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Introduction *

Aggressive miniaturization of SiGe heterojunction bipolar transistors (HBTs) has enhanced the frequency performances of the transistors while increasing the operating current density and sacrificing breakdown voltages [START_REF] Chevalier | Si/SiGe:C and InP/GaAsSb Heterojunction Bipolar Transistors for THz Applications[END_REF]. This has posed as a major concern in terms of long-term reliability since modern transistors are required to operate closer and even beyond their classical safeoperating areas (SOA) thus shortening the transistor's lifetime. This is only possible, if the underlying physical processes of degradation are well understood and accurately modeled. One of the major reliability issues is hot-carrier degradation (HCD) that predominantly limits the lifetimes of modern SiGe HBTs [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Fischer | Ageing and thermal recovery of advanced SiGe heterojunction bipolar transistors under long-term mixed-mode and reverse stress conditions[END_REF][START_REF] Fischer | Analysis and modeling of the longterm ageing rate of SiGe HBTs under mixed-mode stress[END_REF][START_REF] Jacquet | Reliability of high-speed SiGe: C HBT under electrical stress close to the SOA limit[END_REF][START_REF] Zhang | A new "mixed-mode" base current degradation mechanism in bipolar transistors[END_REF], the underlying mechanism of which is trap generation at the emitter-base (EB) spacer oxide interface through Si-H bond-breaking followed by non-ideal base current degradation [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF]. Despite the criticism put forward against reactiondiffusion (R-D) theory, it has remained a wellaccepted modeling framework over the years for understanding HCD [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Fischer | Ageing and thermal recovery of advanced SiGe heterojunction bipolar transistors under long-term mixed-mode and reverse stress conditions[END_REF][START_REF] Fischer | Analysis and modeling of the longterm ageing rate of SiGe HBTs under mixed-mode stress[END_REF][START_REF] Jacquet | Reliability of high-speed SiGe: C HBT under electrical stress close to the SOA limit[END_REF][START_REF] Zhang | A new "mixed-mode" base current degradation mechanism in bipolar transistors[END_REF][START_REF] Cressler | Emerging SiGe HBT reliability issues for mixed-signal circuit applications[END_REF][START_REF] Kamrani | Microscopic Hot-Carrier Degradation Modeling of SiGe HBTs under Stress Conditions Close to the SOA limit[END_REF][START_REF] Mukherjee | Reliability-Aware Circuit Design Methodology for Beyond-5G Communication Systems[END_REF][START_REF] Jeppson | Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices[END_REF][START_REF] Islam | Recent Issues in Negative-Bias Temperature Instability: Initial Degradation, Field Dependence of Interface Trap Generation, Hole Trapping Effects, and Relaxation[END_REF][START_REF] Wier | A physics-based circuit aging model for mixed-mode degradation in SiGe HBTs[END_REF]. In the context of modern HBTs, R-D theory remains valid [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Wier | A physics-based circuit aging model for mixed-mode degradation in SiGe HBTs[END_REF] owing to the fact that recovery is quite scarce under conventional operating conditions (since interface traps do not recover significantly without annealing). Moreover, the analytic form of R-D model is quite suitable for circuit design while preserving the physical basis of degradation [START_REF] Mukherjee | Reliability-Aware Circuit Design Methodology for Beyond-5G Communication Systems[END_REF]. In compact model implementation, an approximate solution of the R-D rate equation is commonly used in which the time-dependence of the degradation is governed by a power law (t n ) [START_REF] Cressler | Emerging SiGe HBT reliability issues for mixed-signal circuit applications[END_REF][START_REF] Kamrani | Microscopic Hot-Carrier Degradation Modeling of SiGe HBTs under Stress Conditions Close to the SOA limit[END_REF][START_REF] Islam | Recent Issues in Negative-Bias Temperature Instability: Initial Degradation, Field Dependence of Interface Trap Generation, Hole Trapping Effects, and Relaxation[END_REF][START_REF] Wier | A physics-based circuit aging model for mixed-mode degradation in SiGe HBTs[END_REF]. Though it offers simplicity, this power law does neither account for the saturation of the degradation characteristics after long-term aging (when the trap density approaches the total number of available dangling bonds), nor for the initial phase when the generation process dominates (~t). Other solutions include an empirical time dependence of the power law exponent by Fischer et al. [START_REF] Fischer | Ageing and thermal recovery of advanced SiGe heterojunction bipolar transistors under long-term mixed-mode and reverse stress conditions[END_REF][START_REF] Fischer | Analysis and modeling of the longterm ageing rate of SiGe HBTs under mixed-mode stress[END_REF] or an exponential model for trap density in [START_REF] Jacquet | Reliability of high-speed SiGe: C HBT under electrical stress close to the SOA limit[END_REF], based on the R-D model, however omitting trap annihilation. To circumvent specific limitations of all these models, a complete analytical solution of the R-D model has also been proposed [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF] which captures all phases of degradation in one single analytic form, thus enabling physics-based compact modeling owing to its design-friendly implementation. However, this model, though comprehensive and accurate in all other aspects, does not account for a dynamic stress condition, i.e., the invariance in time is not preserved for the degradation in case of variable stress bias intervals, which is an essential criterion for AC circuit simulation [START_REF] Scholten | The Relation Between Degradation Under DC and RF Stress Conditions[END_REF]. Consider for example the scenario illustrated in Fig. 1 for the base recombination current parameter at the base-emitter periphery, IREpS, extracted from measurements under a dynamic stress bias condition (switching between two stress biases). In the first interval, between (0-t1), previous implementation [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF] (HiCuM AL-V1) follows the actual measurements. However, between t1 and t2, i.e. under the low stress condition, the previous implementation calculates the degradation according to the new stress bias without retaining the final value of IREpS from the first (high) stress phase, thus leading to a discontinuity compared to the measured data which shows a weak recovery under low-stress conditions. It is to be noted that, one cannot directly transpose a model with both constant and variable stress types as long as the model accounts for recovery and nonquasi-static behavior of the dynamic stress [START_REF] Scholten | The Relation Between Degradation Under DC and RF Stress Conditions[END_REF]. 

I REPS [fA] Stress 1 V BE =0.88V V CE =2.5V t 1 3
for dynamic stress conditions, while preserving the same R-D model framework as before [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF]. In Fig. 1, corresponding new model (to be detailed in the next section) simulation (HiCuM AL-V2) is illustrated showing a much better agreement with the measurements under variable stress conditions.

The rest of this paper is organized as follows; Section II illustrates the model formulation and implementation; Section III describes the three SiGe HBT technologies under test and their respective stress bias conditions, the aging test results, model validation and a discussion on the evolution of aging model parameters with bias followed by the conclusion.

Implementation of the Aging Model

The schematic in Fig. 2 illustrates the spatial dynamics of hydrogen diffusion in the emitter-base spacer oxide due to the hot-carrier-induced degradation in SiGe HBTs and the subsequent Si-H bond breakage at the [2-8,14] oxide interface. The rate of bond dissociation is governed by a chemical interaction between the carriers and the passivated Si-H bond through generation and annihilation of traps. The interface-trap density, NT (t), increases with the net rate of reaction, gT (t), which is described by the R-D model [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Jeppson | Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices[END_REF] as, 0,

Here, KF is the rate constant of the forward reaction, i.e., generation of traps, KR is the rate constant of trap annihilation by hydrogen atoms, , is the volumetric density of hydrogen at distance x of the Si/SiO2 interface and NF is the total number of available bonds that can break. When a Si-H breaks, every dangling Si bond is associated with a free H atom in the oxide [START_REF] Islam | Recent Issues in Negative-Bias Temperature Instability: Initial Degradation, Field Dependence of Interface Trap Generation, Hole Trapping Effects, and Relaxation[END_REF], hence, 0,

where , is the surface flow density of hydrogen. In the oxide volume, the flow of hydrogen is related to the density by Fick's law of diffusion:

, , (3) 
where DH is the diffusion constant of hydrogen.

Adding the hydrogen conservation law when x>0, Fick's second law reads,

, , 0 (4) 
In order to introduce in the compact model the timeinvariance property and the memory effect necessary for dynamic stress simulation, we introduce a new structure of the compact model compared to [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF], and especially the diffusion model implementation (Fig. 3). Equations ( 1) and ( 2) can be directly embedded in a Verilog-A model, resulting in relations between , 0, , and 0, along with their time derivatives, all of them being located at the interface (x=0). This part of the model interacts with the electrical part of the model through KF and KR as inputs, and through the trap density NT(t) as an output. In the previous version [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF], the aging model (HiCuM-AL) had been implemented in HiCuM compact model [START_REF] Schröter | Compact hierarchical modeling of bipolar transistors with HICUM[END_REF] through the recombination current parameter in the periphery, IREpS, featuring a similar evolution as the trap density NT (x, t). Hence, in the the aging model (HiCuM-AL v2), KF (s -1 ), KR (cm 3 s -1 ) are represented by their corresponding compact model parameters KF,I (s -1 ), KR,I (cm.A -1. s -1 ), respectively, and NF by IF (A) which is the final value of ΔIREpS, (A). The rest of the system is modeled by the diffusion equations in the oxide volume or at the interface. The diffusion model cannot directly be implemented in Verilog-A. However, there is no need to implement the complete equations but only to identify the relation between 0, and , i.e. , .

Moreover, diffusion being a linear and time-invariant phenomenon, its useful properties can be summarized by the equivalent admittance-like quantity defined as Y 0, 0, ⁄ 0, , where , and , are the Fourier transforms of , and , . In order to simulate the diffusion model in a Spice-like circuit simulator, it must be organized around a finite set of nodes or variables.

To obtain a time-invariant model, the time must not appear explicitly in the equations but only in time derivatives. The distributed partial derivative equations will be replaced by a finite set of first order differential equations implemented by a resistorcapacitor (R-C) network. As the physical system can only be considered for one dimension, an R-C ladder network is used. This architecture is commonly used for thermal diffusion modeling [START_REF] Couret | Physical, small-signal and pulsed thermal impedance characterization of multi-fingers SiGe HBTs close to the SOA edges[END_REF]. It is made of N resistors and N capacitors followed by an optional terminal resistor (of conductance G) depicted in Fig. 4. 

In order to reduce the number of parameters added to our model, the values of 8 & and 9 & follow two geometrical sequences:

8 & 8 * : &)* , 9 & 9 * : ; &)* (6) 
This sequence can be identified to a finite difference approximation along the x axis depicted in Fig. 2, considering a geometrically increasing sequence of x.

Owing to a one dimensional system, both sequences must have the same common ratio : : ; . To identify the diffusion compact model parameters, we need to compare them with the ones of the diffusion model equations. For this, the Fick's second law is translated into the frequency domain as:

< ' , < = 2? ' , 0 (7) 
whose general solution is ' , @ A B C D A )B with :

1 C = E FG H . Hence, Fick's first law, which reads, ' , ' , (8) 
becomes, ' , :

@ A B D A )B (9) 
Coefficients @ and D are determined by the limit conditions at the interfaces 0 and I as represented in Fig. 2. Considering the limits at x=0, we obtain the following relationships:

' 0, @ C D ' 0, 1 C = J? @ D (10) 
and for I:

' I, @ A BK C D A )BK ' I, 1 C = J? @ A BK D A )BK (11)
Accordingly, the three limit conditions of the diffusion admittance-like quantity $ % are summarized in Table I: one for very thick oxide, and two for finite thickness. Parameter values can be derived from the R-C network configuration. At high frequency, the network is equivalent to the 8 * resistor. For : L 1, the limit frequency is:

* 1 2?8 * 9 * (12) 
By identifying 1 8 * ⁄ M N 0, * N for the semiinfinite exact model, we derive 8 * M

We can now approximate 8 * and 9 * on the basis of the diffusion coefficient and the maximum frequency * for the validity of the R-C network approximation. On the other hand, the minimum accurate frequency of the RC model is approximated by the cut-off frequency of the last cell:

M * <F R ; R G - B S RT (14) 
The effective values of the number of R-C cells, , and : : ; are adjusted using [START_REF] Jaoul | Analysis of a failure mechanism occurring in SiGe HBTs under mixed-mode stress conditions[END_REF], and by taking into account the desired accuracy/complexity tradeoff. Finally, the terminal conductance ( is chosen to adjust the long term behavior of the model and the nature of the second interface on the other side of the spacer. In Figure 5 the Bode-like representation of normalized admittance $ % as a function of frequency is drawn using the quantities:

≃ H <FK and $ ≃ H K (15) 
We observe that all models have identical behavior for frequencies between and * following a J law, characteristic of diffusion. We observe that the R-C model fits well approximately for 4 decades using a 5 R-C cell network with a slight offset. Hence this 5-cell configuration was chosen as optimum (accuracy vs. complexity) for further analysis. 

Stress Conditions and Model Validation

While the new implementation ensures model validity under dynamic stress (Fig. 1), in this section, we test the versatility of the model under various aging conditions, close to the SOA of the transistors, through comparison between the aging model simulation and results of aging tests on three different advanced SiGe HBT technologies. We present the details of the extracted parameters pertaining to the model HiCuM-AL V2 in Table II for the SiGe HBTs under study.

Technology 1

Aging-tests were performed on SiGe NPN HBTs from Infineon Technologies [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Jacquet | Reliability of high-speed SiGe: C HBT under electrical stress close to the SOA limit[END_REF]. The DUTs of drawn emitter dimension 0.2×10 μm 2 exhibit peak fT/fMAX of 240/380 GHz and a BVCE0 of 1.3V. Details of the aging tests are presented in [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Jacquet | Reliability of high-speed SiGe: C HBT under electrical stress close to the SOA limit[END_REF]. For the validation of the new aging model, here we chose to illustrate with the stress conditions P2 and P3 (above 

Technology 2

The devices under test are NPN SiGe HBTs [START_REF] Chevalier | A 55 nm triple gate oxide 9 metal layers SiGe BiCMOS technology featuring 320 GHz fT/ 370 GHz fMAX HBT and high-Q millimeter-wave passives[END_REF] based on an advanced BICMOS 55nm technology from STMicroelectronics featuring devices with a drawn emitter size of 0.2×5 μm² in CBEBC configuration. Transistors featuring low breakdown voltages are studied and DC test structures have been submitted to aging tests for 120h. The bias condition (VCB=1.5V, JE=8mA/µm 2 , T=25°C as shown Fig. 7 (a)) are chosen above BVCEO to accelerate the degradation mechanism. In [START_REF] Jaoul | Analysis of a failure mechanism occurring in SiGe HBTs under mixed-mode stress conditions[END_REF], it was shown by a separation of the intrinsic and peripheral contributions of the base current that only the perimeter component is impacted by stress. This reaffirms that, alike technology 1 (and technology 3), the origin of the degradation mechanisms in these HBTs are in the B-E periphery, adhering to classical hot-carrier degradation physics. Next the model validation was extended under dynamic mixed-mode stress conditions, similar to what has been illustrated in Fig. 1. For this, HBTs from technology 2 were subjected to two mixedmode stress scenarios illustrated in Fig. 8: (i) in the first phase of duration 18h a C-B stress voltage of 1.5V has been applied followed by a higher stress bias of 2.2V for another 18h, followed by a final stress phase of 18h under a VCB of 1.5V (same as phase 1); (ii) in the first phase of duration 18h, a VCB stress of 1.6V has been applied followed by a higher stress bias of 2.1V for another 18h, followed by a final stress phase of 18h under a VCB of 1.6V. While the dynamics of the two cases are different due to different VCB values, in both cases a pseudo-recovery phase can be observed in the last 18h due to a reduction in the stress voltage compared to phase 2 under stress 2. Note that, even though for scenario (i) (in red) a higher VCB results in a higher degradation of IREpS in phase 1, due to a higher VCB in phase 2, scenario (ii) (in blue) shows a higher degradation of IREpS. In both cases the model simulation have been compared with the extracted IREpS values depicting very good model accuracy thus validating the model under dynamic operating conditions. 

Technology 3

The aging model was finally validated on SG13S IHP technology [START_REF] Rucker | A 0.13µm SiGe BiCMOS Technology Featuring ft/fmax of 240/330 GHz and Gate Delays Below 3 ps[END_REF] featuring transistors in BEC configuration with an effective emitter area of 8×0.16×0.52 µm 2 . Aging tests were performed under various mixed-mode stress conditions as presented in [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Fischer | Ageing and thermal recovery of advanced SiGe heterojunction bipolar transistors under long-term mixed-mode and reverse stress conditions[END_REF][START_REF] Fischer | Analysis and modeling of the longterm ageing rate of SiGe HBTs under mixed-mode stress[END_REF]. Corresponding stress bias conditions are presented in Fig. 9 highlighting a very large spectrum of aging tests allowing analysis of hot-carrier degradation governed by the two accelerating factors: VCB and JE. In all cases, aging tests were performed up to 1000h of stress time. For aging model validation, primarily a specific set of DC mixed-mode stress-conditions has been chosen among the cases illustrated in [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF]: a JE,stress of 0.12 mA/µm² under different VCB,stress (2.5, 2.75, 3 and 3.25 V). Figs. 10 (a) and (b) show the evolution of the IREpS parameter and the normalized excess base current (ΔIB/IB0) as a function of aging time. Initial simulation is performed using a foundry-generated scalable model card followed by re-simulations using extracted aging model parameters, for different aging intervals. Good agreement between model and measurement is observed for all stress conditions. Next, the model validation has been performed under dynamic mixed-mode stress conditions on technology 3. A specific DC mixed-mode stress condition was chosen as a reference for this analysis: IE,stress of 0.12 mA under a VCB,stress of 3V. The normalized excess base current (ΔIB/IB0) has been monitored over a period of 4000 s as shown in Fig. 11 (in blue). For the dynamic mixed-mode condition, both VCB and IE switch in an interval of 360s, between the initial (VCB,stress of 3V and IE,stress of 0.12 mA) and a high-current recovery phase (VCB,stress of

Extracted J E,stress =0.12 mA/µm Extracted @V BE =0.7V

@J E,stress = 0.12 mA/µm² @V CB,stress =

0V and a IE,stress of 5.2 mA at 3 times the current at peak-fT).

In case of dynamic stress, a significant recovery can be observed during the high-current phase (Fig. 11), owing to the annealing effect during this phase.

Compared to the DC case, the dynamic case shows a smaller overall degradation, while at the first stress phase (at identical stress bias) both cases coincide. 

Model Parameters

The general observation while extracting the aging model parameters is that forward rate constant, KF,I, increases with VCB,stress following an exponential dependence while JE,stress is kept constant, On the other hand, while VCB,stress is kept constant, KF,I demonstrates a peak value before starting to roll off. This is consistent with the behavior observed previously [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Fischer | Ageing and thermal recovery of advanced SiGe heterojunction bipolar transistors under long-term mixed-mode and reverse stress conditions[END_REF][START_REF] Fischer | Analysis and modeling of the longterm ageing rate of SiGe HBTs under mixed-mode stress[END_REF]. This has been explained by a decrease in the C-B electric field at the onset of the Kirk effect at such high stress current densities [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Fischer | Analysis and modeling of the longterm ageing rate of SiGe HBTs under mixed-mode stress[END_REF][START_REF] Wier | A physics-based circuit aging model for mixed-mode degradation in SiGe HBTs[END_REF], resulting in a reduction in ΔIB. An empirical expression is valid for KF,I similar to the one proposed in [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Fischer | Analysis and modeling of the longterm ageing rate of SiGe HBTs under mixed-mode stress[END_REF],

,^ 

On the other hand, we observe a very weak bias dependence of the parameter KR,I and its evolution is principally dominated by temperature. This has also been observed in our previous work [START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF] where much smaller values of the bias-related coefficients (CMM,R, µR, JEhc), had been extracted compared to that of KF,I. Hence we have modified this equation in the sense that KR,I is solely governed by junction temperature. Thus, the trap annihilation now follows an Arrhenius law, @J E,stress = 0.12 mA/µm 2 @J E,stress = 12 mA/µm Figure 12 shows extracted values of the generationannihilation rate constants (KF,I and KR,I) plotted as a function of the stress bias and inverse of temperature, respectively. Here, the values chosen to fit the KF,I in Fig. 12 (a) are CMM =7.8×10 -7 s -1 , degradation acceleration exponential factor μ0=2.75V -1 , empirical fit factor JEhc=155 mA/µm² and power exponent ε = -0.35. The activation energy, E0, can also be extracted (Fig. 12(b), shown for both the IHP and Infineon technologies), resulting in an identical value of 0.24 eV for all technologies. This is logically consistent to the fact that both technologies employ the same Si/SiO2 system, while the magnitudes differ due to a difference in device dimensions. Due to the diversity of stress conditions, many junction temperatures have been investigated allowing extraction of temperature dependence for the H + diffusion parameter DH. This parameter has a physical meaning since the diffusion of H + atoms is accelerated by the temperature regardless of the technology features. Figure 13 presents the extracted values of DH the three technologies under test plotted as a function of the inverse of junction temperature. It shows a general Arrhenius law [START_REF] Rucker | A 0.13µm SiGe BiCMOS Technology Featuring ft/fmax of 240/330 GHz and Gate Delays Below 3 ps[END_REF] for DH (Tj) with an excellent accuracy:

,^ exp o p q d r s (17) 
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exp p t /q d r u (18) with the activation energy EA and the hydrogen diffusion constant D0 at Tj=T0. The extracted parameter values are close to the values reported in [START_REF] Raghunathan | Bias-and temperature-dependent accumulated stress modeling of mixed-mode damage in SiGe HBTs[END_REF]. The temperature dependence of DH directly influences the parameters R1 and C1 following eq. ( 13) as well as the terminal conductance G. However, it requires an activation energy, E0, related to the trap features (similar to that of KR,I), to describe temperature dependence of the R-C network parameters similarly to [START_REF] Rucker | A 0.13µm SiGe BiCMOS Technology Featuring ft/fmax of 240/330 GHz and Gate Delays Below 3 ps[END_REF], as follows, 8 * 8 * exp p /q d r u , 9 * 9 * exp p /q d r u , and ( ( exp p /q d r u . [START_REF] Raghunathan | Bias-and temperature-dependent accumulated stress modeling of mixed-mode damage in SiGe HBTs[END_REF] We observe that all the new parameter values E0, R10 and C10 are identical regardless of the technology, which is consistent since they describe the same Hdiffusion dynamics of Si/SiO2 system. However, G0 changes from one technology to another since it is governed by the final trap number. Finally using eqns. ( 16)- [START_REF] Raghunathan | Bias-and temperature-dependent accumulated stress modeling of mixed-mode damage in SiGe HBTs[END_REF], we can now obtain a unique aging parameter set for each technology, as listed in table II, which is even more convenient from a design point-of-view. 

Conclusion

In this work, we have presented a new physical and accurate aging compact model implementation for modern SiGe HBTs based on the reactiondiffusion theory of hot-carrier degradation and a differential form of Fick's law of diffusion. The model implementation, although complex compared to its predecessor while employing additional transistor nodes in simulation, ensures invariance in time of the degradation characteristics. The aging model has been compared with long-term aging tests on various SiGe HBT technologies, yielding very good agreement thus confirming its accuracy and versatility. The proposed model formulation can easily be co-integrated with existing circuit design framework. With its strong physical basis, the proposed model can prove to be indispensable for ensuring stable circuit operation close to the SOA of the technology, through prediction of reliabilityaware circuit architectures. 

Fig. 1 :

 1 Fig. 1: Impact of variable stress condition on base current recombination parameter, IREpS, comparing the measurements, previous and newly proposed implementations.

Fig. 2 :

 2 Fig. 2: Schematic of the hydrogen diffusion model considering the interface between the base and the EB-spacer; L is the E-B spacer thickness.

Fig. 3 :

 3 Fig. 3: Organization of the R-D and Diffusion model implementation.

Fig. 4 :

 4 Fig. 4: R-C ladder network representing Hydrogen diffusion model. The node D0 is the input of the circuit. For an easier conversion to Verilog-A model, hydrogen flow density is presented as currents IN (ensuring conservation law) and hydrogen density as potential VN at node DN. The voltage at D0 is " 0, . The input current is # 0, . In frequency representation, introducing admittances $ % & # " ' ⁄ , we have the recurrence: $ % (

Fig. 5 :

 5 Fig. 5: Bode-like representation of normalized "Admittance" Ỹ(f)/Y0 of diffusion through oxide for the theoretical model (symbols, three cases according to second interface properties) and for the RC-ladder (lines) model for αR = 3 and N = 5; Arrows indicating the domain of validity.
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  Y 1 C = J? / I[ BVCE0 with VCE = 2V, JC =5 mA/μm2 and VCE = 3V, JC =1 mA/μm 2 , respectively)[START_REF] Mukherjee | Hot Carrier Degradation in SiGeHBTs: A Physical and Versatile Aging Compact Model[END_REF][START_REF] Jacquet | Reliability of high-speed SiGe: C HBT under electrical stress close to the SOA limit[END_REF]. Pre-stress parameter extraction were performed by an initial model calibration using a foundry generated scalable model card. Post-stress IREpS values have been extracted from the low-VBE region of the measured Gummel characteristics at each aging interval using the initial model card. Figure6(a) compares the evolution of IREpS under the two stress conditions, P2 and P3, between the aging model simulation and the extracted values (from measured forward Gummel characteristics), depicting good model accuracy.Once the accuracy of the principal aging model parameter, IREpS, is validated, Fig.6(b) compares the aging model simulation results with measurements for the Gummel plots under P2 stress condition at different stress intervals (0, 1, 3, 7, 72, 1000h) as a final model validation. Very good agreement between measurement and simulation at all aging times can be observed.

Fig. 6 :

 6 Fig. 6: Comparison between measurement and HiCuM-AL-V2 model simulation: (a) IREpS under P2 and P3 conditions, and (b) Gummel plots under P2 stress condition.

Fig. 7 (

 7 b) shows the evolution of the IREpS parameter under the stress conditions, JE,stress=8 mA/µm², and VCB,stress=1.5V comparing model simulation and extracted values from the measured Gummel plot, depicting a very good model accuracy. Next, in Fig.7(c), model simulation and measurements are compared for the evolution of normalized excess base current (ΔIB/IB0) with aging time, illustrating good model accuracy at VBE = 0.5 and 0.6 V. A final validation is performed through simulation of the Gummel plot (Fig.7(d)) employing both a foundry-generated scalable model card and the extracted aging model parameters, showing good agreement between the measurement and the simulation.

Fig. 7 :

 7 Fig. 7: (a) Aging test bias conditions for technology 2; Comparison between measurement and HiCuM-AL-V2 model simulation: (b) IREpS, (c) normalized excess base current and (d) Gummel plots at different aging intervals.
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Fig. 8 :

 8 Fig. 8: Evolution of IREpS for technology 2 under two dynamic stress conditions comparing the measurements (symbols) and HiCuM-AL V2 (line).

Fig. 9 :

 9 Fig. 9: Aging test bias conditions for technology 3.

Fig. 10 :

 10 Fig. 10: Comparison between measurement and HiCuM-AL-V2 simulation: (a) IREpS and (b) excess base current (ΔIB/IB0) under JE,stress of 0.12, mA/µm² for different VCB,stress.
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Fig. 11 :

 11 Fig. 11: Evolution of excess base current for technology 3 under

Fig. 12 :

 12 Fig. 12: Evolution of (a) KF,I for different VCB,stress and JE,stress and (b) KR,I as a function of the inverse of junction temperature.

Fig. 13 :

 13 Fig. 13: General form of the temperature dependence of the hydrogen diffusion parameter DH for the three technologies under test.
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TABLE I :

 I LIMIT CONDITIONS FOR HYDROGEN DIFFUSION MODEL

	Limit conditions Very thick oxide	I → ∞; @	0	$ %	' 0, 1 C = J?	⁄	'	0,

  The aging model simulation has been compared to both measurements depicting good model accuracy in either cases. While the degradation phases under both DC and dynamic stress conditions (e.g. the first 360s of both cases) show identical values of the rate constants, KF,I and KR,I, interestingly, the recovery phase shows an elevated value of the recombination rate constant KR,I, while the KF,I value diminishes.

	Due to the annealing effect in the recovery phase, the
	generation rate (KF,I) decreases and recombination
	rate (KR,I) increases owing to increased passivation of
	interface traps by the hydrogen at the elevated
	temperature. It is important to note the absence of
	significant recovery in both cases depicted in Figs. 1
	and 8 in comparison to that of Fig.11. This again
	affirms the fact that only with annealing or under
	temperature treatment the recovery can become
	significant in SiGe HBTs.

TABLE II :

 II AGING PARAMETERS FOR THREE SIGE HBT TECHNOLOGIES

	Tech	(s -1 ) CMM	µ

* J<FG -Hand 9 * M 8 *[START_REF] Scholten | The Relation Between Degradation Under DC and RF Stress Conditions[END_REF]