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MODELLING AND SIMULATION OF A WAVE ENERGY CONVERTER

E. BOCCHI1, J. HE2 and G. VERGARA-HERMOSILLA3

Abstract. In this work we present the mathematical model and simulations of a particular wave
energy converter, the so-called oscillating water column. In this device, waves governed by the one-
dimensional nonlinear shallow water equations arrive from offshore, encounter a step in the bottom
and then arrive into a chamber to change the volume of the air to activate the turbine. The system
is reformulated as two transmission problems: one is related to the wave motion over the stepped
topography and the other one is related to the wave-structure interaction at the entrance of the chamber.
We finally use Riemann invariants to discretize the transmission conditions and the Lax-Friedrichs
scheme to get numerical solutions.

1. Introduction

1.1. General setting

This work is devoted to model and simulate an on-shore oscillating water column (OWC), which is a partic-
ular type of wave energy converter (WEC) that transforms the energy of waves reaching the shore into electric
energy. The structure is installed at the shore in such a way that the water partially fulfills a chamber, which is
connected with the outside through a hole where a turbine is placed (see Figure 1). Incoming waves collide with
the exterior part of the immersed wall and, after the collision, one part of the wave is reflected while the other
part passes below the fixed partially immersed wall and enters the chamber. This increases the water volume
inside the chamber and consequently, it creates an airflow that actives the turbine by passing through it and
the same occurs when the volume of water reduces inside the chamber. The perpetuation of the incoming waves
makes the water inside the chamber oscillate and act as a liquid piston, whose oscillations create electric energy.
In this work the wave energy converter is deployed with stepped bottom, which means that incoming waves
encounter a step in the bottom topography just before reaching the structure. The influence of such step in the
OWC device will be discussed later in Section 4. The present research is essentially motivated by a series of
works by Rezanejad and collaborators on the experimental and numerical study of nearshore OWCs, in partic-
ular, we refer to Rezanejad and Soares [14], where the authors used a linear potential theory to do simulations
and showed the improvement of the efficiency when a step is added. Our goal is to numerically study this type
of WEC considering as the governing equations for this wave-structure interaction the nonlinear shallow water
equations derived by Lannes in [8], whose local well-posedness was obtained by Iguchi and Lannes in [7] in the
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91037, Evry Cedex, France (e-mail: jiao.he@univ-evry.fr)
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one-dimensional case and by Bocchi in [1] in the two-dimensional axisymmetric case. In the Boussinesq regime
and for a fixed partially immersed solid similar equations were studied by Bresch, Lannes and Métivier in [2]
and in the shallow water viscous case by Maity, San Mart́ın, Takahashi and Tucsnak in [11] and by Matignon,
Vergara-Hermosilla and Tucsnak in [15].

We consider an incompressible, irrotational, inviscid and homogeneous fluid in a shallow water regime, which
occurs in the region where the OWC is installed. Following [8], the motion of the fluid is governed by the 1D
nonlinear shallow water equations

∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP

for x ∈ (−l, l1), (1)

where ζ(t, x) is free surface elevation, h(t, x) is the fluid height, ρ is the fluid density, P is the surface pressure
of the fluid and q(t, x) is the horizontal discharge defined by

q(t, x) :=

∫ ζ(t,x)

−h0

u(t, x, z)dz,

where u(t, x, z) is the horizontal component of the fluid velocity vector field. The boundary conditions on the
horizontal discharge are

q is continuous at x = 0, x = l0 ± r,
q = 0 at x = l1,

(2)

and the boundary conditions on the surface elevation are

ζ = f at x = −l,
ζ is continuous at x = 0,

(3)

where f(t) is a prescribed periodic function. The surface pressure is given by the constant atmospheric pressure
where the fluid is directly in contact with the air, i.e.

P = Patm in (−l, l0 − r) ∪ (l0 + r, l1) (4)

and no surface tension is considered here. On the other hand, under the partially immersed structure, the fluid
surface elevation is constrained to be equal to the parametrization of the bottom of the solid ζw, i.e.

ζ = ζw in (l0 − r, l0 + r). (5)

To complete the system, we consider an initial configuration where the fluid is at rest,

ζ(0, x) =

{
0 in (−l, l0 − r) ∪ (l0 + r, l1)

ζw in (l0 − r, l0 + r)
and q(0, x) = 0. (6)

1.2. Organization of the paper

In Section 2, we derive the model used in the numerical simulations following [1,2,7]. In particular, we show
that the equations (1) can be reformulated as two transmission problems, one related to the step in the bottom
topography and one related to the wave-structure interaction at the entrance of the chamber. Furthermore, the
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Figure 1. Configuration of the OWC

equations in the exterior domain are written as two transport equations on Riemann invariants. In Section 3, we
discretize the equations in conservative form using the Lax-Friedrichs scheme and use the Riemann invariants
to derive the discretization of the entry condition and boundary conditions. In Section 4, we give several
computations showing the numerical solutions of the model and compare the OWC device with and without
stepped bottom. At the end of this section, we show the accuracy of the numerical scheme to validate our
computations and we discuss the absorbed power and the efficiency of the OWC.

1.2.1. Notations

We divide the domain of the problem (−l, l1) into two parts. The interval I = (l0 − r, l0 + r) is called
interior domain, which is the projection onto the line of the wetted part of the structure, and its complement
E = (−l, l1) \ I, called exterior domain, which is the union of three intervals E0 ∪ E1 ∪ E2 with

E0 = (−l, 0), E1 = (0, l0 − r) and E2 = (l0 + r, l1),

where l1 is the position of the end of the chamber and l0 and r are respectively the position of the center and
the half length of the partially immersed structure. From the nature of the problem, l1 > l0 > r. Moreover, the
boundary of I is formed by the contact points {l0 ± r}, which are the projections on the real line of the triple
contact points between fluid, solid and air. For any function f defined in the real line, its restrictions on the
interior domain and the exterior domain are respectively denoted by

fi := f|I and fe := f|E .

2. Presentation of the model

2.1. Governing equations

In this section, we present the mathematical model that describes the oscillating water column process con-
sidered in this work. The model can be essentially divided in three parts: the wave motion over a discontinuous
topography represented by the step, the wave-structure interaction at the entrance of the chamber and the
wave motion in the chamber. In the exterior domain E , where the fluid is in contact with the air, the surface
pressure P e is constrained and is assumed to be equal to the constant atmospheric pressure Patm, while the
surface elevation ζe is not known. Contrarily, in the interior domain I, that is the region under the partially
immersed structure, the surface elevation ζi is constrained to coincide with the parametrization of the wetted
surface, which is assumed to be the graph of some function ζw. The surface pressure P i is unknown and it
turns out to be a Lagrange multiplier associated with the constraint on ζi. For more details on this approach
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for the study of wave-structure interaction, we refer to [8]. In this work we consider a partially immersed fixed
structure with vertical side walls, the parametrization ζw is a constant both in time and space. Summing up, we
have an opposite behaviour for the surface elevation and the surface pressure under the structure and elsewhere,
that is

ζi = ζw, P i is unknown and ζe is unknown, P e = Patm.

For the exterior domain, we distinguish the region before the step, denoted by E0 and the region after the step,
denoted by E1 ∪ E2. The fluid heights are defined respectively by

he = hs + ζe in E0, he = h0 + ζe in E1 ∪ E2,

where hs and h0 are the fluid heights at rest before the step and after the step respectively. Denoting by s the
height of the step, we have hs = h0 + s.
Therefore the nonlinear shallow water equations (1) can be written as the following three systems:

(1) for x ∈ E0, 
∂tζe + ∂xqe = 0,

∂tqe + ∂x

(
q2
e

he

)
+ ghe∂xζe = 0

and he = hs + ζe, (7)

(2) for x ∈ E1 ∪ E2 
∂tζe + ∂xqe = 0,

∂tqe + ∂x

(
q2
e

he

)
+ ghe∂xζe = 0

and he = h0 + ζe, (8)

(3) for x ∈ I, 
∂xqi = 0,

∂tqi = −hw
ρ
∂xP i

and hw = h0 + ζw. (9)

2.2. Derivation of the transmission conditions

The following section is devoted to showing that the motion over the stepped bottom and the wave-structure
interaction can be reduced to two transmission problems for the nonlinear shallow water equations. To do that,
we derive the transmission conditions relating the different parts of the model, respectively at the step in the
bottom topography and at the side walls of the partially immersed structure.

2.2.1. At the topography step

We consider the problem before the entrance of the chamber not as one shallow water system with a discon-
tinuous topography but rather as a transmission problem between two shallow water systems with flat bottoms
where the fluid heights are respectively hs + ζe and h0 + ζe.
The first transmission condition is given by the continuity of the surface elevation at the step, namely

ζe|x=0−
= ζe|x=0+

, (10)

where the traces at x = 0− and at x = 0+ are the traces at x = 0 of the unknowns before the step and after
the step respectively.
The second transmission condition is given by the continuity of the horizontal discharge at the step, namely

qe|x=0−
= qe|x=0+

. (11)
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2.2.2. At the structure side-walls

The transmission conditions at the side-walls of the partially immersed structure are derived from the con-
tinuity of the horizontal discharge at the side-walls and the assumption that the total fluid-structure energy is
equal to the integral in time of the energy flux at the entry of the domain. The continuity of the horizontal
discharge at x = l0 ± r together with the fact that ∂xqi = 0 gives the first transmission condition between the
E1 and E2, which reads

JqeK := qe|x=l0+r
− qe|x=l0−r

= 0. (12)

Let us now derive the second transmission condition at x = l0 ± r. To do that, we show the local conservation
of the fluid energy in the exterior domain and in the interior domain as in [2].

Exterior domain. Considering the nonlinear shallow water equations in E , multiplying the first equation in

(7)-(8) by ρgζe and the second equation by ρ
qe
he

, and considering the fact that ∂the = −∂xqe, we obtain


∂t

(
ρ
q2
e

2he

)
+ ρgζe∂xqe = 0,

∂t

(
ρ
q2
e

2he

)
− ρ q

2
e

2h2
e

∂xqe + ρ
qe
he
∂x

(
q2
e

he

)
+ ρgqe∂xζe = 0.

(13)

Adding both equations in (13), we obtain

∂t

(
ρg
ζ2
e

2
+ ρ

q2
e

2he

)
+ ρgζe∂xqe + ρgqe∂xζe − ρ

q2
e

2h2
e

∂xqe + ρ
qe
he
∂x

(
q2
e

he

)
= 0.

We compute that

gζ∂xq + gq∂xζ = ∂x(gζq) and − q2

2h2
∂xq +

q

h
∂x

(
q2

h

)
= ∂x

(
q3

2h2

)
,

and, denoting by eext and by fext respectively the local fluid energy and the local flux

eext = ρ
q2
e

2he
+ gρ

ζ2
e

2
and fext = ρ

q3
e

2h2
e

+ gρζeqe,

we obtain the local conservation of the fluid energy in the exterior domain

∂teext + ∂xfext = 0. (14)

Interior domain. Let us remark that from the first equation in (9) one gets that qi ≡ qi(t) in the interior

domain. Multiplying the second equation in (9) by
qi
hw

, we obtain

∂t

(
ρ
q2
i

2hw

)
+ ∂x (qiP i) = 0,

and, denoting by eint and by fint respectively the local fluid energy and the local flux

eint = ρ
q2
i

2hw
+ ρg

ζ2
w

2
and fint = qiPi,
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we obtain the local conservation of the fluid energy in the interior domain,

∂teint + ∂xfint = 0. (15)

Now we assume that the total fluid-structure energy at time t is equal to the integral between 0 and t of the
energy flux at the entry of the domain, that is

Efluid + Esolid =

∫ t

0

fext|x=−l
,

with the fluid energy defined by

Efluid =

∫
I
eint +

∫
E
eext.

This assumption is an adaptation to a bounded domain case of the conservation of total fluid-structure energy
assumed in [2]. The fact that the structure is fixed yields

d

dt
Efluid =

∫
I
∂teint +

∫
E
∂teext = fext|x=−l

.

From (14) and (15) we have

−
∫
I
∂xfint −

∫
E
∂xfext = fext|x=−l

.

Using the boundary conditions (2) and (3) we get

JfintK = JfextK,

where the brackets J·K are defined as in (12). By definition of the fluxes it follows

JqiP iK = ρ

s
q3
e

2h2
e

+ gζeqe

{

and from (2) and (12) we obtain

JP iK = ρ

s
q2
e

2h2
e

+ gζe

{
.

Integrating on (l0 + r, l0 − r), the second equation in (9) yields

−ρ 2r

hw

d

dt
qi = JP i.K

Combining the last two equalities, we get the following transmission condition

−ρ 2r

hw

d

dt
qi = ρ

s
q2
e

2h2
e

+ gζe

{
. (16)

2.3. Reformulation as two transmission problems

Coupling the governing equations (7)-(9) with the conditions derived in the previous section, we have therefore
reduced the problem of the OWC essentially to two transmission problems. The first one in E0 ∪ E1 reads:

∂tζe + ∂xqe = 0,

∂tqe + ∂x

(
q2
e

he

)
+ ghe∂xζe = 0,

he = hs + ζe in E0, he = h0 + ζe in E1, (17)



ESAIM: PROCEEDINGS AND SURVEYS 7

with transmission conditions at x = 0

ζe|x=0−
= ζe|x=0+

, qe|x=0−
= qe|x=0+

. (18)

The second transmission problem in E1 ∪ E2 reads:
∂tζe + ∂xqe = 0,

∂tqe + ∂x

(
q2
e

he

)
+ ghe∂xζe = 0,

he = h0 + ζe, (19)

with transmission conditions at x = l0 ± r

JqK = 0,

s
q2
e

2h2
e

+ gζe

{
= −α d

dt
qi, (20)

where α =
2r

hw
and hw = h0 + ζw.

2.4. Riemann invariants

Let us now rewrite the nonlinear shallow water equations (7) and (8) in the exterior domain E in a compact
form by introducing the couple U = (ζe, qe)

T :

∂tU +A(U)∂xU = 0, (21)

where

A(U) =

(
0 1

ghe − q2e
h2
e

2qe
he

)
.

The eigenvalues λ+(U) and −λ−(U) of the matrix A(U) and the associated eigenvectors e+(U) and e−(U) are
given by

λ+(U) =
qe
he

+
√
ghe, −λ−(U) =

qe
he
−
√
ghe,

e+(U) = (
√
ghe −

qe
he
, 1)T , e−(U) = (−

√
ghe −

qe
he
, 1)T .

Notice that λ+ > 0 and λ− > 0. Taking the scalar product of (21) and eigenvectors, we obtain

∂t(2
√
ghe ±

qe
he

)± (
√
ghe ±

qe
he

)[∂x(2
√
ghe ±

qe
he

)] = 0.

Let us introduce the right and the left Riemann invariant R and L associated to the nonlinear shallow water
equations, respectively

R := 2(
√
ghe −

√
gh0) +

qe
he
, L := 2(

√
ghe −

√
gh0)− qe

he
. (22)

Hence we can write the 1D nonlinear shallow water equations in the exterior domain as the two following
transport equations on R and L:

∂tR+ λ+(U)∂xR = 0, ∂tL− λ−(U)∂xL = 0. (23)

We will see that these two transport equations of Riemann invariants are helpful when we solve our model
by numerical method. More details about Riemann invariants of the nonlinear shallow water equations can be
found in [9].
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3. Discretization of the model

We have reformulated in the previous section the mathematical model of the oscillating water column as
two transmission problems. This section is devoted to discretize the nonlinear shallow water equations (7)-(9)
at the level of the numerical scheme. More precisely, we will use the Lax-Friedrichs scheme to solve our main
equations and use Riemann invariants to address the entry conditions and all boundary conditions.

3.0.1. Numerical notations

We use the following notations throughout this section:

• in our system, the whole numerical domain [−l, l0] is composed of four parts: [−l, 0], [0, l0 − r], [l0 −
r, l0 + r] and [l0 + r, l1]. Each interval is divided into cells (Ai)1≤i≤nx with Ai = [xi−1, xi]1≤i≤nx of size
δx. More precisely, we have

x0 = −l, ..., xi = −l + iδx, ..., xn1,x = 0;

xn1,x+1 = δx, ..., xn1,x+i = iδx, ..., xn1,x+n2,x
= l0 − r;

xn1,x+n2,x+1 = l0 − r + δx, ..., xn1,x+n2,x+i = l0 − r + iδx, ..., xn1,x+n2,x+n3,x
= l0 + r;

xn1,x+n2,x+n3,x+1 = l0 + r + δx, ..., xn1,x+n2,x+n3,x+i = l0 + r + iδx, ..., xn1,x+n2,x+n3,x+n4,x = l1,

with l = n1,xδx, l0 − r = n2,xδx, 2r = n3,xδx and l1 − (l0 + r) = n4,xδx;
• we denote by δt the time step. According to CFL condition, time step δt can be specified by δx;
• for any quantity U , we denote by Umi its value at the position xi at time tm = mδt. For instance, the

variables ζmi denotes the value of the free surface elevation ζ at the position xi at time tm = mδt.

3.1. Discretization of the equation

The finite volume method is a standard discretization approach for partial differential equations, especially
those that arise from conservation laws. We first rewrite equation (21) as the following conservative form :

∂tU + ∂x(F (U)) = 0, (24)

with

F (U) = (qe,
1

2
g(h2

e − h2
0) +

q2
e

he
)T .

By means of a finite volume approach, equation (24) can be discretized as

Um+1
i − Umi

δt
+

(
Fmi+1/2 − F

m
i−1/2

)
δx

= 0,

where the flux F is discretized with cell centres indexed as i and cell edge fluxes indexed as i± 1/2. The choice
of Fmi±1/2 depends on the numerical scheme. We consider here the well-known Lax–Friedrichs scheme proposed

by Lax [10] to get the discrete flux

Fmi−1/2 =
1

2

(
Fmi + Fmi−1

)
− δx

2δt

(
Umi − Umi−1

)
, (25)

where i ≥ 1 and Fmi = F (Umi ).
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3.2. Discretization of the entry condition

At the entrance of our system, the surface elevation is given by a prescribed function f(t) depending only on
time,

ζm|x=−l = fm := f (tm) .

In order to express the entry condition for the horizontal discharge, let us first recall that from (22) one has

qe =
he
2

(R− L), R+ L = 4(
√
ghe −

√
gh0),

where R and L are respectively the right and the left Riemann invariant associated to the nonlinear shallow
water equations. We get

qe = he(2(
√
ghe −

√
gh0)− L).

Hence, the value of qe at x = −l is given by

qe|x=−l = (h0 + f(t))(2(
√
g(h0 + f(t))−

√
gh0)− L|x=−l).

On the right-hand side of the relation above, L|x=−l is unknown. First we have to determine L|x=−l in order to
determine qe|x=−l. This can be achieved by the transport equation for L in (23). After discretizing it as in [12],
we get

Lm0 − Lm−1
0

δt
− λ−

Lm−1
1 − Lm−1

0

δx
= 0, (26)

where Lm0 is the value of L at x = −l at time tm and λ− is computed as a linear interpolation between λ−,0
and λ−,1 following [9], namely

λ− = βλ−,0 + (1− β)λ−,1

with 0 ≤ β ≤ 1 such that λ−δt = βδx. Moreover, we can compute λ− as

λ− =
λ−,1

1 + δt
δx
λ−,1 − δt

δx
λ−,0

.

Thus, we have

Lm0 = (1− λ−
δt
δx

)Lm−1
0 + λ−

δt
δx
Lm−1

1 , (27)

which gives Lm0 in terms of its values at the previous time step and in terms of interior points.

3.3. Discretization of the boundary conditions

Since our system is composed by four parts, it remains three boundary conditions should be taken into
consideration besides the entry condition at x = −l. When wave arrives from the offshore, it will encounter
a step in the bottom and then arrive into a chamber, and finally arrive to the wall (see the configuration 1).
More precisely, the first boundary condition is at the discontinuity of the topography located at x = 0 and the
second is at the partially immersed structure side-walls located at x = l0 ± r. The last boundary condition is
at the end of the chamber, located at x = l1.

3.3.1. At the topography step

Let us first consider the shallow water wave equations with discontinuous topography, namely, it is a system
with depth hs on R− = {x < 0} and depth h0 on R+ = {x > 0}. Our equation turns out to be

∂tU + ∂x(F (U)) = 0,
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with

F (U) =


(
qe,

1

2
g((hs + ζe)

2 − h2
s) +

q2
e

hs + ζe

)T
, in (0, T )× R−,(

qe,
1

2
g((h0 + ζe)

2 − h2
0) +

q2
e

h0 + ζe

)T
, in (0, T )× R+.

From transmission conditions (10) and (11), we have the continuity of the surface elevation ζe and of the
horizontal discharge qe at x = 0:

ζle|x=0 = ζre |x=0, qle|x=0 = qre |x=0. (28)

Let us denote the right Riemann invariant in the domain R− by Rl and the left Riemann invariant in the
domain R+ by Lr. We then find two expressions of qe describing qle|x=0 and qre |x=0, respectively,

qle|x=0 = (hs + ζle|x=0)
(
Rl|x=0 − 2

(√
g(hs + ζle|x=0)−

√
ghs
))
,

qre |x=0 = (h0 + ζre |x=0)
(

2
(√

g(h0 + ζre |x=0)−
√
gh0

)
− Lr|x=0

)
.

(29)

According to the relations (28), we observe that (29) is a system of two nonlinear equations on the two unknowns
ζle|x=0 (respectively ζre |x=0) and qle|x=0 (respectively qre |x=0). We write it in the compact form

F (x1, x2) = 0, (30)

where x1 = ζle|x=0, x2 = qle|x=0 and the vector F = (F1, F2) is given by

F1 = (hs + x1)
(
Rl|x=0 − 2

(√
g(hs + x1)−

√
ghs
))
− x2,

F2 = (h0 + x1)
(

2
(√

g(h0 + x1)−
√
gh0

)
− Lr|x=0

)
− x2.

In the case hs = h0 (without step) we can derive from (29) a third degree polynome on
√
h0 + ζle|x=0 and

take the unique solution that gives ζle|x=0 = 0 when Rl|x=0, L
r|x=0 = 0 (we refer to [8] for this case). Here,

since hs 6= h0, we use MATLAB nonlinear system solver fsolve with initial point (0, 0) to solve (30). Before
doing that, we have to determine the values of the two Riemann invariants Rl|x=0 and Lr|x=0. The transport
equations for Rl and Lr are the following:

∂tR
l + λl+(U)∂xR

l = 0, ∂tL
r − λr−(U)∂xL

r = 0, (31)

where the corresponding eigenvalue λl+ in the domain R− is given by

λl+(U) =
qe

hs + ζe
+
√
g(hs + ζe), (32)

and the corresponding eigenvalue −λr− in the domain R+ is given by

−λr−(U) =
qe

h0 + ζe
−
√
g(h0 + ζe). (33)

Let us emphasize that we use here the same interpolation for λ+ and λ− as in [12]. After discretization of
equations (31), we get

(Rl)mn1,x
− (Rl)m−1

n1,x

δt
+ λl+

(Rl)m−1
n1,x

− (Rl)m−1
n1,x−1

δx
= 0,

(Lr)mn1,x
− (Lr)m−1

n1,x

δt
− λr−

(Lr)m−1
n1,x+1 − (Lr)m−1

n1,x

δx
= 0,



ESAIM: PROCEEDINGS AND SURVEYS 11

where λl+, λr− are as in (32)-(33) and we recall that (Rl)mn1,x
is the value of Rl at xn1,x and tm (see Notations

3.0.1). Hence, we have

(Rl)mn1,x
=

(
1− λl+

δt
δx

)
(Rl)m−1

n1,x
+ λl+

δt
δx

(Rl)m−1
n1,x−1, (Lr)mn1,x

=

(
1− λr−

δt
δx

)
(Lr)m−1

n1,x
+ λr−

δt
δx

(Lr)m−1
n1,x+1,

(34)
which give (Rl)mn1,x

and (Lr)mn1,x
in terms of their values at the previous time step and in terms of interior points.

Gathering the relations (28), (29) and (34), we can solve ζle|x=0 (respectively ζre |x=0) and qle|x=0 (respectively
qre |x=0), which give us the boundary conditions at the step.

3.3.2. At the structure side-walls

Compared with the derivation of the boundary conditions near the step, the idea to derive the boundary
condition near the fixed partially immersed structure is almost the same. There are two differences between
them. The first one is that, since the depth is always h0, the eq. (29) becomes

qle|x=l0−r = (h0 + ζle|x=l0−r)
(
Rl|x=l0−r − 2

(√
g(h0 + ζle|x=l0−r)−

√
gh0

))
,

qre |x=l0+r = (h0 + ζre |x=l0+r)
(

2
(√

g(h0 + ζre |x=l0+r)−
√
gh0

)
− Lr|x=l0+r

)
,

(35)

where we denote the horizontal discharge in the exterior domain on the left-hand side of the object by qle and on
the right-hand side of the object by qre . Let us recall that qi is the horizontal discharge in the interior domain
I. From the first transmission condition in (20), we know that

qle|x=l0−r = qi = qre |x=l0+r.

The second difference is that we don’t have the continuity condition ζle|x=0 = ζre |x=0 at the structure side-walls
as in the previous subsection. Nevertheless, we consider the discretization of the second transmission condition
in (20), hence we get(

(qle)
m−1
l0−r

)2
2
(
h0 + (ζle)

m−1
l0−r

)2 + g(ζle)
m−1
l0−r −

(
(qre)

m−1
l0+r

)2
2
(
h0 + (ζre )m−1

l0+r

)2 − g(ζre )m−1
l0+r = −α

(qe)
m
l0−r − (qe)

m−1
l0−r

δt
.

where for the sake of clarity (qe)
m
l0−r = (qe)

m
n1,x+n2,x

and (qe)
m
l0+r = (qe)

m
n1,x+n2,x+n3,x

(analogously for (ζe)
m
l0−r

and (ζe)
m
l0+r). Then, qe at x = l0 − r is expressed as

(qe)
m
l0−r = (qe)

m−1
l0−r −

δt

α

( (
(qle)

m−1
l0−r

)2
2
(
h0 + (ζle)

m−1
l0−r

)2 −
(
(qre)

m−1
l0+r

)2
2
(
h0 + (ζre )m−1

l0+r

)2)− δt

α
g
(

(ζle)
m−1
l0−r − g(ζre )m−1

l0+r

)
, (36)

which gives (qe)
m
l0−r in terms of its values at the previous time step and in terms of interior points. Now we

can solve (qe)
m
l0−r immediately. Once the value of (qe)

m
l0−r is obtained, we can find the values of ζle|x=l0−r and

ζre |x=l0+r by using equations (35) and the transport equations for the Riemann invariants as the strategy in
Section 3.3.1.

3.3.3. At the end of the chamber

The corresponding boundary condition at the end of the chamber, located at x = l1, is given by

qe|x=l1
= 0.
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Hence, recalling the definition of the right-going Riemann invariant R, we recover the surface elevation ζe at
x = l1, namely

ζe|x=l1
=

1

g

(
R|x=l1

2
+
√
gh0

)2

− h0.

4. Numerical validations

In this section, we use the scheme introduced in Section 3 to simulate our model. For the fluid, we always
consider the density of water ρ = 1000 kg/m3 and the gravitational acceleration g = 9.81 m/s2. The entry of
the domain is set at x = −l = −30 m and the prescribed periodic function f is given by

f(t) = sin

(
2π

T
t

)
,

where T = 1.5 s is the period. Using the notations as before, we consider l0 = 11 m, r = 1 m and l1 = 17 m and
the fluid height at rest before the step hs = 15 m. We compute the solution by using the Lax-Friedrichs scheme
in the exterior domain [−30, 10] ∪ [12, 17], with a refined mesh with Nx = 2300 and a time step δt = 0.7√

ghs
δx

with space step δx = 0.02 m. Here, the CFL number is 0.7, which is commonly used to prescribe the terms of
the finite-difference approximation of a PDE (see for instance [13]). In the interior domain, the solution can be
computed using the transmission conditions (20) with hw = h0 + ζw and ζw = −7.5 m.

4.1. Numerical solutions

In real applications, an OWC device can be deployed on a stepped sea bottom in order to improve its
performance. It is important then to have a good understanding of the impact of a step in the topography.
Here, we test and compare the case without step s = 0 m (h0 = 15 m) to the case with a step of height s = 5 m
(h0 = 10 m) considering the previous physical parameters. The numerical solutions are plotted in Figure 2 at
times t = 1.7 s, t = 3.3 s and t = 5 s. The plots (a), (c), (e) show the solutions without stepped bottom, while
the plots (b), (d), (f) show the solutions with stepped bottom.

We find that, before the waves encounter the step, there is no significant difference between the OWC model
without stepped bottom and with stepped bottom (see (a) and (b)). But when the waves encounter the step in
the bottom and arrive into the chamber, we can see that, the waves in the OWC model without stepped bottom
move significantly faster than the waves in the OWC model with stepped bottom. In particular, at t = 3.3 s the
waves in the OWC model without stepped bottom has already arrived to the chamber and will begin to change
the water level in the chamber, while the waves in the OWC model with stepped bottom have not reached yet
and the water will rise inside the chamber later (see (c) and (d)). As the step at bottom is a sort of obstacle
for the incoming wave, this phenomenon is reasonable.

As one may expect, the incoming wave split into two parts when it touches the left wall of the partially
immmersed structure. One part enters the chamber and changes the volume of the air that makes the turbine
rotate. The other part is reflected and becomes an outgoing wave, as we can see in Figure 2. At t = 5 s, the
reflected wave in the OWC model without stepped bottom already reaches x = −10 m, while the reflected wave
in the OWC model with stepped bottom has not reached x = −10 m (see (e) and (f)). This shows that the
reflected waves in the OWC model with stepped bottom move slower than the waves in the OWC model without
stepped bottom.

This difference can be explained by the fact that more incident wave energy is converted when a step is
added. In other words, the OWC with stepped bottom would be more efficient than the one without stepped
bottom, which is in agreement with the result by Rezanejad and Soares in [14].

4.2. Accuracy analysis

In numerical validations, accuracy analysis is of importance. As we can see in Figure 1, the configuration
of OWC device is essentially constituted from three parts: the domain before the step in the sea bottom, the
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Figure 2. Comparisons between the numerical results without step (left) and with step (right)
at times t = 1.7 s, t = 3.3 s and t = 5 s.
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Figure 3. Comparison between classical NSW model and our model without step in different times
considering δx = L/1500 m and L = 30 m.

domain after the step and the chamber. We implement our algorithms by gathering together the three parts.
It is worth mentioning that one compact algorithm is also actionable.

In order to make it possible to verify our algorithm, we do the following accuracy analysis. Under the same
initial wave and physical parameters, we compare the free surface elevation ζe of the classical nonlinear shallow
water wave model with our model without discontinuous topography. Figure 3 shows that there is no significant
difference between the two cases. Moreover, we also find that the error is of order 10−3 (see Figure 4), which is
acceptable since the Lax-Friedrichs method is classified as having second-order dissipation.

4.3. Absorbed power and efficiency

Designing a WEC of high efficiency is nowadays a hot topic in all regions and countries over the world. In
this regard, we present in this section the method to calculate the absorbed power as well as the efficiency of
the OWC considered in this work.

The primary efficiency ηReg of the device is defined by the ratio of the absorbed power from the waves to
the incident wave power. From the seminal work of Evans in [6], we know that in the linear time-harmonic
theory the volume flux Q(t) = Re{qe−iωt} is assumed linearly proportional to the pressure in the chamber
P (t) = Re{pe−iωt}. Using this assumption, the average power absorbed from regular waves over one wave
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Figure 4. Difference between classical NSW model and our NSW model without step considering
δx = L/1500 m and L = 30 m.

period, denoted by PReg, is given by

PReg =
1

2
λ|p|2, (37)

where p is the time independent and λ is a positive constant associated with linear air turbine characteristics. On
the other hand, following [14] in experiments the average power absorbed from regular waves can be determined
by:

PReg =
1

T

∫ T

0

PQdt, (38)

where T is the duration of the test. The incident wave power Pinc is defined as the product of total energy per
wave period Einc and the group velocity cg (see [3]):

Pinc = Einc cg,

with

Einc =
1

2
ρgLA2, cg =

ω

2k

(
1 +

2khs
sinh(2khs)

)
,

and the dispersion relation given by

ω2 = gk tanh(khs),

where ω is the frequency, k is the wave number, hs is the fluid height at rest before the step, ρ is the density
of the fluid, g is the gravitational acceleration and L is the projected width of the WEC perpendicular to the
incident wave direction, A is the amplitude of the wave. In the shallow water regime khs � 1 and the group
velocity reduces to cg =

√
ghs. Thus, the primary efficiency of the device in regular wave is given by

ηReg =
PReg
Pinc

.

We notice that in both (37) and (38) the absorbed power (hence the primary efficiency) strongly depends
on the air pressure in the chamber. In our model, it is considered to be a constant, namely the atmospheric
pressure Patm. However, when the waves arrive into the chamber and change the volume of the air, the air
pressure in the chamber will certainly change as well. In this case, the pressure will no more be a constant, but
depends on time. Hence, to study more rigorously the absorbed power and the primary efficiency of the OWC,
this fact must be taken into account in the model. This will be addressed in our future work. Analogously, the
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improvement of the efficiency of an OWC device deployed on a stepped sea bottom can be also investigated
with a better knowledge of the air pressure in the chamber. From the results in Section 4.1, we can expect that
significant improvements in the efficiency can be achieved by adding a step at the bottom of the sea.
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