresponding

correlation coefficients are also provided for convenience.
As we can see in Fig. 13, our proposed dE

BI and dC
BI have

high correlation with Jousselme’s distance dJ , which is a
strict distance metric and performs well in many cases as
demonstrated in the previous section.

dC always has low correlation with other measures, since
it is actually a degree of conflict, which is different to the
distance.

If a 2-D or 3-D measure to jointly use multiple distance
measures is desired, we can refer to the scatter plots and
corresponding CR values in Fig. 13. As aforementioned, the
members in the 2-D measure should better have low correla-
tion (close to 0), thus, they could be possibly complementary.
As shown in Fig. 13, our proposed dE

BI and dC
BI have rela-

tively low correlation with dC and dF , therefore, dC and dF

are more proper to be selected to construct 2-D measures. The
focus of this paper is not the 2-D measures. We mention 2-D
measure just to show our motivation of the correlation analy-
sis between different 1-D measures. If one is interested in the
construction and applications of 2-D measures, one can refer
to Liu’s work [40], where dT and dC are used jointly as a 2-D
measure.

As shown in the previous section, dE
BI and dJ are two very

appealing measures when compared with others, and they
seem highly correlated to each other. Therefore, in the sequel,
we will discuss the relationship between dJ and our proposed
dE

BI in detail.
Case B: Although in Case A, the high correlation between

dE
BI and dJ has already been verified, with different FOD

Fig. 14. Scatter plots for |�| = 2, . . . , 8 using different types of BBAs.

Fig. 15. Evolution of the correlation coefficient between dJ and dE
BI using

different types of BBAs.

size |�|, the correlation degree can be different. Here we
use different FOD size |�| to check whether the correlation
between dE

BI and dJ is greatly affected by |�| or not, and to
obtain the influence trend with the change of |�|.

In this case, we set the size of the FOD to |�| =
2, 3, 4, 5, 6, 7, 8, respectively. First, randomly generate 4000
complete BBAs, 4000 simple support BBAs, 4000 dichoto-
mous BBAs, and 4000 consonant support BBAs. Their corre-
sponding reference BBAs (complete, simple support, dichoto-
mous, consonant support) mr’s are also randomly generated.

Following the above steps and under different sizes of FOD,
we can obtain the scatter plots between each pair of distance
measures in D = {dJ, dE

BI} for the 4000 complete BBAs,
4000 simple support BBAs, 4000 dichotomous BBAs and 4000
consonant support BBAs, respectively, as shown in Fig. 14.

With the increase of |�|, the evolution of the correlation
coefficient between dJ and dE

BI for four different types of
BBAs including complete, simple support, dichotomous, and
consonant support are shown in Fig. 15.

As seen in Figs. 14 and 15, the increase of |�| leads to the
decrease of the correlation coefficient for all types of BBAs.
No matter using which types of BBA, dJ and dE

BI are highly
correlated, although the correlation coefficient decreases with



the increase of |�|. As aforementioned, this to some extent
shows the rationalities of our proposed new measure dE

BI.

J. Application of Distance in BBA Approximation Evaluation 
Here we provide an application of different distance mea-

sures of evidence in BBA approximations. The BBA approx-
imation [23], [41], [42] aims to obtain a simpler BBA by
removing some focal elements and thus to reduce the compu-
tational cost in the evidence combination and other operations
in DST [1], [43]. A good BBA approximation should have
little loss of information when simplifying the BBA. If the
BBA obtained using an approximation is closer to the original
BBA, such an approximation has less loss of information and
thus, is more desired. Therefore, we can use the distance of
evidence to evaluate BBA approximations.

Here three types of BBA approximations are compared
including k−l−x [23], D1 [41], and summarization (sum) [42].
Using k − l − x, the approximated BBA is obtained by the
following.

1) Keeping no less than k focal elements.
2) Keeping no more than l focal elements.
3) Deleting the masses which are no larger than x.
Sum method [42] also keeps focal elements with the largest

mass values as in k − l − x. The masses of removed focal
elements are accumulated and assigned to their union set.

D1 method [41] is to keep some focal elements with the
largest mass values in the original BBA and to reassign the
mass assignments of the other focal elements to those kept
focal elements according to a well-designed criterion. See
more details in [23], [41], and [42].

k − l − x has a coarse way of renormalization, and Sum
method reassigns the masses of removed focal elements to
their union set. D1 has a more subtle way to reassign the mass,
therefore, D1 should be a better method. Here we provide a
simulation with distance of evidence as the evaluation criterion
to check if the evaluation results agree with the analysis.

In our simulation, |�| = 4. A complete BBA m (i.e., with
24−1 = 15 nonempty focal elements) can be randomly gener-
ated according to Algorithm 1 in Table I. We use the distance
of evidence (dJ , dT , dF , dE

BI, and dC
BI, respectively) between

the approximated BBA m̂ and the original one m in average
as the performance evaluation criterion.

Our comparative analyses have 1000 Monte Carlo runs
(i.e., totally 1000 complete BBAs are randomly generated).
The number of remaining focal elements r for the approaches
used here are set to from 14 down to 2 (decrease by 1). Then,
different approximation results in each run can be obtained
using the different approximations given a number r. The
average (over 1000 runs) distance values between the orig-
inal BBA m and the approximated BBA m̂ obtained using
different approaches given different remaining focal elements
number are shown in Fig. 16(a)–(e).

Here the parameter in k − l − x is set as k = l = r and
x = 0.5. As shown in Fig. 16(a)–(e), using different distances,
the distance values are different; however, the changing trends
are the same, i.e., with the decrease of the number remaining
focal elements, the distance value increases. This represents

(a)

(c)(b)

(e)(d)

Fig. 16. Evaluation of BBA approximations using different distances. (a) dJ ,
(b) dE

BI , (c) dC
BI , (d) dT , and (e) dF .

more loss of information. Based on all the distances of evi-
dence used here except for dT , the BBA obtained by D1
is usually closer to the original BBA. It is experimentally
shown that when using the distances of evidence including
our new proposed ones, D1 is a better BBA approximation
when compared with others. This is accordant to the analyses
above, therefore, our proposed distances of evidence can be
well used in performance evaluation in belief function related
applications.

K. Application of dE
BI in Multiple Criteria Decision Making

Here we provide an MCDM application of our developed
measure dE

BI, which usually performs well in the previous
examples and simulations.

Let us consider a selection problem in the car purchase.
Four cars {A1, A2, A3, A4} are considered.

1) A1 = TOYOTA YARIS 69 VVT-i Tendance.
2) A2 = SUZUKI SWIFT MY15 1.2 VVT So’City.
3) A3 = VOLKSWAGEN POLO 1.0 60 Confortline.
4) A4 = OPEL CORSA 1.4 Turbo 100 ch Start/Stop Ed.

Following criteria are for selecting the best car to purchase.
1) C1 is the price (in e).
2) C2 is fuel consumption (in L/km).
3) C3 is the CO2 emission (in g/km).
4) C4 is the fuel tank volume (in L).
5) C5 is the trunk volume (in L).
From information extracted from car-makers technical char-

acteristics available on the Internet,11 we can build the score
matrix S = [Sij] for the above four cars as

S =

⎡

⎢⎢⎣

C1 C2 C3 C4 C5

A1 15000 4.3 99 42 737
A2 15290 5.0 116 42 892
A3 15350 5.0 114 45 952
A4 15490 5.3 123 45 1120

⎤

⎥⎥⎦.

When we use criteria C1, C2, and C3, smaller is better.
For criteria C4 and C5, larger is better. We multiply values

11http://www.choisir-sa-voiture.com

http://www.choisir-sa-voiture.com


of columns C1, C2, and C3 by −1 to generate a modified 
score matrix S′ in order that the MCDM problem here is with 
homogeneous preference order (“larger is better”) for each 
column

S′ =

⎡

⎢⎢⎣

C1 C2 C3 C4 C5

A1 − 15000 − 4.3 − 99 42 737
A2 − 15290 − 5.0 − 116 42 892
A3 − 15350 − 5.0 − 114 45 952
A4 − 15490 − 5.3 − 123 45 1120

⎤

⎥⎥⎦.

For simplicity, the importance imp(Cj) of each criteria Cj

takes a value in {1, 2, 3, 4, 5}, where 1 means the least impor-
tant, and 5 means the most important. Here, imp(C1) = 5,
imp(C2) = 4, imp(C3) = 4, imp(C4) = 1, and imp(C5) = 3
are adopted, which means that the price (criteria C1) is
the most important one and the volume of fuel tank (cri-
teria C4) is the least important one. According to these
importance values and after the normalization, we obtain
the following vector of relative weights of criteria: w =
[(5/17) (4/17) (4/17) (1/17) (3/17)].

We use the belief function-based technique for order
preference by similarity to ideal solution (BF-TOPSIS)
approach [44] with our dE

BI to solve the MCDM problem
above.

First, from the score matrix S′, generate BBAs mi,j(Ai)

mi,j(Āi), and mi,j(Ai ∪ Āi)
12 according to the BBA generation

approach proposed in [44] as

m1,1(A1) = 0.9859, m1,1(A2 ∪ A3 ∪ A4) = 0.0047

m1,1(�) = 0.0094; m2,1(A2) = 1.0

m2,1(A1 ∪ A3 ∪ A4) = 0, m21(�) = 0

m3,1(A3) = 0.0022, m3,1(A1 ∪ A2 ∪ A4) = 0.9932

m3,1(�) = 0.0046; m4,1(A4) = 1.0

m4,1(A1 ∪ A2 ∪ A3) = 0, m4,1(�) = 0

m1,2(A1) = 1.0, m1,2(A2 ∪ A3 ∪ A4) = 0, m1,2(�) = 0

m2,2(A2) = 0.1250, m2,2(A1 ∪ A3 ∪ A4) = 0.4375

m2,2(�) = 0.4375

m3,2(A3) = 0.1250, m3,2(A1 ∪ A2 ∪ A4) = 0.4375

m3,2(�) = 0.4375

m4,2(A4) = 1.0, m4,2(A1 ∪ A2 ∪ A3) = 0, m4,2(�) = 0

m1,3(A1) = 1.0, m1,3(A2 ∪ A3 ∪ A4) = 0, m1,3(�) = 0

m2,3(A2) = 0.1250, m2,3(A1 ∪ A3 ∪ A4) = 0.4375

m2,3(�) = 0.4375

m3,3(A3) = 0.1964, m3,3(A1 ∪ A2 ∪ A4) = 0.3750

m3,3(�) = 0.4286

m4,3(A4) = 1.0, m4,3(A1 ∪ A2 ∪ A3) = 0, m4,3(�) = 0

m1,4(A1) = 0, m1,4(A2 ∪ A3 ∪ A4) = 1, m1,4(�) = 0

m2,4(A2) = 0, m2,4(A1 ∪ A3 ∪ A4) = 1, m2,4(�) = 0

m3,4(A3) = 1.0, m3,4(A1 ∪ A2 ∪ A4) = 0, m3,4(�) = 0

m4,4(A4) = 1.0, m4,4(A1 ∪ A2 ∪ A3) = 0, m4,4(�) = 0

12i = 1, . . . , 4 denotes the index of the alternative; j = 1, . . . , 5 denotes
the index of the criterion.

m1,5(A1) = 0, m1,5(A2 ∪ A3 ∪ A4) = 1, m1,5(�) = 0

m2,5(A2) = 0.1990, m2,5(A1 ∪ A3 ∪ A4) = 0.3825

m2,5(�) = 0.4185

m3,5(A3) = 0.3530, m3,5(A1 ∪ A2 ∪ A4) = 0.2231

m3,5(�) = 0.4239

m4,5(A4) = 1.0, m4,5(A1 ∪ A2 ∪ A3) = 0, m4,5(�) = 0.

Second, for each alternative Ai, compute the dE
BI(mi,j, mbest

i,j )

between mi,j and the best ideal BBA defined by mbest
i,j (Ai) � 1,

and the distances dE
BI(mi,j, mworst

i,j ) between mi,j and the worst
ideal BBA defined by mworst

i,j (Āi) � 1. Then, two distance
matrices13 are obtained

Dbest
BI =

⎡

⎢⎢⎣

0 0 0 0.8660 0.8660
0.6151 0.7032 0.7071 0.8660 0.6419
0.7100 0.7032 0.6430 0 0.5102
0.8660 0.8660 0.8660 0 0

⎤

⎥⎥⎦

and

Dworst
BI =

⎡

⎢⎢⎣

0.8660 0.8660 0.8660 0 0
0.2804 0.2033 0.1938 0 0.2552
0.1885 0.2033 0.2555 0.8660 0.3819
0 0 0 0.8660 0.8660

⎤

⎥⎥⎦.

Here, the element Dbest
BI (i, j) = dE

BI(mi,j, mbest
i,j ) and

Dworst
BI (i, j) = dE

BI(mi,j, mworst
i,j ).

Third, compute the weighted average of dE
BI(mi,j, mbest

i,j ) val-
ues with relative importance weighting factor wj of criteria Cj.
Similarly, compute the weighted average of dE

BI(mi,j, mworst
i,j )

values. More specifically, compute

dbest(Ai) �
5∑

j=1

wj · dE
BI

(
mi,j, mbest

i,j

)
(35)

dworst(Ai) �
5∑

j=1

wj · dE
BI

(
mi,j, mworst

i,j

)
. (36)

The relative closeness of the alternative Ai with respect to
ideal best solution Abest is then defined by

Cl
(

Ai, Abest
)

� dworst(Ai)

dworst(Ai) + dbest(Ai)
. (37)

Since dbest(Ai) ≥ 0 and dworst(Ai) ≥ 0, then Cl(Ai, Abest) ∈
[0, 1]. If dbest(Ai) = 0, it means that the alternative Ai coin-
cides with the ideal best solution and thus Cl(Ai, Abest) = 1
(the relative closeness of Ai with respect to Abest is max-
imal). Contrariwise, if dworst(Ai) = 0, it means that the
alternative Ai coincides with the ideal worst solution and thus
Cl(Ai, Abest) = 0 (the relative closeness of Ai with respect to
Abest is minimal).

In the final, the set of alternatives is ranked according to
the descending order of Cl(Ai, Abest) ∈ [0, 1], where a larger
Cl(Ai, Abest) value means a better alternative (or a higher
preference).

Based on the score matrix S′ and importance of criteria, A1
tends to be the best car to buy, since the three most important

13One can also try to use other distance measures for belief functions as
referred above. Here we only use dE

BI for illustration.



criteria clearly take their best values for car A1. When using
the classical TOPSIS [45] method with the Euclidean distance,
we obtain the preference order A4 � A1 � A3 � A2, where A4
is the best choice and A2 is the worst one. When we use the
BF-TOPSIS method based on our proposed dE

BI, we obtain a
more satisfactory preference order A1 � A3 � A2 � A4.

As shown in this application example, our proposed dis-
tance measure can be well used in the multiple crite-
rion decision making. dE

BI has also been used successfully
in other kind of applications related to risk management
and for protecting housing areas against torrential floods
in France [46], [47].

VI. CONCLUSION

Two novel distance measures of evidence have been
proposed based on the distance measures between belief
intervals. According to the comparisons between our proposed
measures and the existing ones based on examples and simu-
lations, it is shown that our proposed distances well describe
the degree of closeness between different BOEs. Our results
demonstrate that Euclidean distance based on belief intervals
works better than the Chebyshev distance based on belief
intervals.

Besides their good behaviors, the main interest of our
proposed distances of evidence is that they have been estab-
lished directly in the belief functions framework, contrary to
most of other distance measures that switch from belief func-
tions to probabilistic or fuzzy set framework, which leads to
loss of information and bad behaviors in general.

Note that in this paper, many justifications or verifications
of our new proposed distance measures are based on numer-
ical examples and simulations. Numerical examples in belief
functions related fields are usually designed according to the
subjective intuitions, which lack objective criteria and the stan-
dard testing data. Furthermore, the results and conclusions
only based on examples are usually incomplete. Therefore,
more thorough justifications including theoretical analysis and
more examples in special cases are needed to further exam-
ine our new measures. However, the theoretical evaluation or
justification in belief functions related fields is still premature.

Therefore, our future work will focus on the theoretical and
the objective evaluation and analysis of the belief functions
related fields. We will try to establish the standard testing
BBAs for the distance measures in the theory of belief func-
tions. Our proposed distance measures will also be tested
based on more experiments and simulations to find the pos-
sible counter-intuitive examples and analyze the reasons for
the possible counter-intuitive behaviors. Our new distance
measures will be applied to more belief functions related
applications, e.g., the performance evaluations, for the further
verification.

Furthermore, all the distance measures including ours are
under the closed-world assumption. That is, when the mass
assignment for the emptyset is positive, they cannot be used to
measure the closeness between BOEs. Therefore, generalizing
our new distance metrics to the open-world assumption is one
of our future research directions.
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