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Abstract: Freeform optical surfaces are of great importance because of two main properties. 
The first is their ability to enhance the image quality of image-forming optical systems while 
the second is their inherent reduction in the number of surfaces in image and non-image 
forming optical systems. However, the main characteristic of freeform surfaces is that they 
lack symmetry about any spatial axis. This attribute allows describing freeform surfaces with 
a mathematical parametric representation. Unfortunately, parametric representation can be 
extremely extended. On the other hand, when describing freeform surfaces, the explicit 
representation is commonly preferred because of its compactness and CAD-format exportable 
easiness. Parametrically represented freeform surfaces can be nonetheless exported to a CAD 
format with no significant departure of surface shape, as shown here. The vector method 
presented here guarantee that the surface’s sampling density be proportional to the irradiance 
on the surface.  

 

1. Introduction 

The use of freeform surfaces is increasing every day in non-imaging and image forming 
applications. Non-imaging applications include head-lamps or street lights design [1, 2] 
where light sources and targets have very asymmetric requirements. By using such a freeform 
design, Fresnel-lens-based photovoltaic concentrators [3] as well as simultaneous 
concentrator and single-axis trackers [4] have been further improved. Imaging optics is a 
second optical design interesting domain for freeform optics. Non-symmetrically rotational 
surfaces of head-up displays [5] and line-scan cameras [6] designs have experienced 
improvements in image quality and astronomic instruments have been studied or 
manufactured with a freeform approach [7]. Indeed, this new way of designing optics offers 
several advantages as the number of surfaces in a complex optical system reduces. Thus, it is 
clear that the term non-symmetrical optical surface is a synonym for freeform surface; it is 
mainly applied in non-imaging optics but still finding several applications in imaging optics 
as time goes on. The advantages of freeform are weight and space reduction, image 
enhancement, and aberrations’ reduction. A freeform surface mathematical representation has 
also been recently proposed [8]. Nevertheless, manufacture methods and processes evolve to 
obtain symmetrical and asymmetrical freeform surfaces [7, 9, 10]. On the other hand, 
freeform design methods for imaging optics have been studied and assessed a few years ago 
[11]. Freeform optics has three main characteristics. First, there is the design of the surface 
that requires numerical methods. Second, the manufacturing machines must be capable to 
fabricate such a sophisticated surface. Third, testing methods must permit to validate the 
correspondence between the manufactured element and the designed one. The authors of this 
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paper have recently released a new principle for freeform design [12]. Advances in freeform 
manufacturing has also been reported [7]. In this paper, the authors focus on the step that 
permits the designed optical element to be readable by a Computer Numerical Control (CNC) 
machine or in additive optics [13, 14] manufacturing. This includes the surface’s sampling 
density proportional to the irradiance on the surface. There are other methods well described 
in [15] that permits to convert a point cloud into a polygonal surface. 

 

2. Definition of the problem 

CNC manufacturing machines can be classified as digital direct control (automatic 
programming) or indirect control (computer aided manufacture CAD programming). Direct 
control approach permits the introduction of short formulation that is converted in machine 
instructions for surface generation. This kind of machines succeed easily as the surfaces have 
a revolution symmetry. On the other hand, a true freeform optics defined as “having no axis 
of symmetry on or off the part” [7] is not described by a single equation. In fact, as it has been 
shown in [12], a simple equation is used to calculate any surface that is solution to any lens 
design but its result can be extended to several terms. In [12], Valencia and Garcia have 
shown how a freeform optical system consisting of two interfaces can be calculated. The 
theoretical background showing the method to design a whole optical system with an 
optimized image will be disclosed in the third part of this article’s series called Freeform 
Geometrical Optics III: Optical System Design. 

Let’s consider a three-dimensional Cartesian space with coordinates (X, Y, Z) where the 
optical system is located. Let’s suppose that the optical system consists in a single lens.  In a 
Cartesian space the reference is set in an absolute coordinates’ origin (0, 0, 0). Let’s introduce 
an object O in the space whose most representative object point will be noted as P0, having a 
position vector p0 = [x0, y0, z0] as can be seen in Fig. 1. A reference optical path defining a 
light ray travelling from the point P0 to its image point P3 is created. Let’s also consider an 
isotropic and homogeneous media whose refractive indexes {n0, n1, n2} are constants. Here, 
the optical path is represented with optical vectors. Let’s also assume that a ray path starts at 
P0 and finish at point P1, i.e. on the first lens surface S1. The surface S1 is z1(x1, y1) whose 
position vector is p1 = [x1, y1, z1]. According to Snell-Descartes’ law, the ray at P1 is refracted 
and arrives into a surface S2. On this second surface, the ray impinges an unknown point P2 
with an unknown position vector p2 = [x2, y2, z2]. The ray is refracted again and directs to the 
known image point P3 with position vector p3 = [x3, y3, z3]. This arbitrary path is shown in 
Fig. 1. Position vectors of points P0 to P3 in this arbitrary path are  
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The vectors that describe the arbitrary path segments are calculated by taking the position 
differences, 

 

0 1 0

1 2 1

2 3 2

  
  
  

a p p

a p p

a p p

 ,                                                       (2) 

where its norms are 0 0 0a  a a , 1 1 1a  a a , and 2 2 2a  a a .   



For the reference optical path, we assume that there is a unique ray that departing from P0 
arrives to a known point O1 on the first lens surface S1. The surface S1 is represented as the 
parametrical vector position p1 = [X1(x,y), Y1(x,y), Y1(x,y)] with known position vector               
o1 = [xo1, yo1, zo1]. After being refracted in O1, the incident ray continues its trajectory to the 
second lens surface S2. The surface S2 is also represented parametrically. The incident ray 
then arrives at a known point O2 having a position vector o2 = [xo2, yo2, zo2]. Again, the ray is 
refracted to its destination point P3. The reference vectors are  
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It is worth mentioning that in this method the reference optical path does not need to lie 

on the optical axis or on the same plane. Their norms are 0 0 0r  r r , 1 1 1r  r r , and 

2 2 2r  r r . To guarantee that this proposed model satisfies Snell-Descartes’s law in the 

first interface, the unit normal vector of the first surface in O1 should satisfy the vector Snell-
Descartes’ condition  
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Here   is the gradient operator evaluated at O1, τ is a constant and *  is the norm of . 

 

 
Figure 1. The optical path tracing describing both reference and arbitrary optical paths related 

to an arbitrary origin of coordinates. All paths are vectored. 



Considering a refractive case, this condition states that a gradient vector is linearly 
dependent of the difference of optical unit vectors. The sign in Eq. (4) depends on the object 

position. The validity of Eq. (4) apply when  1 0,0,0z  . Otherwise, the anterior surface S1 

must be linearly transformed by using tilt, rotation or translation operators. This step can be 
automatically obtained for the first given surface (procedure shown in the annex). As tilt is 
now present in the system, a0 and a1 must be calculated again using Eq. (2) as well as their 
norms. Thus, by using the Fermat’s principle we calculate the complete reference optical path 
just by adding the distance segments of the ray trajectories escalated by its respective 
refraction index: 0 0 1 1 2 2n r n r n r K    . This approach is the key foundation of the theory 

[12] as it abolishes the optical axis convention in optical systems.  
By using Snell-Descartes’ vector law we can calculate the unit vector in the direction of 

the refracted ray once both the unit vector n1 normal to the optical interface and the unit 
incident vector v0 are known. Thus,  
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This formula permits one to switch unit vectors direction when the object point is either 
real or virtual. The unit vector n1 normal to the first interface is defined as 
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By applying the vector form of Snell-Descartes’ law using dot products in the arbitrary 

point P1  
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This unit vector has the exact same direction as the ray propagating in the interior lens 

(internal ray). The internal unit vector a1 is calculated as 
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with the recurrent variables 
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Note that the sign does not switch and that this solution is not determined when the 
denominator is null. The sign of the square root depends on the position of the image point. 
 



With the result in Eqs. (9) and the below Eq. (10), the position vector describing the 
geometry of the second surface is found in such a way that the point image P3 is aberrations-
free  
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Equation (10) is valid for any object point P0 no matter whether is real or virtual, it is also 

valid for any real or virtual image point P3 as well as for any combination of conjugated 
points, with the condition  
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that guarantee avoiding discontinuities and auto-intersections. It is valid in the case of 
lenticular anterior surfaces. 

In [12] a general rationalized solution of Eq. (10) can be used for a system with a back 
refractive interface: 
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that avoid a division by zero in Eq. (10). The sign s1 in the denominator depends on the image 
position, direction and magnification.  

A simplified solution of Eq. (12) can be used for a system with a back reflective freeform 
interface: 
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The recurrent variables can be represented by 
 

 
0 0 2 0 0 1 2 1 2 2

2 1 3 1 1

2
3 1 3 1

( / )( ) ( / ) ,

( ) ,

( ) ( ) .

A s n n r a n n r s r

V n n A

G A

   

   

    

v p p

p p p p                                  (14) 
 

The sign s0 in A depends on the object position. The sign s2 in A depends on the image 
position, direction and magnification. This solution is still valid even if auto-intersections [16] 
or loss of continuity of the solved surface appear, provided these auto-intersections or 
discontinuous sectors are out of the aperture’s covering sector. This can be easily assessed by 
condition given in Eq. (11) or by ray drawing or tracing. The set of previous equations                     
still valid in the case the rays cross internally. Following the rule of signs for the                     
different optric cases 2 1/2

0 0 1 0 1 0 1Sign( ) (( ) ) / ( )s r r r r r r      and 1 2 1 2Sign( )s s r r    
2 1/ 2

1 2 1 2(( ) ) / ( )r r r r    apply for mirrors and dielectric materials. These last representations 

are advantageously completely differentiable. However, considering metamaterials or 
metamirrors having negative refractive indexes, then the signs of the concerned surface will 
switch. Let’s suppose a first interface where the Snell-Descartes’ law for reflection is used; 



then 1 0 0 1 0 1( 2( )s  v v n v n  is used instead of Eq. (7). The sign s0 is applied to correct the 

sense where the vector points. The same change also applies in the reversive formula. 
 

3. CAD/CAM for freeform optics  

We have found that the cloud of points contained on the resulting surface Eqs. (12-13) can be 
exported to a CAM unit in such a way that the surface can be manufactured, either by additive 
methods or by CNC methods. CAD/CAM software are capable to create a smooth surface 
from a cloud of points by using interpolation methods [17]. The best interpolation methods 
allow to fit neighbouring surface sectors preserving their continuity and principal curvatures. 
For this reason, Non-Uniform Rational Basis Spline (NURBS) is an interpolation polynomial 
that has been proven highly efficient. 

In figure 2 a prism lens exemplifies the application case of the theoretical background 
deduced in [12]. The first surface (anterior) is an off-axis revolution paraboloid while the 
posterior surface is a freeform surface whose main task consists in correcting all the spherical 
aberration introduced by the paraboloid. An absolute Cartesian coordinate’s system has been 
placed at the center of the aperture diaphragm. Note that the optical axis disappears and is 
replaced by a reference optical path in three-dimensions. This reference path is represented 
here by three center-lines segments. As the lens is not symmetrical due to the prism, its edge 
thickness varies and the lateral surface is ruled. This lateral surface is exported as a cloud of 
points to CAD or CAD/CAM format. 

Prism-lens in Fig. 2 has conjugate planes, real object and real image. It was designed with 
the following parameters: a) for the optical reference path p0= [2, 0, 69.9715], o1= [0, 0, 0], 
o2= [2, 0, 37.9473] and p3= (2, 5, 60.663); b) the aperture stop corresponds to the parametric 
domain (x  15)2 + (y  15)2  196  in z = 4; c) the first prescribed surface is a revolution 
paraboloid (x2 + y2) / ( 4f ) with a geometrical focal distance f =25 mm and a maximum 
diameter equal to 28 mm; d) to satisfy Snell-Descartes’ law in O1 the surface was rotated 
9.56337 degrees. However, following rotation of axes, the arbitrary position vector become 
p1= [0.000565376 x (x + 1765.89)  0.00444712 y + 0.000565376 y2, 0.00156222                         
(x 2.84666) x + 0.987712 y + 0.00156222 y2, 0.00986102 (x 5.73344) x  0.156222 y + 
0.00986102 y2]. We have assumed a refractive index n = 1.5. A circle packing algorithm was 
used to distribute 20 rays in the aperture.  

 
 

 
Figure 2. Freeform prism-lens. The prism lens shown here has an object O and image I.  

 



The main issue of freeform optics manufacturing is the precision of the resulting surface, 
that is to say the error between the equation of the surface and its physical manufactured 
form. Most of CAD software do not allow using a parametric surface as an input while we 
saw it is the most common way to represent freeform optics. In figure 3 the lower-case 
variables (x, y, z) are the stop coordinates while the upper-case variables (X, Y, Z) are the 
coordinates for the points on the surface. 

 

 
Figure 3. Representation of the parametric surface in the standard Cartesian coordinates. 

 
Still, several ways exist to approximate the desired surface in CAD software. The main 

method is to use a cloud of points that enables to enter the topological skeleton of the shape. 
However, the number of points is a crucial factor regarding surface quality and those points 
must be carefully chosen, especially when it comes to optics. We present here an optimized 
method of 3D data acquisition that would lead to faster tooling and manufacturing process of 
freeform optics. 

 

3.1 Sampling of the surface 

The first step that appears to be a determinant factor in order to simulate light is the way to 
choose the points of the cloud in the aperture diaphragm (2D plane). If the aperture stop is not 
prescribed, we assume it is coupled with the surface itself. By solving a circle packing 
problem, a way to simulate a homogeneous beam of light passing through our system is 
shown. 

 The purpose is to determine the coordinates of each rays’ impinging point on the surface, 
while having a homogeneous repartition on the diaphragm’s aperture as shown in Fig. 4. By 
entering any number of rays, the program calculates the location of each point inside the 
aperture allowing to generate a homogeneous beam of rays. In figure 4 we use circle packing 
distribution to graphically display the irradiance loci map on the surface. 
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Stop Diameter

a) b) c)

(x, y, z)

(X(x,y,z), Y(x,y,z), Z(x,y,z))

 
Figure 4. Distribution of points on the aperture stop -diaphragm- using a circle packing 

algorithm. The points in the edge of the diaphragm guarantee an accurate reconstruction of the 
parametric freeform surface’s edge. The diaphragm and the surface cloud of points are shown 

for a) 50, b) 200, and c) 1000 sampling points. The transformation represented here is 
injective. 

 

3.2 Estimating the error of the 3D-printed surface  

The next step is to use this cloud efficiently in order to create an analytic function by fitting 
the cloud. In manufacturing process Maclaurin polynomials have proven to be faster, to 
provide better results and to be easier to implement when compared to Zernike’s. The 
difference between the given analytic surface and the parametric surface can be adjusted with 
the degree of the Maclaurin expansion. We chose to use the Maclaurin polynomials up to the 
10th degree for our experiment.  

In order to estimate the error between the shape that will actually be 3D-printed and the 
fitting surface, we compare the latter to the cloud of points. To do so, we used Delaunay’s 
triangulation [18] algorithm. This triangulation refer to Fig. 5ensures that any given sphere 
circumscribing any given triangle does not contain any other cloud’s point. 

 
 

 
Figure 5. Delaunay triangulation of the sampled points conforming the cloud. 



It is therefore possible to evaluate the maximal error within each triangle by searching the 
point of the surface where the unit normal of the triangle equals the unit gradient having both 
unit vectors the same direction. An example of this process can be seen in Fig. 6. Of course, 
this point may not exist directly above the triangle, this is why it is convenient to bring all the 
points back into the aperture diaphragm. 

 

 
Figure 6. Examples where a point of the curve's unit gradient does not match (a) and matches 

(b) the unit normal of the triangle above this very same triangle. 

 
Once the points of maximal error are found and brought back into the diaphragm’s 

aperture, we decided to connect each point to the center of gravity of its triangle. In this way, 
we have an approximation of the point of maximal error above each triangle by intersecting 
the previous connection with the closest side of the corresponding triangle. The final step 
consists in projecting the latter points in the 3D surface and in calculating the distances 
between each error points and their corresponding triangle. This procedure permits to add 
sampling points on the real surface to reduce the error in the points having extreme errors. 

The main advantage is that this 3D data acquisition method returns the list of the error on 
each triangle. The operator can enter a relatively big number of rays and have directly access 
to the average error and/or the highest error on the sample in order to fully control the 
prototyping and 3D printing processes. The algorithm used here has been included as 
supplementary material to this article. Hence, the initial number of rays and/or the repartition 
of the rays in the aperture diaphragm can be tuned until the precision needed for the 
application is reached. The optimized cloud of points can now be used in any CAD software 
while assuring a maximal error between the desired surface and the latter cloud. The defined 
point’s cloud is exported from Mathematica® to the CAD software format by the simple 
command Export[“cloud.stl”, cloud]; 

The method allows finding a minimal number of points required to obtain a surface with 
the required quality (shown in Fig. 7). Nonetheless, we can only determine the ideal number 
of points through optimization processes. This number of points is given by the rays entering 
into the aperture. The criteria used here is that the sagittal mean error for all Delaunay 
triangles must be smaller than the maximum permitted sagittal error.  However, what is the 
order of magnitude of these errors? For instance, headlamps do not exhibit errors at 
micrometer scale as reported in [19] where Optical–Geometrical Feature Based Method 
(OGFM) was used to establish the relationship between the geometrical features of freeform 
surfaces. 



  

Figure 7. Surface after Delaunay triangulation with point of maximal error for each triangle. 
Here the error distances are exaggerated in order to clear the figures. 

 
The vectors representing rays entering into the aperture allow for irradiance prediction on 

the surface. From an optical testing point of view, these vectors can be used to distribute the 
holes of a Hartmann mask in a more representative manner. The Hartmann mask and derivate 
methods are used in ophthalmic corneal testing, wavefront sensing or in optical surface 
quality testing [20-22]. Thus, intuitively, distribution of radiation or distribution of points to 
better reduce the error are part of the same solution either in radiation distribution 
measurement, wavefront sensing or local curvature determination. 

 
A second advantage is that this method guarantees that the sampling points on a given 

surface section are concentrated in direct proportion to the optical radiation received on the 
same section of the surface. Figure 8 shows the flow-diagram used for obtaining a 3D CAD 
design once the parametric freeform surface is known. Flow diagram here below represents 
the code written in Mathematica® we show in Code File 1 (Ref. [23]).   

 

 
 

Figure 8. Flow-diagram of the method for obtaining a functional 3D CAD design whose error 
is known, from a parametric function. Note that the sampling density is proportional to the 

irradiance on the surface is an important characteristic of this method. 



3.3 Tool correction method   

The offset of a surface is defined as the set of regular points located at a constant 
perpendicular distance ρt (also known as the offset radius). Let’s suppose that a CNC machine 
with automatic programming is used to manufacture a surface designed with the method 
described here. In such a case, the freeform offset surface must be calculated to do the tool 
correction. When the sector p2 is represented with parameters x and y, then its offset can be 
obtained with the vector equation  
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where n2 is a normal unit vector in the point 2 2 2( , , )x (x, y) y (x, y) z (x, y) . The correct sign in 

Eq. (15) depends on the machining direction. Loss of continuity or auto-intersections are 
avoided with the condition  
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valid in the case of non-lenticular anterior surfaces. 
 
 

3.4 CAD Processing 

This method allows the surfaces to preserve their conception initial coordinate’s origin once 
they are converted to the CAD file. This process shown in Fig. 9 facilitates the assembly of 
the different freeform surfaces conforming a monolithic optical system.  

We have imported a cloud of points from Mathematica® into SolidWorks®. From 
SolidWorks it has been possible to convert them in a discrete set of geometric cells (i.e. the 
mesh) by controlling the cloud of points’ distribution. The original coordinate of each point in 
the cloud must be preserved. Any anomalous point is removed, then it follows an edge 
smothering process that requires the original cloud to contain sampling point at the surface 
aperture’s edge. After completion of the, the surface and the solid model that allow for 
assessing the surface details are created. 

 
Figure 9. Required steps to create a freeform surface using a CAD stitching. 

 

 

 

 



Conclusions 

Unlike direct manufacturing that commonly uses explicit mathematical surface’s prescription, 
indirect manufacturing is more adapted to freeform surfaces. Completely freeform surfaces 
are easily represented parametrically but their approximated explicit equations, even if 
preferred by the optical community, can be mathematically extensive. As a consequence, a 
better idea is to obtain a big cloud of points that described the surface and fit it with a high 
correlation coefficient. In this model, these points represent the impinging rays on the surface. 
We have shown that the cloud of points describing the surface can be exported to any 
CAD/CAM software. We have also shown that it is simpler to use a cloud of points from a 
parametric representation than to use extensive parametric or implicit representations as the 
CAD/CAM software is capable to fit the points. In addition to this, the process of introducing 
the mathematical representation is usually complicated and subject to typos errors. We have 
established the minimum quantity of points that ensure an insignificant format conversion 
error. We have also shown how to distribute these points to minimize manufacture errors. 
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Annex 

Rodrigues rotation (tilt) formula to satisfy Snell-Descartes’ law 
 

Tilting anterior surface S1 requires a linear transformation be carried out. Thus, Snell-
Descartes’ law must be satisfied in the reference point O1. Consider that the surface to be 
tilted follows the reference optical path and that the Rodrigues’ rotation formula is used to 
convert the position vector p1 into a new position vector having the correct orientation. We 
present here a tilting recursive process for the refractive case: 
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where ns is a normal unit vector that satisfies Snell-Descartes’ law in the point O1, nr is a 
vector that does not satisfies Snell-Descartes’ law in the point O1, represented as a cross 
product of partial derivatives of vector p1 and presented again divided by its norm. Their dot 

and cross product cos  and ncross respectively, are required to obtain the tilted surface in a 

faster way. Note that the angle  of these two normal vectors is not needed to obtain the tilted 
surface. The new position vector p1 is obtained. 

After tilting, the arbitrary path vector is then updated 

0 1 0 a p p  ,                                                          (A2)  

as its new norm a0, 

0 0 0a  a a  .                                                        (A3) 


