
HAL Id: hal-02475595
https://hal.science/hal-02475595v1

Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performability modelling and analysis of server
virtualised systems subject to workload-dependent

software aging
Zayneb Tayachi, Mohamed Escheikh, Kamel Barkaoui

To cite this version:
Zayneb Tayachi, Mohamed Escheikh, Kamel Barkaoui. Performability modelling and analysis of server
virtualised systems subject to workload-dependent software aging. International Journal of Critical
Computer-Based Systems, 2019, 9 (3), pp.248-292. �10.1504/IJCCBS.2019.104491�. �hal-02475595�

https://hal.science/hal-02475595v1
https://hal.archives-ouvertes.fr

short title 1

Performability Modeling and Analysis of Server
Virtualized Systems subject to Workload-dependent
Software Aging

Zayneb Tayachi
Conservatoire National des Arts et Métiers, Cedric Lab, Paris, France

University of Tunis El Manar, ENIT, Syscom Lab, Tunis, Tunisia
E-mail: tayachi.zayneb@gmail.com

Mohamed Escheikh

University of Tunis El Manar, ENIT, Syscom Lab, Tunis, Tunisia
E-mail: mohamed.escheikh@enit.rnu.tn

Kamel Barkaoui

Conservatoire National des Arts et Métiers, Cedric Lab, Paris, France
E-mail: kamel.barkaoui@cnam.fr

Abstract: This paper tackles performability modeling and analysis of versatile
server virtualized systems subject to workload-dependent software aging, failures
and rejuvenation. We develop a modular modeling approach based on stochastic
reward nets to investigate dependencies between several server virtualized system
modules including virtual machine monitor, virtual machine, data intensive
applications and workload-aware power management mechanism. Two case
studies are considered, each of them accounts for a specific virtual machine
monitor rejuvenation technique (Cold-VM or Migrate-VM). We show through
numerical analysis how steady-state availability and power-performance metric
are impacted by workload-dependent software aging and workload burstiness.

Keywords: Server virtualization systems, Workload-dependent software
aging, Software rejuvenation, Performability, SRNs, Workload-aware power
management.

Biographical notes:
Zayneb Tayachi received her engineering degree in telecommunications from
National Engineering School of Tunis (ENIT), Tunisia, in 2013. She is currently
pursuing her Ph.D. in ENIT. Her current research interests include queuing
systems, petri nets, cloud computing, and power management.

Mohamed Escheikh received in 1992 the Diploma degree in electrical
engineering. In 1994, he received a Master’s degree and in 2001 a PhD degree
with Distinction all in electrical engineering from National Engineering School
of Tunis ENIT (Tunisia). In 2017, he has graduated a "Habilitation à Diriger
des Recherches" from the University of Tunis El Manar. He is currently Maître
de Conférences at ENIT since 2018, member of SYSCOM laboratory at ENIT
since 1992 and associate researcher with VESPA Team Cedric CNAM Paris.
His research interests include in particular dependability analysis, queuing

2 Z. Tayachi et al.

systems, petri nets, mobile networks optimization, cloud computing and power
management.

Kamel Barkaoui full professor of Computer Science at Conservatoire National
des Arts et Métiers (CNAM - Paris) since 2002. He holds a Ph.D in Computer
Science (1988) and Habilitation à Diriger des Recherches (1998) from Université
Paris 6 (UPMC). His most important research domains are about formal methods
for specification, verification, control and performance evaluation of concurrent
and distributed systems. He supervised more than 30 PhD thesis defended
mostly on modelling and analysis of concurrent and distributed systems. He
published 40 papers in International Journals, more than 100 peer-reviewed
papers in international conferences and contributed to several books. He leaded
or participated in more than 10 international research projects. He received
the 1995 IEEE Int. Conf. on System Man and Cybernetics Outstanding Paper
Award. Kamel Barkaoui served on PCs and as PC chair and OC chair of several
international workshops and conferences in his areas of research. He was PC co-
chair of the 3rd International Colloquium on Theoretical Aspects of Computing
(ICTAC2006), General co-chair of the 18th International Symposium on Formal
Methods (FM2012) and General chair of the 35th International Conference on
Application and Theory of Petri Nets and Concurrency (Petri Nets2014) and of the
14th International Conference on Application of Concurrency to System Design
(ACSD’2014). He is founder and SC chair of the International Conference on
Verification and Evaluation of Computer and Communication Systems (VECoS).
Kamel Barkaoui was a Guest Editor of Formal Aspects of Computing Journal
(FACJ), Journal of Systems and Software (JSS), Innovations in Systems and
Software Engineering (ISSE), ACM Transactions on Embedded Computing
Systems (TECS) and referee for several international computer science journals
He is currently Associate Editor for IEEE/CAA Journal of Automatica Sinica and
the International Journal of Critical Computer-Based Systems (IJCCBS).

1 Introduction

Nowadays the massive investment of cloud computing service providers in infrastructure
as a service (IaaS) around the world had significantly contributed to the spectacular growth
of IT infrastructure and the large proliferation of data centers deployment. This trend is
mainly boosted by increasingly rising demand for computing resources generated by modern
services such as compute-intensive and scientific applications. In order to consolidate data
centers’ efficiency a great deal of progress remains to be achieved today and concerns
mainly leveraging the full benefits of both virtualization technologies and dynamic power
management (DPM) mechanisms. Virtualization enables both flexibility and operating
cost benefits. This is mainly achieved through migration and consolidation techniques.
DPM provides interesting opportunities to rationalize power consumption and to avoid
dramatic resource wastage accordingly. This is primarily fulfilled through suitable power
management (PM) mechanisms making the most of Advanced Configuration and Power
Interface (ACPI) specifications and complying with green data center sustainability needs.
Another requirement emerges today for modern data centers concerns providing high
performance while ensuring high availability in order to support critical applications. Server
virtualized systems (SVSs) are considered nowadays the cornerstone of data centers and
their successful migration toward green architectures for data centers operators requires

short title 3

to adopt cost-effective PM strategies. Such strategies are intended to minimize power
consumption while meeting quality of service (QoS) and availability requirements. Efficient
design and deployment of SVS is tributary of guarantying several requirements related
to dynamic speed scaling processing, PM, availability, and performance in presence of
transient failures whenever software fault tolerance techniques such as rejuvenation are
deployed. These requirements should be jointly investigated to provide virtualized resource
auto-scaling matching with sustainable and green computing purposes.

Investigating impact of time-varying workload with bursty nature such as data-intensive
applications on SVS performability is of paramount importance. This is mainly interesting
whenever versatile SVSs models are considered. Versatility may be concretized through
accounting of workload-dependent software aging and including both proactive fault
tolerance techniques such as software rejuvenation and DPM mechanism. We address in
this paper performability modeling and analysis of SVS to evaluate several SVS properties
through assessing performability metrics (Steady state availability, Mean waiting time,
Mean loss rate), power metrics and performance-energy efficiency. The analysis is achieved
for two kinds of software rejuvenation (i.e. Cold-VM and Migrate-VM) and for a given
PM mechanism with fixed parameter (i.e. timeout) value. Notice that in previous works
(Escheikh et al. (2017), Escheikh et al. (2014)), SVS performability is investigated for
different timeout values for only one kind of rejuvenation (i.e. Cold-VM).

1.1 Research scope

The scope of this paper is on stochastic modeling and analysis of SVS handling cost-
effective PM policy and subject to workload-dependent software aging. The main objective
of our contribution is to evaluate workload impact on software aging and performability
in SVSs. In this regard, we propose two versatile models based on non-Markovian SRNs
of SVS handling data intensive applications of bursty nature. Each of these models deals
with a specific virtual machine monitor (VMM) rejuvenation technique and a comparative
performability analysis of these two models is investigated to highlight interactions and
correlations between several SVS’s entities involving:

1. VMM subject to workload dependent software aging, failure, and rejuvenation;

2. Virtual machine (VM) subject to workload dependent software aging, failure, and
rejuvenation;

3. Power management component (PMC) implementing workload-aware PM
mechanism;

4. resource provisioning with dynamic speed scaling.

1.2 Research challenges

The main challenges addressed through our contribution are:

1. How to develop versatile SVS stochastic reward nets (SRN) models taking into
consideration workload-dependent software aging through a comprehensive modeling
and modular approach involving several SVS entities namely VMM, VM, bursty
workload, scalable resource provisioning, and workload-aware PM mechanism?

4 Z. Tayachi et al.

2. How to implement in SVS, a time-based workload-aware PM policy enabling energy
savings for bursty workload?

3. How to make suitable and opportunistic decision about workload-aware switching
between PMC soft states in order to minimize SVS energy consumption while keeping
acceptable performance complying with service level agreement (SLA) constraints?

4. How to distinguish, from a design perspective, between different VMM rejuvenation
techniques when conceiving versatile SVS SRN models?

5. How to define suitable reward-based measures in order to quantify dependencies
between software aging, workload, and performability metrics (i.e. steady state
availability, performability metrics and power metrics)?

The remainder of this paper is organized as follows. In Section 2 we address related work. In
Section 3 we first examine workload handled by SVSs. We succinctly describe SVS issues
such as software rejuvenation, software fault tolerance techniques and PM in SVSs. Lastly,
we discuss in the same section correlations between workload, software aging, PM policy
and power consumption in SVSs. Section 4 provides a detailed description of the proposed
versatile SVS SRN models. Next, we illustrate the main contributions provided in this paper.
In Section 5 we define some selected parameters and metrics of the versatile SVS SRN
models cited above. In Section 6 we illustrate by means of numerical analysis how workload
with bursty nature impacts software aging, steady-state availability, performability metrics,
power metrics and power-performance metric in SVS. Finally Section 7 concludes this
paper.

2 Related Work

In literature, different modeling approaches have been proposed to better describe the
dynamic of different entities involved in virtualized systems. Authors in Cotroneo et al.
(2014) and Cotroneo et al. (2011) propose surveys on the main studies given in literature
on software aging and rejuvenation (SAR). In Alonso et al. (2013) authors present a
comparative experimental study of six rejuvenation strategies, categorized in terms of
granularity, to mitigate software aging effects. They show that performance overheads
caused by software rejuvenation techniques are closely dependent on granularity level. In
the same work, authors provide comprehensive guidelines to handle decision making related
to rejuvenation scheduling algorithms and to select the suitable rejuvenation mechanism.
Authors in Saito and Dohi (2016) present an approach based on semi-Markov models to
investigate how software aging testing affects system behavior and its availability in the
operational phase. It’s worth mentioning the above models account for both aging-related
bugs and non-aging-related bugs.
At PM level a set of works have been proposed. Chen et al. (2005) investigated trade-offs
between energy consumption and performance based on SLA. They highlighted time
overhead of switching on/off nodes and the relevant energy consumption on reliability.
Nathuji et al. (2009) developed PM system for virtualized distributed architectures referred
to as virtual power. They proposed the notion of soft power states and related mapping
with hard power states to enable VM managing soft power with traditional techniques.
Control theory is used successfully in Gaoa et al. (2013) and Beloglazov et al. (2012)
to tackle issues on PM server. Elnozahy et al. (2003) applied two PM mechanisms

short title 5

(Vary-On Vary-Off, VOVO) to explore power efficiency resource management problem
in homogenous cluster hosting a single web application with SLAs requirements. In the
above work, authors proposed five resource management policies to estimate the needed
CPU frequency meeting response time requirements. At fault tolerant level, SRN modeling
approach was used in Han and Xu (2013) and Machida et al. (2010) to build availability
models for virtualized systems including VM and VMM subject to software rejuvenation.
In Machida et al. (2010) authors present a comparative study between availability models
of three VMM rejuvenation techniques referred to as Cold-VM, Warm-VM, and Migrate-
VM. They show that rejuvenation trigger intervals of both VM and VMM need to be
carefully chosen so as to reach high-level VM steady-state availability. In Wang et al.
(2007) and Xie et al. (2004) time-based rejuvenation policies under varying workload have
been developed to enhance the performability measure of cluster system. A comparative
study of three different rejuvenation policies is achieved through analytical models using
deterministic and stochastic Petri net (DSPN) models. VM consolidation techniques
(Takeda and Takemura (2010), Ye et al. (2010)) and energy management policies (Feller
et al. (2010)) are investigated to enable cloud computing energy saving. Authors in James
and Ian (2013) introduce an energy-efficient technique for private cloud, namely workload
mixes, for assigning tasks to servers to balance application performance and energy
consumption. Gaganpreet and Anil (2015) propose a performance evaluation of power
aware VM consolidation using live-migration. The objective is to assign workload to
servers according to a function of their cost to operate. Ghosh et al. (2011) developed a
scalable analytical model to quantify power-performance trade-off. The model enables to
judiciously configure physical machine pools.
Recovery methods in IaaS context are investigated by Beloglazov et al. (2011) through
a Markov chain model and a control algorithm for recognizing overloading problems
during dynamic VM consolidation and to achieve load balancing through migration if
needed. Recovery methods are also used by Bobroff et al. (2007) to avoid SLA violations.
Also, power-performance tradeoff has been investigated by Escheikh et al. (2014) and
Escheikh et al. (2017) through modeling a workload-aware PM mechanism for SVS
subject to Cold-VM. Authors in Grottke and Schleich (2013) investigate the optimal energy
requirement of a computing cluster in a proportional data center to maintain a specific
workload and performance objectives. They show how optimizing switching between
running and hibernating servers’ states to fulfill a selected service level objective (SLO)
with minimum energy overhead. Work in Araujo et al. (2014) investigates software aging
impact in the Eucalyptus framework. It highlights potential harmful issues related to system
dependability and performance, involving RAM memory, swap space exhaustion as well
as highly excessive CPU utilization by the VM. In the same work, authors propose a
predictive approach based on time series analysis to schedule rejuvenation, so as to reduce
downtime. They show therefore that their approach outperforms in terms of availability
the threshold-triggered rejuvenation method based on continuous monitoring of resources
utilization. Authors in Kuehn et al. (2015) develop a versatile multi-server queuing model
for data center servers enabling load-dependent server consolidation. They show through
numerical results how to quantifying tradeoff between energy efficiency and QoS.

6 Z. Tayachi et al.

3 Performability analysis of SVSs

Performability is defined as a combination of system’s performance and its dependability
measure in the presence of faults. It can be thought of as the "quality of service (QOS),
provided the system is correct" Meyer (1992). Dependability is an all-encompassing
definition for reliability, availability, safety and security Laprie (1992). We focus in this
paper on the combination of performance and availability measures of SVS.
In order to investigate SVSs performability analysis, it’s recommended to consider several
attributes such as PM, time-varying workload, dynamic speed scaling, software aging,
failure, and rejuvenation. This enables better representation and understanding of different
underlying potential interactions between all these attributes and to draw among them
better performance-dependability trade-off. In the design and development processes of
virtualized systems, many pertinent questions regarding time-varying workload impact
on software aging, availability, performability, power-saving, and efficiency have to be
considered. In order to achieve this purpose, performability techniques would be very useful
to conceive appropriate models representing the desired behavior in a flexible, concise and
modular way. Particularly modeling approach based on high level Petri nets formalism
and their variants are among the most appropriate techniques. To tackle these issues SRNs
formalism specifically involving non-Markovian distributions is commonly used. This
enables to establish interesting dependability analysis, thanks to its ability to describe with
relaxed assumptions more realistic models. In addition, using SRNs in virtualized system
modeling would define and adopt other attributes fitting the best with green computing
requirements. We propose in this paper a non-Markovian SRN-based modeling approach
to investigate performability analysis of a SVS subject to VMM rejuvenation enabling
elastic resource provisioning and relying on workload-aware PM mechanism. This approach
describes and captures in a modular and concise way correlations and interactions between
the following entities: (i) time-varying workload of bursty nature in SVS environments;
(ii) VMM and VM subject to workload-dependent aging, failure, and rejuvenation; (iii)
workload-aware PM scheme; (iv) on-demand service provisioning with dynamic speed
scaling. The key contributions of this work are modeling: (i) how VMM or VM unavailability
due to failure or rejuvenation affects service provisioning; (ii) PMC with multiple power
states (having idle states (C-states) and operational states (P-states)) with dynamic and
scalable resource provisioning; (iii) how workload tracking-based PMC scheme governs
opportunistic transitions between PMC power states (P-states and C-states) to maximize
efficiency. In what follows we detail the main performability attributes of SVS namely
workload, fault tolerance, PMC, and workload-aware PM mechanism.

3.1 Workload in SVSs

Intensive and/or delay sensitive applications handled by SVSs are usually on demand and
require usually dynamic provisioning. To meet stringent requirements of such applications,
there is a need to dynamically adapt and manage virtualized system capabilities (scaling
up/down CPU processing rates, switching opportunistically between CPU power states).
These requirements are usually expressed and specified in SLA form in terms of throughput,
waiting time, response time, quality of service and power efficiency. From a modeling
perspective, it’s highly recommended to use versatile processes such as Markov Modulated
Poisson Process (MMPP) to capture time-varying nature of SVS handled workload and
to illustrate dynamic speed scaling of resource provisioning. This will be more detailed

short title 7

in section 4. In the rest of this paper, we consider a SVS belonging to hypervisor-based
configuration category (Fig. 1). Hypervisor, called also VMM, is a software implementation
of server virtualization hosting guest operating systems (i.e VM).

3.2 Software rejuvenation in SVSs

To cope with software aging effects on VM and VMM, preventive maintenance (a.k.a.
proactive fault management) techniques referred to as rejuvenation are used. Such
techniques actually reduce unpredictable outage of cloud applications, postpone crash
failures and improve software performance but at the expense of occasional and controlled
unavailability. VMM software aging problem directly affects all hosted VMs. These latter
need to be controlled since their execution environment is likely to be cleared just before
VMM rejuvenation. Three time-based VMM rejuvenation techniques are considered and are
distinguished in the way the hosted VMs are handled before triggering VMM rejuvenation:
(i) Cold-VM rejuvenation: which shuts down all VMs and cleans all aging effects of
both VMs and VMM; (ii) Warm-VM rejuvenation: which suspends all VMs and saves
their executions states to avoid transaction running loss. As soon as VMM rejuvenation is
achieved, VMs’ executions are resumed; (iii) Migrate-VM rejuvenation: moves all VMs to
other host server. We focus in the rest of this paper only on Cold-VM and Migrate-VM
rejuvenations.

3.3 Fault tolerance in SVSs

When running modern applications (i.e. data intensive or delay sensitive applications) in
highly dynamic computing environments such as virtualized datacenters characterized by
a highly varying on-demand traffic, several disruptive events and undesirable conditions
may occur. Among these events or incidents, we distinguish software aging manifested
in different forms (errors, faults, ...) and becoming more pronounced as time progresses
and workload becomes higher. The more solicited virtual software resources become the
higher memory leakage risk. Memory leak concerns in computing science incorrect memory
allocation management where memory is not released even if it’s no longer needed. This
may involve potential failures leading obviously to SVS unavailability. To cope with these
problems preventive maintenance (a.k.a. proactive fault management) techniques referred
to as rejuvenation are used to postpone or prevent system failures. Given that VMM hosts
VM, failure or rejuvenation of the former affects accordingly the latter. Such techniques
actually postpone crash failures and improve software performance but at the expense of
occasional and controlled unavailability. For SVS, software aging affects potentially both
VMM and VM and any relevant performability analysis should take into consideration such
key factors.

In the rest of this section we present some attributes and characteristics related to PMC,
next we detail principles of workload-aware PM mechanism in SVSs.

3.4 PMC in SVSs

The main PMC feature in SVSs is to allow multiple operation modes to achieve workload-
aware power-performance trade-off. Actually having several operation modes increases
flexibility and enables finer control. It may incur however additional costs in terms of delay
or performance loss. In practice, the number of operation modes is limited. To that end, and

8 Z. Tayachi et al.

in order to reduce operating cost and to rationalize energy consumption, ACPI Hewlett-
Packard Corporation et al. (2011) industry standard has defined performance and power
component states. The main purpose is to allow operating systems to fully monitor and
control aspects related to power saving of their underlying hardware. In the following, let
us detail the above PMC power states.

• P-states: are referred to as performance states and denoted as (P0,P1, ..., Pn). They
determine capabilities of a working (i.e. active /loaded) CPU to save power. It should
be pointed out that the number of P-states is component specific. Switching from one
P-state to another is enabled through scaling both frequency and voltage. The higher
P-state number, the lower frequency. Therefore power consumption decreases with
respect to P-state number’s increase.

• C-states: they determine idle component capabilities to switch off unused components
to avoid power wastage. C-states are split into active state (C0) and sleep states (C1,C2,
...,Cn). The higher C-state number, the deeper the sleep state. Notice that deeper sleep
states induce slower wake up times. Notice also that several components hold multiple
sleep states. Components such as RAM, hard disk or CPU may support active, ready
and standby states. PM of hardware component relies on several hardware states. This
should preserve system performance while keeping relative low cost by minimizing
energy consumption through opportunistic selection of suitable power states.

In order to achieve workload-aware PM for virtualized systems, related components should
dynamically adapt their power states by switching from a given state to a more convenient
state (among all possible states) in a timely manner. Timing of switching from one state to
another should be conveniently chosen, otherwise it would involve unsuitable (premature or
too late) transitions leading to unavoidably energy wastage and /or performance degradation.
In this paper we consider that PMC has three kinds of states detailed as follows:

• Active states: They include wakeup, fastactive and slowactive states. Wakeup state
describes a PMC transient state between sleep state and fastactive or slowactive
state. Fastactive state is activated whenever workload exceeds a given threshold and
slowactive state becomes active everytime workload falls below a specific threshold.

• Sleep states: They include a sleep state and an idle state. Sleep state is considered the
least power consuming state but experiencing the longest delay. Idle state consumes
more power, than sleep state, but needs shorter delay to transit to one of the active
states.

• Off states: They include only one state referred to as off state which consumes no
power.

Hence PMC’s power states maybe classified in an ascending order of energy consumption
as follows; off, sleep, idle, wakeup, slowactive and fastactive.

3.4.1 Workload-aware PM mechanisms in SVSs

For SVSs, different workload-aware PM schemes maybe adopted to cope with on-demand
traffic of data intensive as well as latency-sensitive applications Beloglazov et al. (2010).
Such applications often generate highly time-varying workload incurring several non-
uniform unpredictable fluctuations and including workload burst periods of variable lengths.

short title 9

From PM point of view, appropriate control schemes should be adopted in order to meet
stringent SLA requirements. A carefully designed PM scheme should rely on coordinated
solutions combining multiple policies to handle multi-objective adaptations. Adopting
a PM policy (or a logic) enables a clear description of advantages, related costs and
overheads of each adaptation alternative. This will be used to make the good decision at
the right time about the right resources in a dynamic and flexible manner. Therefore, each
adaptive alternative should be evaluated before making a decision but also reevaluated at
each adaptation period. This could be achieved by building self-tuning schemes enabling
self-configuring properties through adapting dynamically PMC power states according to
workload variations without causing unbearable overheads. These overheads may result
from several reasons often related to satisfying at the same time several conflicting needs
in terms of efficiency, correctness and stability while complying with constraints.
Workload-aware PM encompasses DPM and dynamic voltage frequency scaling (DVFS)
policies. DPM tries to fully exploit knowledge about real-time resource usage and
applications’ nature to minimize energy consumption. It includes timeout, predictive and
stochastic PM policies and is usually used for system components having multiple power
states. Whereas DVFS is convenient for components supporting multiple speed and voltage
levels dynamically scaled up or down.
In timeout PM scheme, PMC is forced to sleep state whenever it’s idle for more than a
specified period of time (referred to as timeout). Note that this period should be at least
equal to break-even time which corresponds to the minimum necessary time PMC has to
hold in the low-power state to recover switching costs to and from low-power state. Thus,
it is preconized to filter out relatively short idle periods. The more PMC responds faster the
smaller filter intervals are. Authors in Simunic et al. (2000) found that the most appropriate
range of filter intervals for hard disk is included in [0.5 s, 2 s], while for WLAN card filter
intervals are considerably shorter (50 ms, 200 ms) since these devices respond much faster
than the hard disk. Unlike timeout policies, predictive policies rely on predicting upcoming
idle period duration and take shutdown decision straight after PMC becomes idle. Stochastic
PM policy is a DPM policy where workload and PMC behavior are described by stochastic
processes and where PM maybe formulated as a power-performance optimization problem.
PMCs such as CPU may support the two policies cited above (DPM, DVFS). This enables
virtualized resources to meet QoS requirements of handled applications while rationalizing
power resource utilization. In order to face changing scenarios and to fully benefit from
available resources, applications should include self-configuring capabilities. This enables
to take appropriate decisions squeezing most out of competing adaptation mechanisms
and avoiding potential oscillations whenever two or more correlated objectives need to be
reached simultaneously. Design of dynamic adaptive PM mechanisms suitable for SVSs
context needs to capture correlations between PMC behavior and workload’s dynamic via
appropriate modeling approach.

3.5 Correlations between workload, software aging, PM policy and power
consumption in SVSs

Software aging is commonly accelerated with time and with respect to workload increase.
This should be captured in our modeling approach by considering workload-dependent
software aging. Also energy efficient PM policy should minimize energy consumption
by judiciously adapting PMC power states with respect to workload variations. This may
be accounted in our proposed models by considering a time-based workload-aware PM

10 Z. Tayachi et al.

Figure 1: System configuration including a server virtualized system

policy, The more this minimization is tangible and effective the less aging is pronounced.
This demonstrates also close correlation between on one hand this kind of PM policy and
workload and on the other hand PM policy and workload-dependent aging. Given that
PM policy aims to switch adaptively from one PMC power state to another, its impact on
software aging is almost impalpable for both light and heavy workloads. Indeed in the first
case PMC is almost always in sleep state whereas in the second case PMC is almost always
in active state and therefore in both cases dynamic workload aware PM policy would not
provide significant gains.

4 SRNs modeling of versatile SVS with workload-aware PM mechanism

From a point of view combining performance and dependability, VM needs to assign
dynamically virtualized resources such as vCPU, vRAM, vDDR, in an adaptive way taking
into consideration impairments cited above and aiming to meet QoS requirements while
preserving low power costs. These resources should be managed according to efficient
pre-established policy in order to achieve convenient processing.

In this section, we first recall SRN paradigm. We give next a detailed description of two
proposed versatile SVS SRN models. The first model accounts for Cold-VM whereas the
second takes into consideration Migrate-VM. We examine also tunable parameters in the
two SVS models and we detail the main contributions in this paper.

4.1 SRN basic principles

Petri nets (PNs) represent a high level formalism providing the underlying Markov model
specification and a visualization of system’s dynamic Tadao Murata (1989). They give
easier representation of computer system features such as concurrency, synchronization,
sequencing and resource sharing through a set of places (represented by circles) and
transitions (represented by rectangles). Each place represents a system local state and
may contain zero or more tokens (represented by black dots or integers). Each transition
represents a system event and is connected to places via oriented arcs. A transition is
enabled if at least one token is deposited in each input place. The firing of an enabled
transition removes a token from each of its input place(s) and puts one token in each of
its output place(s). The number of tokens in each place (a.k.a. marking) characterizes a
PN state. We distinguish two kinds of marking: vanishing and tangible. Tangible marking
maybe assigned a reward rate. A transition with an assigned marking dependent guard is

short title 11

enabled only if this guard is true. Notice also that transitions maybe immediate or timed.
In this last case, transition firing time is a random variable. The use of non-Markovian
transitions distributions such as deterministic or general, allows building more realistic
models. Transitions which are never preempted are referred to persistent. However those
which may be preempted are known as non-persistent. For non-Markovian non-persistent
transitions, a firing policy has to be specified. The first kind of policies is known as
preemptive resume (prs) whereas the second one is referred to preemptive different (prd).
prs (resp. prd) policy means that when a transition is disabled without having fired, its
performed work is maintained (resp. lost).
A more concise description of the stochastic PN (SPN) model may be obtained by using
several extensions such as marking dependent arc multiplicity, priorities and guards (i.e.
enabling function) with firing dependent firing rates (also called reward rates and formulated
with respect to the number of tokens in place P (i.e. #P)). Also associating reward
description to PNs extends SPNs and is referred to as SRNs. The modeling paradigm
based SRNs is recognized to be among the most powerful tools to investigate model-
based performability analysis combining performance and dependability evaluations.
SRNs facilitate both reward structure specification and Markov reward model automatic
generation. They allow to specify and calculate a variety of qualitative and quantitative
performance measures. SRNs enhance both modeling power and modeling convenience and
specify output measures as a reward-based function. In SRNs a tangible marking may be
associated with a reward rate so as to facilitate the computation of several output measures.
Classical output measures namely mean (expected) number of tokens in a place, expected
transition throughput and probability that an event occurs may be derived from a SRN.
Also, reward functions may be used to define more complex output measures.

Output measures in SRNs: Assume X a random variable representing a reward rate
and describing a given output measure of interest. In steady-state the expected reward rate
expression is given by:

E[X] =
∑
k∈T

nkrk

where T is the set of tangible markings, nk (resp. rk) is the steady-state probability (resp.
reward rate) of tangible marking k.

4.2 Description of the proposed versatile SVS SRN models

We propose in this paper two versatile SVS SRN models representing SVS composed by
one VMM hosting a VM which in turn handles data intensive applications with time-varying
traffic. The first versatile SVS SRN model is subject to Cold-VM rejuvenation whereas the
second one uses migrate-VM (i.e. live migration) as VMM rejuvenation technique. The
two above models include a workload-aware PM mechanism enabling to judiciously adapt
PMC’s soft power states (a.k.a. P-states, C-states) in accordance to workload variations. In
our modeling approach we assume that VM and VMM are subject during their operational
processes to several impairments such as workload-dependent software aging, failure
and rejuvenation. We assume likewise that VMM assigns dynamically to VM a PMC
(i.e. virtualized resources such as vCPU) monitored by workload-aware PM policy. For
illustrative purposes instead of using monolithic model we adopt a modular approach to
better describe interactions between different sub-models of each proposed versatile SVS
SRN model. This is justified by the need to better understanding complex SVS model

12 Z. Tayachi et al.

involving several attributes. For more convenience, we will use in the rest of this paper the
following notations:

• The first (resp. second) versatile SVS SRN model subject to Cold-VM (resp. Migrate-
VM) rejuvenation is referred to as model1 (resp. model2).

• Each of theses models encompasses two dependent sub-models. The first one describes
VMM and VM interactions in SVS, whereas the second sub-model represents a
workload-aware PM mechanism.

• Model1 is composed by sub-model11 (Fig. 2, Tab. 1, Tab. 3, Tab. 6) and sub-model12

(Fig. 4, Tab. 2, Tab. 4, Tab. 7).

• Model2 includes sub-model21 (Fig. 3, Tab. 1, Tab. 3, Tab. 6) and sub-model22 (Fig. 4,
Tab. 2, Tab. 5, Tab. 7).

• Notice that sub-model11 (resp. sub-model21) is similar to Cold-VM (resp. Migrate-
VM) model given in Machida et al. (2010) and is used in this paper as a sub-model
of model1 (resp. model2) with some guards modifications. These modifications are
introduced in order to represent workload-dependent software aging (in VMM and
VM) and to retain correlations with sub-model12 (resp. sub-model22).

In the rest of this subsection, we provide a detailed description of model1 and model2.
Notice that we adopt the same notation for naming transitions and places. For example
T vfp (resp.T hfp) name abbreviates fail-prone transition of VM (resp. VMM)). We next
investigate tunable parameters in the workload-aware PM SRN sub-model before defining
some pertinent performability metrics of the two proposed versatile SVS SRN models.

4.2.1 SVS SRN sub-model with Cold-VM rejuvenation (sub-model11)

Sub-model11 (Fig. 2) encompasses a VMM model and a VM model. VMM model includes
a VMM sub-model (Fig. 2a) and a VMM clock sub-model (Fig. 2b). Similarly VM model
includes a VM sub-model (Fig. 2c) and a VM clock sub-model (Fig. 2d). VMM (resp.
VM) clock sub-model is used to trigger VMM (resp. VM) time-based rejuvenation. The
VM model is closely dependent of the VMM model. This is straightforward since failure
or rejuvenation of VMM affects automatically the handled VM. Related dependencies
between VM and VMM are illustrated through assigned guards in VM model. In what
follows we recall detailed description given in Machida et al. (2010) for sub-model11. We
highlight also potential interactions between VMM and VM models.

VMM model description: As soon as the latest VMM boot time expires, deterministic
transition T hinterval with constant duration 1/τh fires to trigger VMM rejuvenation as
long as immediate transition T hpolicy is enabled. Fig. 2a represents and describes failure,
recovery and time-based rejuvenation processes in VMM. Whenever VMM software aging
transition T hfp fires, it deposits a token in P hfp. T hfail firing assigns a token to
P hfail. The above place indicates the state of VMM failure caused by software aging.
T hdet firing is conditioned by VMM failure detection whereas T hrepair firing is
only enabled if VMM recovery process (from failure state) is fully achieved. VMM clock
(Fig. 2b) enables to trigger VMM rejuvenation phase and as soon as this event occurs,
immediate transition T hrejt or T hfprejt can fire and moves a token from P hfp to
deposit another one in P hrej. As soon as VMM rejuvenation process achieved, transition

short title 13

T hrej fires and deposits a token in P hup.

VM model description: T vinterval (Fig. 2d)fires, after the latest VM start up
time, and triggers VM rejuvenation whenever immediate transition T vpolicy is enabled.
T vinterval duration (i.e.1/τv) is considered constant and is represented by a deterministic
transition. As soon as VM rejuvenation process finishes, T vreset is enabled and puts
a token in place P vclock. Notice that VM model (Fig. 2c) includes different stages of
failure, recovery and time-based rejuvenation. Notice also that since VM model closely
depends on the underlying VMM model, whenever no token is present in P hup nor in
P hfp, both immediate transitions T vdw and T vfpdw are enabled and a token is put
in P vstop. Getting a token in P hup or P fup allows transition T vrestart to be
enabled and consequently VM cannot be rebooted unless VMM is available again. Cold-VM
rejuvenation consists in shutting down hosted VM before starting any VMM rejuvenation.
This is expressed by immediate transitions T vpre and T vfppre and their associated
guards’ functions. Te above transitions are enabled as soon as a token is deposited in
place P hpolicy (Fig. 2b). Whenever T vpre (resp. T vfppre) fires a token is deposited
in P vsd (resp. P vfpsd) and as a consequence transition T vsd (resp. T vfpsd) is
enabled. In VM model (Fig. 2c), firing either T vsd or T vfpsd allows to deposit a token
in P vstop and to enable then immediate transition T hpolicy which in turn triggers
VMM rejuvenation process (Fig. 2b). Notice that VMM rejuvenation starting is assumed
conditioned by the presence of a token in one of places, P vup, P vfp, P vsd and
P vfpsd. Notice also that T vinterval (resp. T hinterval) distribution is considered
deterministic since it’s used to model fixed VM (resp. VMM) rejuvenation trigger interval.
All others timed transitions in Fig. 2 are assumed exponentially distributed.

4.2.2 Description of SVS SRN model with Migrate-VM (sub-model21)

Sub-model21 (Fig. 3, Tab. 1, Tab. 3 and Tab. 6) consists of VM sub-model, VM clock
sub-model, VMM sub-model and VMM clock sub-model. Notice that representation,
associated notations and guards of sub-models (Fig. 3a, Fig. 3b and Fig. 3d) included in
model21, are respectively exactly identical to those given in Fig. 2a, Fig. 2b and Fig. 3d
(described above in subsection 4.2.1) T hpolicy guard function (Tab. 3). Fig. 3c shows
sub-model of a VM housed by VMM subject to Migrate-VM rejuvenation.
Migrate-VM rejuvenation uses live VM migration to move a running VM from the current
VMM, just before triggering its rejuvenation, to a remote VMM. If a token is deposited
in P vup or P vfp and immediate transitions T vpre and T vfppre are enabled, VM
migration process to remote host is triggered. T vpre and T vfppre are enabled when
a token is deposited in P hpolicy (Fig. 3b). While a token is present in P vmigd or
P vfpmigd, VM execution on remote host will continue. As soon as VMM rejuvenation
is completely achieved, immediate transitions T vpost and T vfppost will be enabled
and VM returns back from remote host to original host, again by live VM migration. To
keep SVS SRN model more tractable, we assume that no failure occurs throughout VMM
rejuvenation and VM migration periods. VMM rejuvenation can be triggered unless a
token is deposited in P vup, P vfp, P vmig, P vfpmig, P vbac or P vfpbac. If
a token is deposited in P vup, P vfp, P vmigd, or P vfpmigd, then VM becomes
available and transition T vinterval is enabled.

It’s worth mentioning that authors in Machida et al. (2010) used 10-stage Erlang
distributions to approximate deterministic distributions since model implementation is

14 Z. Tayachi et al.

done with software package SPNP (Muppala et al. (1994)) which uses only exponential
timed distributions. Since in this paper we use extended deterministic stochastic Petri nets
(eDSPNs) implemented through TimeNet 4.1 tool (Armin Zimmermann (2012)) above
approximation is relaxed and deterministic distributions are effectively used.

(a) VMM model (b) VMM clock model

(c) VM model (d) VM clock model

Figure 2: SVS SRN model with Cold-VM rejuvenation (sub-model11)

4.2.3 Detailed description of workload-aware PM SRN sub-model (sub-model12

and sub-model22)

Sub-model12 and sub-model22 have the same representation (Fig. 4, Tab. 2, Tab. 7) but
they have different guards (Tab. 4, Tab. 5). Control scheme implementing PM mechanism
is conceived to achieve dynamic adaptive PM policy relying on workload tracking
process. Tracking process aims to make appropriate opportunistic workload-aware decisions
enabling to wisely choose how and when to force PMC to transit from one power state
to another. This is achieved by choosing appropriate PMC power states accordingly.
Application-driven PM policies for unpredictable time varying workload are commonly of
stochastic and non stationary nature and change over time according to workload variations.

short title 15

(a) VMM model (b) VMM clock model

(c) VM model (d) VM clock model

Figure 3: SVS SRN model with Migrate-VM rejuvenation(sub-model21)

This means that workload fluctuations may lead to PMC state’s change at any point in
time. This is usually achieved in order to maintain low power costs while meeting SLA
performance requirements. In what follows we give a detailed description of the proposed
workload-aware PM SRN sub-model (Fig. 4, Tab. 2, Tab. 7) including a novel event
driven PM mechanism for unpredictable time varying workload referred to as On-demand
transition to active state with timeout preempted upon arrival. From a practical point of
view PM policy makes decisions upon a request’s occurrence or straight after a request
processing is achieved. The description of the workload-aware PM SRN sub-model (Fig.
4, Tab. 2, Tab. 7) includes preliminary assumptions, request processing process and P-
invariants specification.

Assumptions

16 Z. Tayachi et al.

Table 1 Transitions description of sub-model11 (Fig. 2) and sub-model21 (Fig. 3)

Common description for the two sub-models
Transition Description
T hinterval (resp. T vinterval) host (i.e. VMM) (resp.VM) inter-rejuvenation interval duration
T hpolicy (resp.T vpolicy) host (resp. VM) rejuvenation trigger interval duration
T hreset (resp. T vreset) immediate transitions enabled when host (resp. VM) rejuvenation

duration expires to trigger T hinterval (resp. T vinterval)
T hfp (resp. T vfp) host (resp. VM) fail prone duration
T hfail (T vfail) host (resp. VM)) failure duration
T hdet (resp. T vdet) host (resp. VM)) failure detection duration
T hrepair (resp. T vrepair) host (resp. VM) failure recovery duration
T hrejt (resp. T vrejt) immediate transitions enabled to trigger host (resp. VM) rejuvenation
T hrej (resp.T vrej) host (resp. VM) rejuvenation duration
T hfprejt (resp.T vfprejt) immediate transitions enabled to trigger host (resp. VM) rejuvenation
T vrestart VM restart duration
T vdw, T vfpdw VM shutdown duration

Specific description for each model
Cold-VM (sub-model11)

Transition Description
T vpre, T vfppre immediate transitions enabled when VM stopping process is initiated

(as soon as host rejuvenation is achieved)
T vsd, T vfpsd VM stopping time interval duration

Migrate-VM (sub-model21)
Transition Description
T vpre, T vfppre immediate transitions enabled when VM Migration process to remote host is initiated

(as soon as host rejuvenation is achieved)
T vmig, T vfpmig VM migration duration
T vpost, T vfppost immediate transitions triggering VM migration back to original host
T vbac, T vfpbac duration VM migration back to original host

Table 2 Transitions description of workload-aware PM SRN sub-model (Fig. 4)

Transition Description
T h2l time interval duration to switch MMPP traffic from high to low rate
T l2h time interval duration to switch MMPP traffic from low to high rate
1/T hightraffic high traffic rate
1/T lowtraffic low traffic rate
1/T servfast fast service processing rate
1/T servslow slow service processing rate
1/T f2s transition rate to switch from fast to slow
1/T s2f transition rate to switch from slow to fast
1/T fast PMC fast service processing rate
1/T slow PMC slow service processing rate
T start immediate transition enabled to trigger service processing
T sleep2wakeup time interval duration for PMC to transit from sleep to wakeup
T wakeup time interval duration for PMC to transit from wakeup to idle
T timeout time interval duration for PMC to transit from idle to sleep
T lossjob immediate transition enabled when an arriving request is lost
T rejdown1 immediate transition enabled to transit from sleep to off
T rejdown2 immediate transition enabled to transit from idle to off
T rejdown3 immediate transition enabled to transit from fastactive to off
T rejdown4 immediate transition enabled to transit from slowactive to off
T rejdown5 immediate transition enabled to transit from wakeup to off
T notrejdown time duration to transit from off state to sleep state

short title 17

Figure 4: Workload-aware PM SRN sub-model

Assumptions considered in this paper are mainly related to initial marking, arrival
process distribution, service process distribution and PMC transitions from sleep to wakeup.
We particularly assume that:

• transitions distributions are either immediate (imm.), exponential (exp.) or
deterministic (det.);

• PMC has the following power states: off state (P off), active or operational states
(P fastactive, P slowactive) and idle states (P idle, P wakeup ,P sleep). The
lower power state the more time it experiences to come back to active state;

• PMC is initially in sleep state (P sleep);

• SVS is initially idle (#P queueplace =K = 3, whereK is buffer capacity of the SVS
model);

• PMC service processing follows a two states MMPP, this allows to capture dynamic
speed scaling of PMC;

• PMC service processing is workload-dependent;

• request arrival follows a two states MMPP, this enables to capture traffic burstiness;

• there are 4 traffic sources (X high traffic sources and Y low traffic sources with
X + Y = 4);

• initially there are 4 low traffic sources;

18 Z. Tayachi et al.

• PMC is initially in sleep state. According to this assumption and as a request arrival
occurs, PMC service initiation (i.e. request processing) is not granted at once. Instead,

Table 3 Transitions with assigned guards of SVS SRN sub-models (sub-model11, sub-model21)

Common guards for sub-model11 and sub-model21
Transitions Guards
T hrej P hclock == 1
T hinterval (P hup == 1) ‖ (P hfp == 1)
T hrejt P htrigger == 1
T hfprejt P htrigger == 1
T hreset P hrej == 1
T vpolicy (P vup == 1) ‖ (P vfp == 1)
T vdet (P hup == 1) ‖ (P hfp == 1)
T vrepair (P hup == 1) ‖ (P hfp == 1)
T vrej (P vclock == 1) && (P hup == 1) ‖ (P hfp == 1)
T vrejt P vtrigger == 1
T vfprejt P vtrigger == 1
T vpre P hpolicy == 1
T vdw P hfail == 1
T vfpdw P hfail == 1
T vfppre P hpolicy == 1
T vrestart (P hup == 1) ‖ (P hfp == 1)
T vreset P vrej == 1

Specific guards to each model
Cold-VM (sub-model11)

Transitions Guards
T hpolicy (P vstop == 1) ‖ (P vfail == 1) ‖ (P vdet == 1) ‖ (P vrej == 1)
T vinterval (P vup == 1) ‖ (P vfp == 1) ‖ (P vsd == 1) ‖ (P vfpsd == 1)

Migrate-VM (sub-model21)
Transitions Guards
T hpolicy (P vfail == 1) ‖ (P vdet == 1) ‖ (P vrej == 1) ‖ (P vmigd== 1)‖ (P vfpmigd == 1)
T vinterval (P vup == 1) ‖ (P vfp == 1) ‖ (P vmigd == 1) ‖ (P vfpmigd == 1)

Table 4 Transitions with assigned guards of workload-aware PM SRN sub-model (Cold-VM
rejuvenation)

Transitions Guards
T servfast (P vup == 1) ‖ (P vfp == 1) ‖ (P vsd == 1) ‖ (P vfpsd == 1)
T servslow (P vup == 1) ‖ (P vfp == 1) ‖ (P vsd == 1) ‖ (P vfpsd == 1)
T f2s (P hightraffic == 0) && (P vup == 1) ‖ (P vfp == 1) ‖ (P vsd == 1) ‖ (P vfpsd == 1)
T s2f (P hightraffic > 0) && (P vup == 1) ‖ (P vfp == 1) ‖ (P vsd == 1) ‖ (P vfpsd == 1)
T fast (P servfast == 1)
T slow (P servslow == 1)
T start (P vup == 1) ‖ (P vfp == 1) ‖ (P vsd == 1) ‖ (P vfpsd == 1)
T sleep2wakeup (P vup == 1) ‖ (P vfp == 1) ‖ (P vsd == 1) ‖ (P vfpsd == 1)
T wakeup (P vup == 1) ‖ (P vfp == 1) ‖ (P vsd == 1) ‖ (P vfpsd == 1)
T timeout (P vup == 1) ‖ (P vfp == 1) ‖ (P vsd == 1) ‖ (P vfpsd == 1)
T lossjob (P vup == 0) && (P vfp == 0) && (P vsd == 0) && (P vfpsd == 0)
T rejdown1 (P vup == 0) && (P vfp == 0) && (P vsd == 0) && (P vfpsd == 0)
T rejdown2 (P vup == 0) && (P vfp == 0) && (P vsd == 0) && (P vfpsd == 0)
T rejdown3 (P vup == 0) && (P vfp == 0) && (P vsd == 0) && (P vfpsd == 0)
T rejdown4 (P vup == 0) && (P vfp == 0) && (P vsd == 0) && (P vfpsd == 0)
T rejdown5 (P vup == 0) && (P vfp == 0) && (P vsd == 0) && (P vfpsd == 0)
T notrejdown (P up == 1) ‖ (P vfp == 1) ‖ (P vsd == 1) ‖ (P vfpsd == 1)

short title 19

it’s deferred and triggered after a given delay has elapsed. This delay corresponds to a
given time (T wakeup) needed by PMC to switch from sleep state to active state;

• PMC power consumption along T wakeup duration is maximum and equal to
Powerfastactive.

Request processing process description

As soon as a request occurs (a token is deposited inP inqueue), and since there is initially a
token inP sleep, transitionT sleep2wakeup is enabled. Forthwith, a token is deposited in
P wakeup and transition T wakeup is thereby enabled. Note that whenever T wakeup
is enabled and before its firing, further request arrivals may enter the system and as much
tokens are deposited in P inqueue. The number of tokens in P inqueue represents the
number of requests waiting to be processed whereasP queueplace represents the available

Table 5 Transitions and assigned guards of workload-aware PM SRN sub-model (Migrate-VM
rejuvenation)

Transitions Guards
T servfast (P vup == 1) ‖ (P vfp == 1) ‖ (P vmigd == 1) ‖ (P vfpmigd == 1)
T servslow (P vup == 1) ‖ (P vfp == 1) ‖ (P vmigd == 1) ‖ (P vfpmigd == 1)
T f2s (P hightraffic == 0) && (P vup == 1) ‖ (P vfp == 1) ‖ (P vmigd == 1) ‖ (P vfpmigd == 1)
T s2f (P hightraffic > 0) && (P vup == 1) ‖ (P vfp == 1) ‖ (P vmigd == 1) ‖ (P vfpmigd == 1)
T fast (P servfast == 1)
T slow (P servslow == 1)
T start (P vup == 1) ‖ (P vfp == 1) ‖ (P vmigd == 1) ‖ (P vfpmigd == 1)
T sleep2wakeup (P vup == 1) ‖ (P vfp == 1) ‖ (P vmigd == 1) ‖ (P vfpmigd == 1)
T wakeup (P vup == 1) ‖ (P vfp == 1) ‖ (P vmigd == 1) ‖ (P vfpmigd == 1)
T timeout (P vup == 1) ‖ (P vfp == 1) ‖ (P vmigd == 1) ‖ (P vfpmigd == 1)
T lossjob (P vup == 0) && (P vfp == 0) && (P vmigd == 0) && (P vfpmigd == 0)
T rejdown1 (P vup == 0) && (P vfp == 0) && (P vmigd == 0) && (P vfpmigd == 0)
T rejdown2 (P vup == 0) && (P vfp == 0) && (P vmigd == 0) && (P vfpmigd == 0)
T rejdown3 (P vup == 0) && (P vfp == 0) && (P vmigd == 0) && (P vfpmigd == 0)
T rejdown4 (P vup == 0) && (P vfp == 0) && (P vmigd == 0) && (P vfpmigd == 0)
T rejdown5 (P vup == 0) && (P vfp == 0) && (P vmigd == 0) && (P vfpmigd == 0)
T notrejdown (P vup == 1) ‖ (P vmigd == 0) && (P vfpmigd == 0)

Table 6 Parameters and corresponding values used of the two versatile SVS SRN models

Symbol Description Value Mean time
λFPv VM aging rate 0.005952381 1 week
λv VM failure rate after aging 0.013888889 3 days
δv VM failure detection rate 12 5 mins
µv VM failure recovery rate 2 30 mins
βv VM rejuvenation rate 60 1 min
rv VM restart rate 120 30 secs
σv VM shutdown rate 120 30 secs
ωv VM migration rate 3600 1 sec
τv VM rejuvenation trigger rate 0.041666667 1 day
λFPh VMM aging rate 0.001388889 1 month
λh VMM failure rate after aging 0.005952381 1 week
σh VMM failure detection rate 12 5 mins
µh VMM failure recovery rate 1 1 hour
βh VMM rejuvenation rate 30 2 mins
τh VMM rejuvenation trigger rate 0.005952381 1 week

20 Z. Tayachi et al.

system capacity.
Forthwith T wakeup fires, PMC transits from wakeup state to idle state and a token
is deposited in P idle. This enables, straight after, the immediate transition T start
since at least a token is present in place P inqueue. Once T start fires, it moves one
token from each of places P inqueue and P idle and forwards a token to P active.
Here indeed the actual request processing begins. The dynamic speed scaling of PMC
following a MMPP process is expressed by transitions T servfast and T servslow
alternating between P servfast and P servslow (using transitions T f2s and T s2f).
According to assigned guards one of the immediate transitions T fast and T slow is
enabled. When T fast (resp. T slow) fires, it puts a token in P fastactive (resp.
in P slowactive). Adapting service processing rate to workload variations is achieved
through marking dependent firing rates. This adaptation is enabled by assigning guard(s)
to one or both of transitions T s2f and T f2s. Once request is fully processed, through
firing of T servfast or T servslow, PMC switches to idle state (P idle) and triggers at
the same time a timer with constant duration (T timeout). If any new request arrival occurs
before timer expires then transitionT timeout is canceled (preempted with policy prd) and
PMC comes back from idle state (P idle) to active state (P slowactive orP fastactive)
after T start firing. Therefore a new request processing begins immediately. Otherwise if
this timer expires without detecting any new request arrival, then T timeout fires and the
PM mechanism forces PMC to transit immediately back to sleep state (P sleep). Finally
since our versatile SVS SRN models deal with performability analysis it’s obvious to hold
failure occurrences. Thus if at any time VM or VMM becomes unavailable due to either
failure or rejuvenation, PMC power state switches to off state (P off). This is captured
in PM SRN model by immediate transitions T rejdown1, T rejdown2, T rejdown3,
T rejdown4 and T rejdown5. These latter are enabled with the same assigned guard
specifying that VM or VMM is unavailable. Indeed in such case, one of the above transitions
fires, moves a token from one of the following places: P sleep, P idle, P fastactive,
P slowactive, P wakeup and immediately forwards a token in place P off .
To summarize the above process let us consider time interval Tint between instant when

Table 7 Timed transitions’ Values of workload-aware PM SRN sub-models

transition Value
T h2l = 1

σT h2l
0.1

T l2h = 1
σT l2h

0.01

T hightraffic = 1
λT hightraffic

[0.0015,...,250]

T lowtraffic = 1
λT lowtraffic

[0.0003,...,50]

T servfast = 1
λTservfast

0.05

T servslow = 1
λTservslow

0.002

T f2s = 1
σT f2s

0.1

T s2f = 1
σT s2f

0.01

T wakeup = 1
λT wakeup

0.01

T timeout = 1
λT timeout

0.02

Table 8 PMC power measurements

Mode sleep idle slowactive fastactive wakeup
Power (watt) 2.5 60 80 95 95

short title 21

Figure 5: Illustration of PMC states’ evolution and request processing vs time (for different
mean arrival rates) in the SVS

previous request is fully processed and instant when current request occurs. If Tint is
strictly shorter than a given time (corresponding to T timeout delay) then as soon as the
processing of the previous request is achieved, PMC immediately transits from active state
(P fastactive or P slowactive) to idle state (P idle). PMC remains in P idle until
Tint time interval is elapsed and straight after it switches to active state to initiate current
request processing. Inversely if Tint is greater than T timeout duration and as soon as this
latter is elapsed, PMC switches from idle to sleep state. In the following we will discuss
what kind of transitions’ delays would be adaptively tuned according to workload’s dynamic
to achieve a workload-aware PM Policy.
A graphical illustration of request processing request is provided in Fig. 5 to better
understand how PMC states evolve and how requests are processed vs time. For more
explanation of the above process, let’s define a cycle (Fig. 5) as the time period between
instant of triggering T wakeup and T timeout expiry. For each cycle corresponds one
firing occurrence of both T wakeup and T timeout. Workload’s increase raises certainly
departure frequency of SVS whereas it may increase, decrease or keep constant the number
of Twakeup periods (Twakeup firing frequency) during time interval T . This is highlighted
in Fig. 5 where three kinds of SVS workloads are considered. Notice that workload
increase from very light level (Fig. 5.a) to light level (Fig. 5.b) increases FT wakeup

whereas workload evolution from light level (Fig. 5.b) to loaded level (Fig. 5.c) decreases
FT wakeup. Notice also that according to our modeling approach the request processing
process maybe considered as a particular queuing system where the waiting time consists
of three cumulative delays:

• the first one, D1, is due to T wakeup. In the best case D1=0 (if the request arrival occurs
and finds PMC in idle state) and in the worst case D1=T wakeup duration (if request
arrival occurs and finds buffer empty and PMC in sleep state). If an arrival occurs and

22 Z. Tayachi et al.

transition T wakeup is already triggered (by a previous arrival) without being fired
then D1 is equal to residual time of T wakeup. In this last case, the following equation
holds 0 < D1 < T wakeup;

• the second, D2, is due to the waiting time in the SVS buffer (i.e queue) before beginning
the service;

• the third delay, D3, corresponds to the expected request processing time (mean service
duration).

The aforementioned analysis enables to better explain the waiting time accumulated by a
request from its arriving instant until its departure from the SVS. This allows also to better
understand the overall SVS model.

Place invariants (P-invariants)

In what follows we detail P-invariants of workload-aware PM SRN sub-model (Fig. 4): the
first P-invariant corresponds to system property that at mostK buffer places are available (i.e.
#P queueplace + #P inqueue + #P active + #P fastactive + #P slowactive
= K); second P-invariant means that PMC is in one of possible states (i.e. #P off +
#P sleep+#P wakeup+#P idle+#P active+#P slowactive+#P fastactive
= 1); third P-invariant (i.e. #P servslow + #P servfast = 1) describes property that
PMC, whenever is active, is either serving with fast or slow rate. The property that
#P hightraffic + #P lowtraffic = n = 4 means that arrival traffic is composed of n
sources.

4.3 Tunable parameters in the proposed Workload-aware PM Policy

In workload-aware PM SRN model (Fig. 4), we distinguish between two kinds of timed
transitions:

• Transitions with non-tunable delay (T notrejdown and T wakeup): They are
assumed exponentially distributed. The corresponding delays of such transitions are
inherent to PMC technology. T notrejdown corresponds to the PMC necessary time
to transit from off state to sleep state. Whereas T wakeup duration is the time needed
by PMC to transit from sleep state to idle state.

• Transitions with tunable delay according to the context and depending on workload
are T timeout, T servfast, T servslow, T s2f and T f2s. Tuning delays of
such transitions in opportunistic way may be a key factor to make appropriate decision
of a given PM policy relying on workload attributes in order to reach good power-
performance trade-off without incurring unbearable oscillations. Oscillatory behavior
may be avoided by choosingT timeoutvalue beyond a given threshold. This threshold
corresponds to the break-even time defined in previous sections and expressed by the
needed time to switch to and from an active state.

In the following subsection we will define some SVS performability and efficiency metrics
that will be investigated later through numerical results with respect to timeout parameter.

short title 23

4.4 Main contributions of the proposed versatile SVS SRN models

In this section, we discuss the strong points and limitation of the proposed models when
compared with similar ones presented in previous works (Escheikh et al. (2014), Escheikh
et al. (2016), Escheikh et al. (2017)) and Escheikh et al. (2018):

• In Escheikh et al. (2014) and Escheikh et al. (2017) authors proposed a versatile SVS
SRN model for Cold-VM rejuvenation. Whereas in Escheikh et al. (2016) and Escheikh
et al. (2018) authors had considered only Migrate-VM rejuvenation scenario.

• In Escheikh et al. (2014) and Escheikh et al. (2017), VM and VMM sub-models
are abstracted as a simplified and unified model with reduced state space to avoid
untractable calculation. However this simplification may hide detailed specification
useful to accurately describe both VMM and VM behaviors. This drawback is
circumvented in this work through keeping these detailed specifications (given in
previous work Machida et al. (2010)). This is mainly useful for more concrete numerical
investigations.

• In the present paper we are concerned in this paper with workload-dependent software
aging instead of workload-independent software aging for both VMM and VM
(investigated in Escheikh et al. (2014) and Escheikh et al. (2017)).

• We have introduced in the workload-aware PM mechanism presented in this paper
(compared with works given in Escheikh et al. (2014) and Escheikh et al. (2017)) a
new PMC power state accounting for PMC switching between wakeup state and idle
state. This provides more clarification and accuracy in describing PM mechanism.

• Numerical investigations and defined performability metrics in Escheikh et al. (2014)
and Escheikh et al. (2017) focus on PM impact regarding performance (i.e. mean
waiting time), power usage as well as power-performance efficiency when using time
varying bursty workload. The objective is to find opportunistic timeout value (the
tunable parameter of the PM mechanism) providing optimal power-performance trade-
off for a given workload. In this paper, we are rather concerned with comparative
study between SVS subject to Cold-VM rejuvenation and SVS subject to Migrate-
VM rejuvenation for different SVS metrics. These metrics highlight the impact
of workload-dependent aging, workload and workload burstiness on steady-state
availability, performability metrics, power metrics and power-performance metric.

• Another distinction, in Escheikh et al. (2014) and Escheikh et al. (2017), the proposed
versatile SVS SRN models are solved using TimeNet 4.1 tool (Armin Zimmermann
(2012)) whereas in this work we propose two versatile SVS SRN models and their
performability analysis is achieved through SPNica tool (German and Heindl (1999)).

4.5 Discussion about the proposed SVS models

In this subsection we enumerate first the main efforts of using the proposed SVS models.
We address then the related limitations and eventual extensions.

1. Main efforts of using the proposed SVS models
The main efforts of using the proposed SVS models is to:

24 Z. Tayachi et al.

• concisely describe SVS behavior through SRN as a degradable system;

• adopt modular design approach providing more scalability and less complexity
than monolithic approach.

• judiciously specify output measures as reward-based functions;

• capture more SVS properties through using extensive marking dependencies
without leading to untractable model resolution;

• describe dependencies between on one hand workload and on the other hand
software aging and PM mechanism is essentially useful for variable traffic.

• highlight how workload burstiness increases or decreases SVS performability;

2. Limitations and eventual extensions of the proposed SVS models:
The considered SVS models:

• consist of a hosting server handling a VMM with one hosted VM. This latter is
assumed running one or more applications over a given operating system. Such
assumption may be relaxed by considering a SVS handling several VMs on one
VMM;

• assume only software failures;

• are examined for fixed values of Timeout time interval (The tunable parameter of
the proposed workload-aware PM mechanism) and rejuvenation period (of either
VM or VMM). Further investigations of the proposed SVS models may be done
to optimize these parameters with respect to workload;

• are analysed only through steady state analysis. Further studies based on transient
analysis may also be conducted for the same models.

5 Parameters and metrics of the proposed versatile SVS SRN models

We detail in this section some selected SVS parameters and metrics (traffic metrics, aging
factor, performability metrics, power and power-performance metrics) defined from the
proposed versatile SVS SRN models. If this is not explicitly stated otherwise we consider
that the following metrics are valid by default for model1 and model2.

5.1 Traffic parameters

Mean arrival rate (λ): is the mean requests’ traffic arriving to SVS and is given by:

λ =
λT hightraffic.σT l2h + λT lowtraffic.σT h2l

σT h2l + σT l2h
(1)

Index of dispersion for counts (IDC): measures burstiness of requests’ traffic arriving to
SVS and is given by:

IDC = 1 +
2(λT hightraffic − λT lowtraffic)

2σT h2l.σT l2h

(σT h2l + σT l2h)2(λT hightraffic.σT l2h + λT lowtraffic.σT h2l)
(2)

short title 25

5.2 SVS Aging Factor (AF)

We define aging factor as an aging rate weight for both VM and VMM. Such definition
is used to better express workload fluctuation impact on software aging rate. Notice that
workload-independent software aging depends only on time whereas workload-dependent
software aging depends both on time and workload.
Definition: Let AF (Eq. 3) be a workload-dependent dimensionless index defined as the
ratio between on one hand powers weighted sum of all PMC states (sleep, idle, slowactive,
fastactive, wakeup) and on the other hand power corresponding to PMC in idle state. We
choose this latter as a reference power state. Notice that the power weighted sum cited
above encompasses the sum of each power value of a given PMC state with assigned weight
equals to the probability of the PMC to be in this state. Notice that according to the above
choice, AF may be smaller, equals to one or greater than one. For AF<1, AF enables to
slow down aging and then enhance availability. For AF=1, aging and availability of SVS
are insensitive to aging factor and aging rate is workload independent. For AF>1, aging is
speeded up and availability decreases as well as workload increases.

AF = E{#P idle}+
Powersleep

Poweridle
.E{#P sleep}+

Powerwakeup

Poweridle
.E{#P wakeup}+

Powerslowactive

Poweridle
.E{#P slowactive}+

Powerfastactive

Poweridle
.E{#P fastactive} (3)

5.3 Performability metrics

• Steady-state availability (As)

(Cold-VM) As = E{#P vup}+ E{#P vfp}+ E{#P vsd}+ E{#P vfpsd} (4)

(Migrate-VM) As = E{#P vup}+ E{#P vfp}+ E{#P vmigd}+ E{#P vfpmigd} (5)

• Mean waiting time (W) (s): is the ratio between the mean number of requests N in SVS
(Eq. 7) and SVS throughput Th (Eq. 8)

W = N/Th (6)

• Mean number of requests (N) in the system is given by:

N = E{#P inqueue}+ E{#P slowactive}+ E{#P fastactive} (7)

• SVS throughput (Th) (requests/second)

Th = E{#T servfast}+ E{#T servslow} (8)

• Mean firing frequency of T lossjob (requests/second): quantifies the mean request loss rate
in SVS.

F T lossjob = (E{#Phightraffic}.λThightraffic+

E{#Plowtraffic}.λTlowtraffic).(E{#Pvstop}+ E{#Pvpre}+ E{#Pvfail}) (9)

26 Z. Tayachi et al.

• Mean firing frequency of T wakeup (F Twakeup)

Cold-VM:

F Twakeup =
A

B
.λT wakeup (10)

Migrate-VM:

F Twakeup =
C

B
.λT wakeup (11)

where

A = (E{#P vup}+ E{#P vfp}+ E{#P vsd}+ E{#P vpsd})+

E{#P wakeup}.E{#P inqueue} (12)

B = E{#P inqueue}+ E{#P queueplace}+ E{#P active}+

E{#P slowactive}+ E{#P fastactive} (13)

C = (E{#P vup}+ E{#P vfp}+ E{#P vmigd}+ E{#P vfmigd})+

E{#P wakeup}.E{#P inqueue} (14)

5.4 Power metrics

• Mean consumed power by PMC (P) (watt)

P = Powersleep.E{#P sleep}+ Poweridle.E{#P idle}+ Powerwakeup.E{#P wakeup}+

Powerslowactive.E{#P slowactive}+ Powerfastactive.E{#P fastactive} (15)

• Power utilization ratio (U): is defined as the ratio between FoTPused and FoTPreq:

U = FoTPused/FoTPreq (16)

where FoTPused is the fraction of time active power states are used (i.e. PMC is in
an active state) given by:

FoTPused = E{1#P fastactive=1}+ E{1#P slowactive=1} (17)

and FoTPreq is the fraction of time PMC is in a power-consuming state (i.e.
slowactive, fastactive, wakeup, idle, sleep) is given by:

FoTPreq = E{1#P fastactive=1}+ E{1#P slowactive=1}+ E{1#P wakeup=1}+

E{1#P idle=1}+ E{1#P sleep=1} = E{1#P off=0} (18)

short title 27

5.5 Power-performance metric

• Efficiency (E) (joules/request): is the ratio between mean consumed power P (Eq. 15) and
throughput Th (Eq. 8)

E =
P

Th
(19)

6 Numerical results

Investigation of the versatile SVS SRN models (model1 and model2) may be achieved
at two scales. The first one corresponds to SVS with idle-dominated workload where
PM is mainly dominated by timeout tuning (Escheikh et al. (2014) and Escheikh et
al. (2017)), whereas the second, known as computationally intensive workload, where
PM is dominated by a heavy load asking the highest voltage/frequency setting. We
make this distinction to focus separately on each kind of parameters enabling adaptive
switching between PMC power states. In idle-dominated workload case timeout delay
value (characterizing transition T timeout) is the main parameter considered. Whereas in
computationally intensive workload case the key parameters are transition rates describing
PMC serving process (T servfast, T servslow, T f2s, T s2f). In this section we investigate
some numerical results related to the versatile SVS SRN models (model1 and model2).
We particularly focus on how workload with bursty nature impacts the behavior of these
models. To get insight into workload influence on SVS parameters and metrics defined in
the previous section we perform several set of experiments based on analytical analysis
using SPNica tool (German and Heindl (1999)). In what follows, we investigate numerical
analysis performability and power metrics of SVS:

6.1 Workload impact on SVS aging factor (AF)

Fig. 6 shows the trend of aging factor AF versus workload (λ). Obviously aging factor is
an increasing function of workload. According to the plot (Fig. 6), three well-differentiated
phases can be appreciated. The first one corresponds to low traffic where AF is slowly
increasing. In the second, AF increases sharply with respect to workload evolution. In the
last phase, corresponding to overloaded SVS (beyond a certain load), aging factor tends to
converge towards a saturation value where it is almost insensitive to workload variations
and where PMC power consumption is maximum.

6.2 Workload impact on versatile SVS SRN models’ metrics

6.2.1 Workload impact on versatile SVS SRN models’ performability metrics

• SVS Availability (As) (Eq. 4 and Eq. 5): We observe from curves in Fig. 7 that workload
impact on steady state availability (As) is clearly the most significant for a workload
ranging between 0.001 and 1. Outside this range, As is almost insensitive to workload
variations. Indeed light workload’s impact is so small so that it can not significantly
affect software aging and consequently availability, whereas for heavy workload
the aging rate is at its highest value and more workload increase will not further
affect availability. Notice also that for both rejuvenation techniques (Cold-Migrate
and Migrate-VM) As keeps pace with AF . This behavior is relatively straightforward

28 Z. Tayachi et al.

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

 λ (request/s)

 A
f

Migrate−VM
Cold−VM

Figure 6: Aging factor index (AF) vs λ

10
−3

10
−2

10
−1

10
0

10
1

10
2

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

 S
te

a
d

y
−

s
ta

te
 a

v
a

il
a

b
il
it
y

 λ (request/s)

Migrate−VM
Cold−VM

Figure 7: Steady state availability (As) vs λ

inasmuch as availability evolves proportionally to aging factor. It’s worth mentioning
also that model2 exhibits a better availability than model1 for a given workload. This
result is predictable since SVS unavailability corresponding to the time spent during
VM migration process (for Migrate-VM) is significantly less than the necessary time
for VMM rejuvenation (for Cold-VM rejuvenation).

• Mean waiting time (W) (Eq. 6): Fig.8 exhibits the mean waiting time of request per
second with respect to workload. It shows that as workload increases W increases in
the two versatile SRN SVS models. This is obvious since a greater load in SVS gives
rise to longer queue and more delay in request processing.

• Mean firing frequency of T lossjob (F T lossjob) (Eq. 9): Fig.9 highlights F T lossjob

evolution as a function of workload. We observe that F T lossjob increases as a function
of the mean arrival rate. This is also straightforward since the more load in SVS the

short title 29

10
−3

10
−2

10
−1

10
0

10
1

10
2

600

800

1000

1200

1400

1600

1800

2000

 λ (request/s)

 W
 (

s)

Migrate−VM
Cold−VM

Figure 8: Mean waiting time vs λ

greater requests losses. Noticing also that model1 suffers more losses than model2
for any workload. This may be justified by the same arguments given above for the
behavior of SVS steady state availability (Fig. 7) with respect to workload.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

 λ (request/s)

 F
_

T
lo

ss
jo

b

Migrate−VM
Cold−VM

Figure 9: Mean loss rate vs λ

• Firing frequency of T wakeup (F Twakeup) (Eq. 11, Eq. 10): F Twakeup is an
increasing function of workload (Fig.10). Several parameters may be involved in the
explanation of such behavior. T wakeup delay (1

λT wakeup
, Tab. 7) represents transition

time from sleep state to idle state. According to Fig. 4 notice that three conditions must
be fulfilled simultaneously to enable T wakeup: (i) VM is available (see Twakeup guard
in Tab. 4, Tab. 5), (ii) there is at least one token in P inqueue, (iii) there is a token in
P sleep (resulting from firing of either T notrejdown or T timeout). Hence T wakeup

firing is closely correlated to the firing of a set of transitions namely T notrejdown,

30 Z. Tayachi et al.

T timeout, T hightraffic and T lowtraffic. Firing frequency of the above transition
is intimately related to SVS load level. Firing frequency evolution of F Twakeup may
be interpreted at different levels of workload.

– For very light traffic (λ <10−2), workload increase does not affect significantly
firing frequency of T hightraffic or T lowtraffic (which remains very low) and
keeps P inqueue almost empty. In such case even if there is often a token in
P wakeup, T wakeup will very rarely fire.

– For medium traffic (λ ∈ [10−2, 102]), workload increase increases PMC switching
frequency between different ACPI states (sleep, wakeup idle, fastactive, slowactive
and off). It increases also SVS alternating frequency between availability
and unvailability states (which increases T notrejdown). All these events are
potentially involved in the explanation of F Twakeup increase with respect to
workload.

– For heavy traffic (λ > 104), workload increase increases the number of tokens in
P inqueue (if it is not full) and accordingly T wakeup firing frequency depends
almost only on token presence inP wakeup. This last condition is nearly equivalent
to having a token in P sleep which in turn depends on the firing of T notrejdown

or T timeout.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3
x 10

−6

 F
_

tw
a
k

e
u

p
 (

re
q

u
e
st

/s
)

 λ (request/s)

Migrate−VM
Cold−VM

Figure 10: FTwakeup vs λ

6.2.2 Workload impact on ACPI power PMC states

Fig.11 shows an increasing probability of the PMC to be in state wakeup (#P wakeup)
as function of workload. Note that the corresponding curves dynamic follows aging factor
trend with respect to workload.
Fig.12 captures probability trend of the PMC to be in state idle (#P idle) as function of

workload. Notice that #P idle evolves, for light traffic (i.e. workload), with a positive

short title 31

Figure 11: #P wakeup vs λ

slope until reaching a maximum beyond which the curve begins to decline. Indeed, since
PM mechanism, included in the proposed versatile SVS SRN models, is time-based for
relative low traffic (requests inter-arrival time is much greater than timeout), each request
processing is likely to be followed by a full timeout period. Hence, for light traffic, as

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1
x 10

−5

 λ (request/s)

 #
P

_
id

le

Migrate−VM
Cold−VM

Figure 12: #P idle vs λ

workload increases the mean inter-request time decreases leading to more requests and
more frequent associated idle periods. Beyond a given workload threshold (3.10−2), the
inter-request time falls often under timeout value and in such case the next request will
be likely processed before timeout expiry. For heavy traffic inter-request time becomes
much smaller than timeout and consequently the PMC would process very probably a batch
of requests before experiencing the full timeout period. Request batch size increases as

32 Z. Tayachi et al.

workload increases.
Thereby for light traffic each request processing corresponds, on average, to one timeout
period whereas this latter is likely to correspond to a batch size greater than one for heavy
traffic.
Obviously as workload increases, PMC’s probability to be in state sleep decreases (Fig.13).
Indeed workload increase extends time periods where PMC is busy. This consequently
shortens time periods where PMC is in sleep state.
Fig.15 and Fig.14 illustrate how ACPI power PMC states evolve for different workloads.

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

 λ (request/s)

 #
P

_
sl

e
e
p

Migrate−VM
Cold−VM

Figure 13: #P sleep vs λ

In fact for light traffic, sleep is the dominant state and for heavy traffic, slow active and fast
active are the most visited PMC’s states.

0.0005 0.005 0.05 0.5 5 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 λ

 A
C

P
I

p
o
w

e
r

st
a
te

 p
ro

b
a
b
il

it
y
 o

f
P

M
C

#P_off
#P_sleep
#P_wakeup
#P_idle
#P_slowactive
#P_fastactive

Figure 14: ACPI power states of PMC (Cold-VM)

short title 33

0.0005 0.005 0.05 0.5 5 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 λ

 A
C

P
I

p
o
w

e
r

st
a
te

 p
ro

b
a
b
il

it
y
 o

f
P

M
C

#P_off
#P_sleep
#P_wakeup
#P_idle
#P_slowactive
#P_fastactive

Figure 15: ACPI power states of PMC (Migrate-VM)

6.2.3 Workload impact on versatile SVS SRN models’ power metrics

• Mean consumed power (P) (Eq. 15): PMC’s power consumption against a changing
mean arrival rate is depicted in Fig. 16. For small λ (λ < 10−3) P is low since PMC is
nearly always in sleep state consuming by far the smallest power value. Gradually as
λ increases, PMC tends to go more to active states and thereby P raises and tends to
converge toward a fixed value (this corresponds to maximum power threshold where
PMC is almost always in active state). The above explanation is valid for both model1
and model2.

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

 λ (request/s)

 P
 (

w
a
tt

)

Migrate−VM
Cold−VM

Figure 16: Mean consumed power (P) vs λ

• Power utilization ratio (U) (Eq. 16): measures the probability that PMC is effectively in
one of the active states while it’s not off. Fig. 17 depicts U vs λ. It’s worth noting that

34 Z. Tayachi et al.

for light workload, PMC remains for long periods in sleep state. Instead, for heavy
traffic PMC remains most of the time in active states and thereby as workload becomes
higher U converges to unity.

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

 λ (request/s)

 U

Migrate−VM
Cold−VM

Figure 17: Power utilization ratio (U) vs λ

6.2.4 Workload impact on versatile SVS SRN models’ power-performance metric

Efficiency (E) (Eq. 19): Fig. 18 shows efficiency evolution as function of λ. E decreases
with respect to workload. As workload increases, sleep period becomes more reduced and
requests batch size per cycle increases (for a fixed timeout, Fig.5). Consequently consumed
energy per request decreases with respect to workload.
For very light traffic (very lightly loaded SVS) efficiency (i.e. consumed energy in joules
per request) is relatively high since it includes consumed energy during a cycle and a sleep
period (Fig.5.a). For heavy traffic (loaded SVS) sleep time period becomes very short and
the corresponding consumed energy per request becomes negligible. Hence the consumed
energy per request is almost equal to the consumed energy during a cycle divided by batch
size. This is obvious since it’s more economical to process a batch of requests per cycle
(batch size =3, Fig.5.c) than to process each request separately (batch size =1, Fig.5.a).

6.3 IDC impact on versatile SVS SRN models’ metrics

As IDC increases, traffic burstiness increases. This yields correlated traffic deepening traffic
fluctuations. Since in our modeling approach we adopt a workload-aware PM mechanism,
processing more bursty traffic is equivalent to serve in the same cycle greater request batch
size. This is likely to be achieved by PMC with less time in idle state and more time in
sleep state. Since idle state consumes much more power than sleep state, batch processing
enables better performability.
Fig.19 shows, for a given λ (corresponding to AF>1), that SVS steady state availability
is an increasing function of IDC and that model2 provides better availability than model1.
This increase begins slowly as IDC increases until reaching a certain IDC value beyond

short title 35

10
−3

10
−2

10
−1

10
0

10
1

10
2

0.5

1

1.5

2
x 10

5

 λ (request/s)

 E
 (

jo
u
le

s
/r

e
q
u
e
s
t)

Migrate−VM
Cold−VM

Figure 18: Efficiency (E) vs λ

which it becomes significantly more sharper especially for loaded SVS (λ=10).
For a given mean arrival rate and as IDC increases mean waiting time (W) (Fig.20), mean

10
0

10
1

10
2

10
3

0.9966

0.9968

0.997

0.9972

0.9974

0.9976

0.9978

0.998

0.9982

0.9984

 S
te

a
d

y
−

s
ta

te
 a

v
a

il
a

b
il
it
y

 IDC

Migrate−VM (λ=10)
Cold−VM (λ=10)
Migrate−VM (λ=1)
Cold−VM (λ=1)
Migrate−VM (λ=0.1)
Cold−VM (λ=0.1)

Figure 19: Steady state availability (As) vs IDC (λ = 0.1, 1, 10)

loss rate (Fig.21) and mean firing frequency of Twakeup (Fig.22) decrease. This decrease
begins slowly as IDC increases until reaching a certain IDC value beyond which it becomes
more acute especially for loaded SVS (λ=10) where batch size becomes greater and sleep
period becomes larger. This explains in large part the curve shape for traffic where burstiness
is enough high.

For a given mean arrival rate and as IDC increases #P wakeup (Fig.23) decreases.This
decrease starts slowly and beyond a given threshold becomes much more pronounced
especially for high workload (λ=1, 10). Investigation of #P idle (Fig.24) with respect to
IDC shows two phases, an increasing phase and/or a decreasing phase. The same arguments
detailed for Fig.12 may be used here to explain this behavior. For the same reasons cited

36 Z. Tayachi et al.

10
0

10
1

10
2

10
3

1100

1200

1300

1400

1500

1600

1700

1800

1900

 IDC

 W
 (

s)

Migrate−VM (λ=10)

Cold−VM (λ=10)

Migrate−VM (λ=0.1)

Cold−VM (λ=0.1)

Migrate−VM (λ=1)

Cold−VM (λ=1)

Figure 20: Mean waiting time vs IDC (λ = 0.1, 1, 10)

10
0

10
1

10
2

10
3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 IDC

 F
T

lo
ss

jo
b

Migrate−VM (λ=10)
Cold−VM (λ=10)
Migrate−VM (λ=1)
Cold−VM (λ=1)
Migrate−VM (λ=0.1)
Cold−VM (λ=0.1)

Figure 21: F T lossjob vs IDC (λ = 0.1, 1, 10)

short title 37

10
0

10
1

10
2

10
3

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−6

 IDC

 F
T

w
a

k
e
u

p

Migrate−VM (λ=10)
Cold−VM (λ=10)
Migrate−VM (λ=1)
Cold−VM (λ=1)
Migrate−VM (λ=0.1)
Cold−VM (λ=0.1)

Figure 22: F Twakeup vs IDC (λ = 0.1, 1, 10)

10
0

10
1

10
2

10
3

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−4

 IDC

 #
P

w
a
k

e
u

p

Migrate−VM (λ=10)
Cold−VM (λ=10)
Migrate−VM (λ=1)
Cold−VM (λ=1)
Migrate−VM (λ=0.1)
Cold−VM (λ=0.1)

Figure 23: #P wakeup vs IDC (λ = 0.1, 1, 10)

38 Z. Tayachi et al.

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6
x 10

−6

 IDC

 #
P

_
id

le

Migrate−VM (λ=10)
Cold−VM (λ=10)
Migrate−VM (λ=1)
Cold−VM (λ=1)
Migrate−VM (λ=0.1)
Cold−VM (λ=0.1)

Figure 24: #P idle vs IDC (λ = 0.1, 1, 10)

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 IDC

 #
P

_
s
le

e
p

Migrate−VM (λ=10)
Cold−VM (λ=10)
Migrate−VM (λ=1)
Cold−VM (λ=1)
Migrate−VM (λ=0.1)
Cold−VM (λ=0.1)

Figure 25: #P sleep vs IDC (λ = 0.1, 1, 10)

short title 39

10
0

10
1

10
2

10
3

40

45

50

55

60

65

70

75

80

85

90

 IDC

 P
 (

w
a

tt
)

Migrate−VM (λ=10)
Cold−VM (λ=10)
Migrate−VM (λ=1)
Cold−VM (λ=1)
Migrate−VM (λ=0.1)
Cold−VM (λ=0.1)

Figure 26: Mean consumed power (P) vs IDC (λ = 0.1, 1, 10)

10
0

10
1

10
2

10
3

0.4

0.5

0.6

0.7

0.8

0.9

1

 IDC

 U

Migrate−VM (λ=10)
Cold−VM (λ=10)
Migrate−VM (λ=0.1)
Cold−VM (λ=0.1)
Migrate−VM (λ=1)
Cold−VM (λ=1)

Figure 27: Power utilization ratio (U) vs IDC (λ = 0.1, 1, 10)

above in this subsection and beyond a given IDC value the following metrics, power
consumed by PMC (P) (Fig. 26), power utilization ratio (U) (Fig. 27), efficiency (E)
(Fig. 28), decrease sharply with respect to IDC. In conclusion, we can deduce that for a
fixed average request rate (workload) and for aging factor AF > 1, burstiness enables to
aggregate requests in batch forms. As IDC increases, batch size increases and this improves
significantly all performability SVS attributes investigated in our modeling analysis. Fig. 29
clearly illustrates how IDC increase influences on one hand PMC states’ evolution and
request processing vs time (for different IDC and constant λ) in the SVS and improves on
other hand the performability metrics of SVS.

40 Z. Tayachi et al.

10
0

10
1

10
2

10
3

4

4.2

4.4

4.6

4.8

5

5.2

5.4
x 10

4

 IDC

 E
 (

jo
u

le
s/

re
q

u
es

t)

Migrate−VM (λ=10)

Cold−VM (λ=10)

Migrate−VM (λ=1)

Cold−VM (λ=1)

Migrate−VM (λ=0.1)

Cold−VM (λ=0.1)

Figure 28: Efficiency (E) vs IDC (λ = 0.1, 1, 10)

Figure 29: Illustration of PMC states’ evolution and request processing vs time (for different
IDC and constant λ) in the SVS

short title 41

7 Conclusion

We proposed in this paper a performability modeling and analysis based on non-Markovian
SRNs of versatile SVS hypervisor-based incorporating workload-aware PM mechanism
and accounting for workload-dependent software aging. The considered analysis concerns
two kinds of VMM rejuvenation namely Cold-VM and Migrate-VM. It relies on modular
approach involving several attributes in SVS modeling and enables to capture bursty
workload impact on SVS performability metrics. We have defined and investigated
numerically various quantitative and qualitative metrics such as steady-state availability,
mean consumed power, power utilization ratio, and efficiency. These metrics are used
through numerical investigations to show how performance availability, power usage, and
efficiency of SVS are impacted by workload with bursty nature for SVS either subject to
Cold-VM or Migrate-VM. In this direction, the performability metrics dynamic had been
investigated on one hand with respect to SVS workload and on the other hand with respect
to IDC. The obtained results confirm that for SVS subject to workload-dependent aging as
well as traffic becomes more bursty SVS becomes more available and more power efficient.

References

Bing Wei, Chuang Lin, Xiangzhen Kong. (2011) ’Dependability Modeling and Analysis
for the Virtual Data Center of Cloud Computing’, IEEE 13th International Conference
on High Performance Computing and Communications (HPCC), Banff, AB, pp.784-789.
[DOI:10.1109/HPCC.2011.111]

Beloglazov, A., Buyya,R., Lee, Y. C., et al.,(2010) ’A taxonomy and survey of energy-
efficient data centers and cloud computing systems’, Adv.Comput,82: pp. 47-111
[DOI:10.1016/B978-0-12-385512-1.00003-7]

Chen, Y., Das, A., Sivasubramaniam, W. Qin., et al., (2005) ’Managing Server Energy and
Operational Costs in Hosting Centers’, Proceeding SIGMETRICS ’05 Proceedings of
the 2005 ACM SIGMETRICS international conference on measurement and modeling of
computer systems, New York, NY, USA, pp.303-314. [DOI:10.1145/1064212.1064253]

Meyer, J. F., (1992) ’Performability: a retrospective and some pointers to the futur’,
Performance evaluation, Vol. 14 No. 3-4, pp.139-156.

Laprie, J. C., (1992) ’Dependability: Basic concepts and terminology’, Dependability: Basic
Concepts and Terminology, pp.3-245.

Kuehn,P. J., and Mashaly, M. E., (2015) ’Automatic energy efficiency management of data
center resources by load-dependent server activation and sleep modes’, Ad Hoc Networks,
Vol. 25, pp. 497–504.

Alonso, J., Matias, R., Vicente, E., Maria, A., and Trivedi, K. S., (2013) ’A comparative
experimental study of software rejuvenation overhead’, Performance Evaluation, Vol. 70
No. 3, pp. 231-250.

Cotroneo, D., Natella, R., Pietrantuono, R., and Russo, S., (2014) ’A survey of software
aging and rejuvenation studies’, ACM Journal on Emerging Technologies in Computing
Systems (JETC), Vol. 10 No. 1, pp. 8.

42 Z. Tayachi et al.

Cotroneo, D., Natella, R., Pietrantuono, R., and Russo, S., (2011) ’Software aging and
rejuvenation: Where we are and where we are going’, Software Aging and Rejuvenation
(WoSAR), 2011 IEEE Third International Workshop on, pp. 1-6.

Araujo, J., Matos, R., Alves, V., Maciel, P., Souza, F., and Trivedi, K. S., (2014)
’Software aging in the eucalyptus cloud computing infrastructure: characterization and
rejuvenation’,ACM Journal on Emerging Technologies in Computing Systems (JETC),
Vol. 10 No. 1, pp. 11.

Saito, Y., and Dohi, T., (2014) ’Predicting software reliability via completely monotone
nonparametric estimator with grouped data’, Journal of Systems and Software, Vol. 117,
pp. 296–306.

Grottke, M., and Schleich, B., (2014) ’How does testing affect the of aging software
systems?’, Performance Evaluation, Vol. 70 No. 3, pp. 179-196.

Nathuji, R., England, P., Sharma, P. et al., (2009) ’Feedback Driven QoS
Aware Power Budgeting for Virtualized Servers’, EuroSys’10 Proceedings of
the 5th European conference on computer systems, Paris, France, pp.237-250.
[DOI:10.1145/1755913.1755938]

Tadao Murata., (1989) ’Petri nets: Properties, analysis and applications’, Proceedings of
the IEEE, Vol.77 No.4, pp:541-580.

Gaoa, Y., Qia, Z., Wanga, B.,et al., (2013) ’Quality of Service Aware PM for Virtualized
Data Centers’, Journal of Systems Architecture - Embedded Systems Design, Vol.59,
pp:245-259. [DOI:10.1016/j.sysarc.2013.03.007]

Beloglazov, A., Abawajy, J., Buyya, R., (2012) ’Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing’, Journal of Future
Generation Computer Systems, Vol.28, pp.755-768. [DOI:10.1016/j.future.2011.04.017]

Elnozahy, E., Kistler, M., Rajamony, R., (2003) ’Energy-efficient server clusters in Power-
Aware Computer Systems’, Second International Workshop, PACS 2002 Cambridge, MA,
USA, pp.179-197. [DOI:10.1007/3-540-36612-1-12]

Han, L., and Xu, J., (2013) ’Availability Models for Virtualized Systems with
Rejuvenation’, Journal of Computational Information Systems, Vol.9, No.20, pp:8389-
8396. [DOI:10.12733/jcis8586]

Machida, F., Kim, D. S., Trivedi, K. S., (2010) ’Modeling and Analysis
of Software Rejuvenation in a server virtualized system’, IEEE Second Int.
Workshop on Software Aging and Rejuvenation (WoSAR), San Jose, CA, pp.1-6.
[DOI:10.1109/WOSAR.2010.5722098]

Wang, D., Xie, W., Trivedi, K. S., (2007) ’Performability analysis of clustered
systems with rejuvenation under varying workload’, Perform, Eval., pp.247-265.
[DOI:10.1016/j.peva.2006.04.002]

Xie, W., Hong, Y., Trivedi, K. S., (2004) ’Software rejuvenation policies for cluster systems
under varying workload’, Proceedings, 10th IEEE Pacific Rim International Symposium
on Dependable Computing, pp.122-129. [DOI:10.1109/PRDC.2004.1276563]

short title 43

Takeda, S., Takemura, T., (2010) ’A rank-based VM consolidation method for power saving
in datacenters’, IPSJ Transactions on Advanced Computing System, Vol.3, No.2, pp.138-
146. [DOI:10.2197/ipsjtrans.3.88]

Ye, K., Huang, D., Jiang, X., et al., (2010) ’Virtual machine based energy efficient
data center architecture for cloud computing: A performance perspective’, Green
Computing and Communications (GreenCom), 2010 IEEE/ACM Intl Conference on and
Intl Conference on Cyber, Physical and Social Computing (CPSCom), Hangzhou, pp.171-
178. [DOI:10.1109/GreenCom-CPSCom.2010.108]

Feller, E., Morin, C., Leprince, D., (2010) ’State of the art of power saving in clusters and
results from the EDF case study’, Institut National de Recherche en Informatique et en
Automatique (INRIA). [DOI:inria-00542889v2]

James William Smith and Ian Sommerville. ’2013) ’Understanding tradeoffs between
Power Usage and Performance in a Virtualized Environment’, IEEE Sixth
International Conference on Cloud Computing, Santa Clara, CA, pp.725-731.
[DOI:10.1109/CLOUD.2013.138]

Gaganpreet Kaur Sehdev and Anil Kumar, (2015) ’Performance Evaluation of Power Aware
VM Consolidation using Live Migration’, International Journal of Computer Network and
Information Security(IJCNIS), Vol.7, No.2, pp.67-76. [DOI:10.5815/ijcnis.2015.02.08]

Ghosh, R., Naik, V.K., Trivedi, K.S., (2011) ’Power-Performance Trade-offs in IaaS
Cloud: A Scalable Analytic Approach’, IEEE/IFIP 41st International Conference
on Dependable Systems and Networks Workshops (DSN), Hong Kong, pp.152-157.
[DOI:10.1109/DSNW.2011.5958802]

Beloglazov, A., and Buyya, R., (2013) ’Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of service
constraints’, IEEE Transactions on Parallel and Distributed Systems, Vol.24, No.7
pp.1366-1379. [DOI:10.1109/TPDS.2012.240]

Bobroff, N., Kochut, A., Beaty, K., (2007) ’Dynamic placement of virtual machines
for managing sla violations’, IFIP/IEEE 10th International Symposium on Integrated
Network Management, Munich, pp.119-128. [DOI:10.1109/INM.2007.374776]

Escheikh, M., Jouini, H., Barkaoui, K., (2014) ’A versatile traffic and power aware
performability analysis of server virtualized system’, IEEE 22nd International Symposium
on Modelling, Analysis & Simulation of Computer and Telecommunication Systems.
MASCOTS’2014, Paris, pp.207-212. [DOI:10.1109/MASCOTS.2014.34]

Escheikh, M., Tayachi, Z., Barkaoui, K., (2016) ’Workload-Dependent Software Aging
Impact on Performance and Energy Consumption in Server Virtualized Systemsi, IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW), pp.
111-118. [DOI:10.1109/ISSREW.2016.31]

Escheikh, M., Barkaoui, K., Jouini H., (2017) ’Versatile workload-aware power
management performability analysis of server virtualized systems’, Journal of Systems
and Software, Vol. 125, pp.365-379.[DOI:10.1016/j.jss.2016.12.037]

44 Z. Tayachi et al.

M. Escheikh, Z. Tayachi, K. Barkaoui. (2018)’Performability evaluation of server
virtualized systems under bursty workload’, 14th IFAC Workshop on Discrete
Event Systems WODES, Sorrente, Italy, May 2018, Vol. 51(7), pp.45-50, [DOI:
10.1016/j.ifacol.2018.06.277]

Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation,and et al.,
(2011) Advanced configuration and power interface specification revision 5.0. URL:
http://www.acpi.info/spec50.htm

Simunic, T., Benini,L., Glynn, P., et al., (2000) ’Dynamic power management for
portable systems’, Proceedings of International Conference on Mobile Computing and
Networking, MobiCom’00, pp. 11-19. [DOI:10.1145/345910.345914]

German R. and Heindl A., (1999) ’Performance evaluation of IEEE 802.11 wireless LAN’s
with stochastic Petri nets’, The 8th International Workshop on Petri Nets and Performance
Models, Zaragoza, pp.44-53. [DOI:10.1109/PNPM.1999.796531]

Zimmermann, Armin, (2012) ’Modeling and evaluation of stochastic Petri nets
with TimeNET 4.1’, The 6th IEEE International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS) pp.54-63. [DOI:
10.4108/valuetools.2012.250263]

Muppala, Jogesh and Ciardo, Gianfranco and Trivedi, Kishor (1994) ’Stochastic reward
nets for reliability prediction’, Journal of communications in reliability, maintainability
and serviceability, vol.1, No.2, pp. 9-20.

