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Abstract 

An aluminum foam can be characterized by its architecture and by the solid phase’ 

microstructure. Our aim is to link the foam’s morphological and microstructural features with 

its mechanical properties thanks to X-ray tomography and finite element (FE). An approach 

combining X-ray tomography at different resolutions, image processing, and FE modeling was 

developed to take into account the influence of the intermetallics on the foam’s fracture. First, 

the samples were scanned with "local" tomography, where the specimen is placed close to the 

X-ray source. These images allowed for observing intermetallics. Then an in situ tensile test 

was performed in the tomograph to follow the sample’s deformation at low resolution. The 

images obtained from local tomography were processed to create one low-resolution image of 

the initial sample including details from high resolution. This was done by a series of 

thresholding and scaling of the high-resolution images. This image was used to generate a FE 

mesh. A FE input file was obtained thanks to Java programs associating the elements to the 

phases. At the local scale, the calculated stress distribution and the images of the struts were 

analysed. Our work confirms that the presence of inclusions can explain the fracture of struts.  
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Highlights  

 

- Iron-rich inclusions were identified in an aluminum foam in high-resolution images obtained 

with local tomography.  

- A tensile test followed by X-ray tomography showed that struts fracture mainly occurred in 

inclusions-rich regions.  

- The finite element model taking into account the inclusions was based on image processing 

of the high-resolution images. 

- The model with the inclusions resulted in local stress concentrations explaining the early 

fracture of some struts. 

 

1. Introduction  

Cellular metals have received more and more attention due to their unique combination of 

properties (i.e., lightness, shock and sound absorption) [1]. Aluminum cellular samples are 

particularly of interest due to the low weight and low melting point of aluminum alloys. Among 

them, Duocel® foam is an open-cell aluminum sample made of 6101 alloy. The relation between 

the architecture of this foam and its mechanical behavior was extensively studied in the 

literature [2, 3, 4, 5]. However only few studies [6, 7, 8] focused on the influence of the 

microstructural features of the solid phase on the mechanical properties of such foams. In the 

case of 6xxx Al alloys, the presence of Fe-rich intermetallic inclusions [7, 8] is known to 

possibly have an influence on the macroscopic behavior of porous aluminum foams. As an 

example, in situ tensile tests with scanning electron microscope (SEM) showed a brittle 

intergranular rupture in the struts containing Fe-rich precipitates [6].  

Cellular solids have been often studied thanks to X-ray computed tomography [9, 10, 11], a 
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non-destructive technique which provides 3D visualization and enables a 3D characterization 

of a sample. The architectural parameters (e.g., relative density, distribution of pores size) can 

be determined with 3D images having resolutions of few microns. The deformation of the 

samples can also be followed with this technique through in situ mechanical tests [12]. 

Moreover, the 3D images can be meshed to build finite element (FE) models [11, 13, 14, 15]. 

Recently, 3D microstructural characterization at a higher resolution was made possible using 

the so-called "local tomography" mode [16, 17]. In this mode, the sample is placed near the X-

ray source and a high-resolution image of the irradiated part of the sample is obtained. These 

high-resolution images can be analysed to characterize the mechanical behavior of the samples, 

especially the initiation and the propagation of cracks [16]. This approach has been developed 

initially for the study of the tensile fracture of Duocel foams. The authors noticed the link 

between the presence of inclusions and the fracture of the slightly loaded struts [17]. 

The aim of this paper is to refine this first approach by building a FE model including the 

microstructural features of the Duocel foams obtained from local tomography. Our work is 

based on the use of X-ray tomography at two scales, i.e., at two resolutions. A Duocel foam was 

characterized thanks to local tomography, enabling to observe the Fe-rich inclusions. Then an 

in situ tensile test was performed in the tomograph. Compression test is often chosen for 

metallic foam to study the capacity of these samples to absorb energy [1, 2, 5]. But, the fracture 

behavior of these materials is also of interest. In this work, a tensile test was chosen to follow 

the progressive fracture of the foam and to make the link with its microstructural features. 

During the test, the sample was scanned at a low resolution. Finally, the high-resolution images 

obtained from local tomography were processed to create a FE model at low resolution, 

including the presence of the inclusions in the calculation. The comparison between high and 

low-resolution 3D images finally shows that the struts’ fracture mainly occurs in the inclusion-

rich regions. The stress fields calculated by FE taking into account the inclusions enable us to 
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explain the fracture of some struts in which no architectural feature was found. 

  

2. Material and methods 

2.1. Material 

The Duocel foam considered in this study is an open-cell aluminum foam kindly provided by 

ERG Aerospace (Oakland, CA, USA). Its composition, as determined by inductively coupled 

plasma atomic emission spectroscopy by Zhou et al. [18], is presented in Table 1. The Duocel 

foams are fabricated by investment casting as described in detail in [19]. An open-cell 

polyurethane foam is first infiltrated by a ceramic slurry. After heat treatment, a porous ceramic 

having the negative shape of the polyurethane foam is obtained. Then the pores of the ceramic 

are infiltrated by liquid aluminum. After removal of the ceramic by pressurized water, a porous 

metallic sample is obtained and is a replication of the initial polyurethane foam. After 

fabrication, the Duocel foams were heat treated by ERG with a T6 strengthening heat treatment: 

the samples were first heat treated at a temperature of 527°C for 8 hours and then quenched in 

water at room temperature. Finally, they were aged at 177°C during 5 hours.  

Al Mg Si Fe Cu Zn B Mn Others 

99.3 0.2-0.29 0.2-0.25 0.1-0.14 0.03 0.01 0.03 0.01 - 

Table 1: Chemical composition of the Duocel foam (wt %) [18] 

 

A square prism shaped sample (thickness: 4.1 mm, width: 9.6 mm, and height: 22 mm, 

dimensions referred hereafter as in directions 1, 2 and 3 respectively) was cut from a foam 

block.  The thickness was the thickness of the initial foam block. The width and the length were 

imposed by the tensile loading device, which will be described in the next section. The entire 

approach developed in this paper, from the in situ testing to the FE modeling was applied to 

this sample, used for illustration in the paper. This is due to the difficulty to reproduce this time-

consuming approach for a large number of samples. Therefore, our goal was to develop a 
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qualitative approach to determine the influence of artificial defects on the macroscopic behavior 

of scaffolds. 

 

2.2. Characterization by X-ray tomography 

A laboratory X-ray tomograph (Phoenix vTomeX / X ray, Germany) located in the MATEIS lab, 

described in detail in [12] was used. It operated at a voltage of 80 kV and an intensity of 280 

µA with no filtering on incident X-rays. The spot size of the source was approximately 1 µm in 

these conditions. The detector (Varian Paxscan) has an active surface of 200 x 250 mm with a 

matrix of 1920 x 1536 pixels (pixel size 127*127 µm2). Each scan was performed with the 

following conditions: 900 projections, scan timing of 333 ms for each angular position. The 

distance from X-ray tube to the detector is 577 mm. The 3D final images were reconstructed 

thanks to a standard filtered back projection algorithm implemented in the software coupled to 

the tomograph [20]. Firstly, the whole sample was scanned at a low resolution (20 µm per 

voxel). In this configuration, the X-ray tube/object distance was 90.8 mm. Then high-resolution 

3D images (voxel size of 3 µm) were obtained thanks to local tomography. In that experiment, 

the sample was placed near the X-ray source and only a part of the sample was irradiated by X-

rays under all the viewing angles. The X-ray tube/object distance was then 13.6 mm. Some 

authors proved that high quality images can be obtained in this mode when the sample is 

homogeneous outside of the field of view of the detector [13, 16]. It was observed that the 

images reconstructed by local tomography have a lower signal to noise ratio than in 

conventional tomography. However, due to their low density, porous samples are particularly 

adapted to local tomography [17]. After the high-resolution scan of the irradiated part of the 

sample, it was necessary to physically displace the specimen on the rotating stage to scan 

another part of the sample. Finally, 18 3D images, each representing a different region of the 

sample were acquired to have a full description of the sample at high resolution. 
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After the initial characterization, the sample underwent an in situ tensile test in the tomograph. 

For this purpose, a custom-made device described in [17] was inserted on the rotating stage. 

This device is shown in Fig. 1 as unmounted. First, the sample was glued to two screws, the 

alignment of the screws was maintained thanks to a device designed for this purpose. Then, the 

sample was screwed to two grips (Fig. 1, arrow 1). The upper grip was attached to a force 

sensor. The set {force sensor, grips and sample} was placed into an aluminum tube (Fig. 1, 

arrow 2). This tube has an inner diameter of 15 mm and a thickness of 1 mm. It does not affect 

the reconstruction because it is almost transparent to the X-rays. The inner diameter of the tube 

imposed to have a sample’s width lower than 10 mm. Then, the aluminum tube containing the 

set {force sensor, grips, and sample} was attached to the driving axis of the motor (Fig. 1, arrow 

3). Finally, the assembly was placed onto the rotating stage in the tomograph. The length of the 

sample was imposed by the entire length of the device to scan the entire sample. A uniaxial 

tensile test was applied: the vertical displacement of the lower grip was applied by the motor 

via a custom-made software with a speed of 0.01 mm.s-1. The displacement of the upper grip 

was totally constrained. The reaction force was measured as a function of time by the force 

sensor and recorded by the software. The test was interrupted fifteen times to scan the sample 

at different applied strains with the same voltage and intensity as for the initial characterization 

and using a voxel size of 20 µm (referred to hereafter as "low-resolution"). The mean applied 

strain at different loading steps was determined from the displacement obtained from the 

comparison of the images of initial and deformed states. It was calculated relatively to the total 

height of the initial sample. Between two interruptions to scan the sample, the linear applied 

displacement varied between 0.13 and 0.4 mm (i.e., between 7 and 20 voxels with a voxel size 

of 20 µm). This corresponds to incremental strains between 0.6% and 1.8 %. To calculate the 

mean engineering stress, the applied force was simply divided by the initial section of the 

sample. The logarithmic differential method was used to calculate the uncertainties on the 
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stress, taking into account an uncertainty of 2 N for the force and 0.05 mm for the sample’s 

dimensions.  

 

 
Fig. 1: Loading device used to load the sample (the arrows indicate the different steps to mount 

the device) 

 

To complete the characterization of the microstructure by X-ray tomography, some struts of 

aluminum foam were scanned with another tomograph operating at higher resolution (Easy Tom 

Nano, RX Solutions, France, equipped with a Hamamatsu X-ray tube and a Hamamatsu 

detector). In this case, different struts were cut from a foam block and scanned. Higher 

resolution images of these particular struts with a voxel size of 0.4 μm were obtained without 

using local tomography. The scans were made using a voltage of 60 kV and an intensity of 150 

µA.  

2.3. Image processing steps 

As previously mentioned, the 18 high-resolution 3D images of the initial sample were acquired 

and then processed with the ImageJ software [21]. ImageJ is a public domain, open-source Java-

based software for image processing and analysis and is extensible via plugins and macros. 

1 

2 3

3 
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Image processing steps described below were performed on reconstructed volumes. First, the 

quality of each volume was improved by the adjustment of contrast and brightness and by the 

application of median filtering over neighbours of two voxels. Fig. 2a shows a slice of a high-

resolution 3D image after treatment. Next, two thresholding operations separated the three 

different phases: voids, aluminum matrix and intermetallic inclusions (see Fig. 2b). At this 

stage, it could have been possible to stitch the 18 volumes together to obtain a high-resolution 

3D image of the whole sample. However, the result would have been a large volume which 

could not be easily used for analysis and FE modeling. Instead, each thresholded image was 

down-scaled to change its voxel size from 3 to 20 µm. The segmentation made at high resolution 

was preserved after scaling as shown in Fig. 2c. However, scaling blurred the images by 

spreading out the grey levels around the initial value especially at the interface between the 

phases. Thus, a second thresholding was made using a conservative value of the grey level to 

make sure that no inclusion was lost during this step (Fig. 2d). The 18 initial high-resolution 

3D images (Fig. 2a) were transformed into 18 low-resolution thresholded 3D images. Finally, 

these tomograms were stitched together until the image of the whole sample was created. It 

must be clearly stated that the second thresholding step results in a non-physical increase of the 

size, thus of the volume fraction of intermetallics (see Fig. 2b and 2d). For this reason, the final 

3D image should be considered as "containing the information" of the presence of the inclusions 

in different locations inside the sample, rather than actually describing their morphology in 

detail. 
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 (a)                                                                          (b) 

 
                                 (c)                                           (d) 

Fig. 2: (a) Slice of a local tomography 3D image of a part of the foam (voxel size: 3 µm): pores 

in dark grey, aluminum in medium grey and inclusions in light grey, (b) the same slice after 

thresholding into three different phases (voxel size: 3 µm): pores in black (grey level of 0), 

aluminum in white (grey level of 255) and inclusions in grey (grey level of 128), (c) the slice 

after scaling (voxel size: 20 µm): pores in black, aluminum in white and inclusions with a 

gradient of grey and (d) the down-scaled slice after the second thresholding (voxel size: 20 µm) 

 

2.4. Image analysis 

The final 3D image of the initial sample (Fig. 2d) was used to quantify the sample’s architecture 

using Java programs implemented in ImageJ software. Three parameters were calculated to 

characterize the scale of the architecture: the relative density and its variation in the sample, the 

pore size distribution and the strut size distribution. For highly porous materials, 3D data are 

needed to obtain a complete characterization. The principle of these quantifications is described 

in [22]. We give here below a brief summary of this procedure.  

The relative density was determined as the ratio of the number of voxels belonging to the solid 

phase (i.e., white voxels in the thresholded 3D images) as compared to the number of voxels in 
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the entire volume. Moreover, the local variations of density in the sample are given by plots of 

the relative density in each slice as a function of the slice position in a given direction. Three 

plots are obtained, each corresponding to one direction. For comparison, the geometric relative 

density of the sample was also determined from the weight and the dimensions of the samples, 

considering a density of 2.7 g.cm-3 for the fully dense aluminum alloy. The uncertainty on this 

measurement was calculated considering the uncertainties in the measurements of the scale and 

of the caliper. 

The reconstructed volume was also used to measure the characteristic size distribution of each 

phase (i.e., solid and voids). The method used in this work can be considered as a virtual 

granulometry technique and is comparable to sieving of a powder [22]. It consists in the 

application of a sequence of three-dimensional erosion and dilation operations to the phase of 

interest. The sequence is repeated with increasing size of the structural element, spherical in the 

present study. A histogram was obtained giving the amount of the phase as a function of the 

structural element size. This operation was applied to the voids and the solid phase to obtain 

the pore size and the strut size distributions. Because the sample is an open-cell foam, the 

characteristic size of the solid phase is described in terms of strut size. We also applied this 

technique to the 3D images of single struts (voxel size of 0.4 μm) to measure the inclusion size 

distribution. 

 

2.5. Building of the FE model 

First, the solid phase (i.e., intermetallics and aluminum) was meshed using Avizo 8 software 

with 1 228 000 tetrahedral elements having an average edge size of 76 µm. Because the goal of 

this study was to take into account the inclusions on the fracture properties, the calculation was 

performed with the finest mesh which could be used in relation with the computer capacity 

(Dell, Intel Xeon, RAM 100 Go). That is why no specific convergence study was performed in 
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this work, dedicated to the comparison of calculations including or not the presence of 

inclusions. To mesh the volume, the first step consisted of the generation of a surface meshing. 

A triangulated closed surface separating the volume from the voids was obtained thanks to a 

marching cube algorithm [23] implemented in Avizo [24]. After different steps of optimization 

of the triangulated surface, the three-dimensional mesh was created by the advancing front 

method implemented in Avizo [25]. The 3D mesh generated by Avizo was made of tetrahedra 

with four nodes (at each corner).   

Then, the Avizo generated mesh had to be transformed into an input file readable by Abaqus. 

The presence of the intermetallics in the solid phase had to be taken into account in the model. 

For this purpose, a special Java program was developed to create an Abaqus input file. This 

procedure is similar to what was done in [26] to model a fatigue test of a stainless steel hollow 

sphere structure by associating each shell element of a mesh to the local thickness of the hollow 

spheres. The Java program first calculated the barycentre coordinates of each tetrahedral 

element of the mesh. Then it associated each element to the grey level located at its barycentre 

as indicated in the tomographic image. As the grey level represented a specific phase (i.e., 128 

for inclusions and 255 for aluminum), each element was associated to a phase. Therefore in the 

Abaqus input file, two element sets were defined: one for elements corresponding to the 

aluminum phase and the other for elements corresponding to the inclusions or to a zone 

containing inclusions. Some inclusions could be larger than 76 µm, the size of the elements. 

Some elements could be then associated to an inclusion whereas they correspond to a zone 

containing inclusions and aluminum matrix. Each element set was subsequently associated to 

one of the two material behaviors described in the following section. A second calculation was 

performed as a reference neglecting the presence of the inclusions: for this, all the elements 

were considered as having the constitutive law of the aluminum matrix.  

The two calculations were made from these two input files readable by Abaqus and containing 
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all the information required. The element type used was first-order tetrahedral element with 

linear interpolation. For this type of element, the degrees of freedom are the translations. They 

are fully integrated elements (i.e., there is one point of integration). The FE analysis, performed 

with Abaqus/Explicit, was a dynamic and nonlinear analysis due to the nonlinearity of the 

material constitutive law (see section 2.6). The total volume of the sample tested experimentally 

was meshed and used for the calculation. To reproduce the experimental conditions in the FE 

model, a positive displacement equivalent to the vertical displacement reached during the in 

situ test was applied to the nodes on the top surface of the sample. On the bottom face, the nodes 

were totally constrained. The stress was calculated making the sum of the reaction forces at 

each node of the top face divided by the section of the sample. The strain was calculated 

dividing the displacement of the top face by the total height of the initial sample. The presence 

of the glue in the experimental device was not taken into account in the modeling because the 

zone of interest (i.e., where the fracture occurred) is far from the sample’s borders.   

 

2.6. Material constitutive laws defined in the FE model 

For the aluminum matrix, an elasto-plastic behavior was considered and was identified from 

the work of Zhou et al. [27] (Fig. 3). The main mechanical properties were a Young's modulus 

of 70 GPa, a Poisson's ratio of 0.3, a yield strength of 192.5 MPa and an ultimate tensile strength 

of 205.3 MPa.  
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Fig. 3:  Engineering stress/engineering strain curve of the 6101 aluminum alloy used to model 

the aluminum phase in the FE model (plot built from data from [27]) 

 

The damage behavior of the sample was modelled using the "Metal porous plasticity" model 

from Abaqus material library. This behaviour is based on Gurson-Tvegaard-Needleman (GTN) 

model [28, 29]. For ductile materials, the damage mechanism is linked to the nucleation, growth 

and coalescence of voids. The Von Mises yield condition Φ is thus modified by the introduction 

of a variable defining the volume fraction of pores. Gurson [28] proposed a yield condition 

which was later modified by Tvegaard and Needleman [29] (equation (1)): 

𝛷 =  (
𝜎𝑒𝑞

𝜎𝑦
)

2

+ 2 𝑞1𝑓𝑐𝑜𝑠ℎ (−
3

2

𝑞2

2

𝑝

𝜎𝑦
) − 1 − 𝑞3𝑓2 = 0                                                            (1) 

where σeq is the Von Mises equivalent stress, p is the hydrostatic stress, σy is the yield stress of 

the fully dense material,  f is the volume fraction of pores in the materials and q1, q2 and q3 are 

fitting parameters. f is generally considered as lower than 0.1 in Abaqus [30]. The values 

generally reported in the literature for metallic alloys for q1, q2 and q3 are 1.5, 1 and 2.25 

respectively (q3 = q1
2) [31]. 

The model implemented in Abaqus assumes that nucleation rate increases with plastic strain 

rate following equation (2) proposed by Chu et al. [32]: 

𝑓̇ =  𝐴𝜀̇pl
eq                                                                                                                                 (2) 
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where ḟ is the nucleation rate, 𝜀̇pl
eq is the plastic strain rate, and A is a proportionality coefficient 

which follows the normal distribution given by the equation (3): 

𝐴 =
𝑓𝑁

√2𝜋 𝑠𝑁 
exp [−

1

2
 (

𝜀𝑝𝑙−𝑠𝑁

𝑠𝑁
)]                                                                                                  (3) 

where εN is the mean value of the normal distribution, sN is the standard deviation of the normal 

distribution, and fN is the volume fraction of nucleated voids. The following values are generally 

reported in the literature for metallic alloys: εN = 0.3, sN = 0.1 and fN = 0.04 [30, 33]. 

No data were found in the literature to describe the mechanical behavior of the elements 

containing inclusions. Nanoindentation was therefore performed in several inclusions to 

estimate the Young's modulus of the inclusions, using a G200 apparatus (Agilent Technologies, 

USA) equipped with a Berkovich tip. A series of 10 indents was made with a speed of 10 nm.s- 1, 

a dwell time of 10 s and a maximum penetration depth of 300 nm. The Young's modulus was 

determined thanks to the Oliver-Phar method [34]. Before the measurements, the precise 

location of the tip was calibrated by indenting a fused silica reference sample. This depth was 

chosen to characterize only the inclusions (having a size between 20 and 120 μm). A Young's 

modulus of 160 GPa was determined and used in the FE model. An elasto-plastic constitutive 

law obtained from the one of the aluminum phase (Fig. 3) was assumed. The values of stresses 

were arbitrarly multiplied by 1.5 and the values of strains were divided by 1.5 to obtain a slightly 

stronger and less ductile behavior than the one of aluminum. For the damage behavior, the same 

values of the criterion were used for the aluminum phase and the inclusions. 

In this simulation, two materials models were defined: one for the aluminium matrix and one 

for the inclusions. The interfaces between the two phases were assumed to be perfect. 

 

3. Results 

3.1. Architecture of the sample 

Fig. 4 presents a 3D image of a typical cell of a Duocel foam showing its polyhedral shape. The 
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cells are made of struts connected by nodes. The elongation of the cell in a preferred direction 

during processing is also visible.   

 
Fig. 4: 3D image of a cell of a Duocel foam, the red arrow indicates the direction of the 

elongation of the cell 

 

The sample is characterized by a geometric density of 0.090 ± 0.004. Fig. 5 presents the 

variation of relative density along the three directions obtained by 3D image analysis. The 

relative density in each direction is 0.07 ± 0.02, which is a bit lower than the measured apparent 

density. The difference can be related to the modifications of the image caused by the resolution 

of the images. During thresholding, some voxels at the interface between the phases can be 

assigned to the air whereas they belong to the solid phase or inversely. An error on few voxels 

leads to a larger error on the measurement of the volume fraction of a phase, especially for the 

thinnest struts [35]. The variations of relative density are similar along the three directions, 

highlighting a random distribution of pores in the sample.  
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Fig. 5: Relative density in slice profiles along the three main directions of the sample obtained 

from tomographic image analysis  

 

Struts and pores size distributions as determined by the granulometry technique are presented 

in Fig. 6a and 6b. The struts have a size between 100 and 500 µm with two main peaks around 

200 µm and 360 µm generally associated to struts and nodes between struts respectively. The 

pore size ranges between 500 µm and 2.5 mm with the highest peak at 2.16 mm.  

 

 

 

 

 

 

 



 

17 

 
                            (a) 

 
                            (b) 

Fig. 6: (a) Strut size and (b) pore size distributions measured by the granulometry technique 

applied respectively to the solid phase and the voids of the thresholded 3D image 

 

3.2. Characterization of the solid phase 

Local tomography images with a voxel size of 3 µm enable to reveal the presence of Fe-rich 

rounded inclusions in the matrix as found in the literature (see Fig. 7a). The strong contrast 

between the inclusions and the aluminum matrix indicates that the inclusions contain at least 

one element heavier than aluminum. Fig. 7b presents a slice of a higher resolution 3D image 

(voxel size of 0.4 µm) obtained on a single strut. Elongated particles are also present in the 

sample in the same quantity as the rounded ones. These latter ones have been already observed 

along the grain boundaries in ERG aluminum foams [6, 27].   
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(a)                                                                                            (b) 

Fig. 7: (a) Slice of a high-resolution image of a strut with local tomography showing 

intermetallic inclusions (voxel size of 3 µm) and (b) higher resolution image (voxel size of 0.4 

µm) showing an elongated inclusion 

 

The inclusion size distribution (Fig. 8) determined with the highest resolution images of single 

struts (Fig. 7b) is between 10 and 160 μm. This distribution is explained by the different shapes 

of the inclusions. Observation of the tomographic slices (Fig. 7) proves that the rounded 

inclusions have a size of around tens of microns and the elongated ones have a length of 

hundreds of microns and a thickness of less than 10 μm. The volume fraction of inclusions in a 

single strut is 0.06 ± 0.02 %. The value was calculated from four high-resolution 3D images of 

single struts. The standard deviation is high because the number, shape and size of inclusions 

are variable from one strut to another.  
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Fig. 8: Inclusion size distribution measured by the granulometry technique on the 3D image of 

single struts  

 

3.3. In situ tensile test 

The sample was tested in uniaxial tension along the direction 3, parallel to the cell elongation. 

The mechanical properties of the sample as determined from the stress/strain curves are the 

following ones: Young’s modulus of 135 MPa, and ultimate tensile strength of 1.54 MPa. The 

experimental values of Young's modulus and tensile strength are in the range of those obtained 

in the literature. The experimental tensile stress/strain curve of the sample is given in Fig. 9: 

each point of the curve represents a strain at which the test was stopped to perform a scan. Error 

bars represent the uncertainties on the engineering stress calculated from the uncertainties on 

the load measurement. It is typical of a porous metallic sample with an elastic part followed by 

a plastic domain. Once the ultimate tensile strength is reached, the stress gradually decreases, 

due to the progressive rupture of the struts which reduces the effective number of struts carrying 

the load.  
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Fig. 9: Tensile engineering stress/engineering strain curve of the sample (error bars represent 

the uncertainties in the load measurement) 

 

Fig. 10a to 10c present a part of the sample at increasing applied strain during the tensile test. 

The images show the progressive alignment of the struts in the tensile direction (direction 3, 

see the black arrows in Fig. 10) and the progressive fracture of struts with increasing applied 

strain. The comparison of the images of the deformed sample and of the initial sample at high 

resolution enables to check the presence of inclusion in the broken struts. The broken struts 

were found by manual inspection of the 3D images of the deformed sample. It was found that 

20 out of the 25 broken struts contained an inclusion located in the fracture path. It is not 

possible to treat in detail the 25 broken struts. Therefore, it was decided to focus on four broken 

struts, which are pointed out by red rectangles in Fig. 10.  
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(a)                                                                           (b) 

 
(c) 

Fig. 10: 3D image of the sample during the in situ test (voxel size of 20 µm): (a) at initial state, 

with no applied strain, (b) at an applied strain of 4.4 % and (c) at an applied strain of 5.7 %. 

The black arrows point out one strut which undergoes a progressive alignment in the tensile 

direction. 

 

These four broken struts are presented in Fig. 11. Fig. 11a and 11b show one of the first struts 

to break (Fig. 11a) in which no inclusion can be detected (Fig. 11b). In this case, the favourable 

orientation of the strut is responsible for its early fracture. The three struts shown in Fig. 11c 

(one strut) and 11e (two struts) also broke at the beginning of the tests. However, they were all 

inclined relatively to the loading direction. These fractures are therefore difficult to link with 

architectural features. In the three cases, the corresponding high-resolution 3D images (Fig. 11d 

and 11f) show the presence of inclusions at the location of the fracture of the struts.  In Fig. 11c 

and 11d, the strut broke at one of its extremity and not in its thinnest section. At the exact 
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fracture location, an inclusion is present along the strut thickness (see the white circles in the 

images). In Fig. 11e and 11f, a big inclusion runs along the upper part of the strut on the left 

side and is present in the whole strut thickness. The strut rupture occurred where the inclusion 

was slightly less thick (see the white circles in the images). The strut on the right side broke at 

the location of a small inclusion which is not centred relatively to the strut thickness (see the 

white dotted circles in the images). In the three latter cases, these inclusions then appear to be 

clearly responsible for the fracture of the struts. 

 
(a)                            (b)                                                    (c)                             (d) 

 
                                 (e)                             (f) 

Fig. 11: (a, c, e) Magnified views of different broken struts localized by red rectangles in Fig. 

10b and 10c (voxel size of the images: 20 µm): these struts fractured at an applied strain of 

4.4% (a, e) and 5.7 % (b), (b, d, f) same struts from the image of the initial sample (voxel size 

of 20 µm, obtained thanks to the image processing from local tomography described in section 

2.4) showing the inclusions in red: (b) no inclusion is present in the broken strut and (d, f) 

inclusions are present in the struts, at the fracture location. In Fig. 11c, 11d, 11e and 11f, circles 

represent the zones where the struts broke. 

 

3.4. FE modeling 
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Fig. 12 reports the experimental and the two numerical stress/strain curves considering or not 

the presence of the inclusions. The calculated stress/strain curve with aluminum only 

reproduces well the shape of the experimental curve. This means that the elasto-plastic behavior 

and the Gurson-Needleman-Tvegaard model seem to be adapted to the Duocel foam behavior. 

The calculated Young's modulus (266 MPa) is overestimated in comparison with the 

experimental one (134 MPa). This overestimation has already been observed with FE modeling 

of cellular materials [26, 36, 37] and will be discussed in the next section. An experimental 

point around a strain of 1% would have been interesting as a supplementary information to 

compare the experimental and calculated curves. The calculated curve determined from the FE 

model with the inclusions has the same general shape as for the calculation with pure aluminum 

alloy but it is shifted to higher stresses. The Young's modulus of this curve (305 MPa) is slightly 

higher than the one obtained with the previous calculation.  

 
Fig. 12: Experimental and calculated stress/strain curves: the curve "FE - Only aluminum 

phase" refers to the FE calculation which takes into account only the aluminum phase and the 

curve "FE - Aluminum & inclusions" refers to the FE calculation including the intermetallic 

inclusions 

 

Fig. 13 presents the calculation of the stress field (normal stress in the loading direction) in the 

struts shown in Fig. 11a, 11c and 11e. Fig. 13a and 13b correspond to the strut shown in Fig. 
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11a whereas Fig. 13c and 13d correspond to the strut shown in Fig. 11c. For the strut shown in 

Fig. 11a, the FE calculation without inclusions (Fig. 13a) confirms that this strut broke mainly 

due to its alignment in the loading direction. The calculation taking into account the inclusions 

(Fig. 13b) gives similar stress fields. Maximum stresses appear where the strut section is 

reduced. The strut presented in Fig. 11c is not favourably aligned in the tensile direction and no 

local reduction in the section is detected. The FE calculation without consideration of the 

inclusions (white circle in Fig. 13c) does not show a stress concentration at the location of the 

fracture of the strut. Thus, it confirms that the architectural features of the foam are not sufficient 

to explain the rupture of this strut. The stress distribution determined using a specific 

constitutive law for the inclusions (white circle in Fig. 13d) shows a stress concentration around 

the inclusion at the location of the fracture of the strut. Fig. 13e and 13f show the case of the 

two struts shown in Fig. 11e. In these two cases, the calculations with inclusions result in 

important modifications of the stress fields (see white circles). High stress concentrations are 

found in the vicinity of the inclusions, which can explain the struts’ fracture.   
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(a)                                                                                                      (b) 

 
(c)                                                                                                      (d) 

 
(e)                                                                                                      (f) 

Fig. 13: (a) and (b) Normal stress σ33 contours predicted for the strut shown in Fig. 11a by the 

FE models (a) without and (b) with inclusions, (c) and (d) normal stress σ33 contours predicted 

for the strut shown in Fig. 11c by the FE models (c) without and (d) with inclusions, (e) and (f) 

normal stress σ33 contours predicted for the struts shown in Fig. 11e by the FE models (e) 

without and (f) with inclusions. In Fig. 13c, 13d, 13e and 13f, circles are placed at the same 

location as in Fig. 11. For all figures, the loading is applied along direction 3. 
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4. Discussion 

A previous study proved the possibility to observe microstructural features thanks to local 

tomography in aluminum foams [17]. This work confims the relation between the location of 

these features and the fracture of some struts. In addition, tomography images have been 

processed to build a FE model. For this purpose, different image processing steps were 

developed to create a low sized image from the high-resolution images. This allows for using 

this low sized image as an input for FE meshing. However, the image scaling step overestimates 

the inclusions size and volume fraction. Consequently, the morphology and size of the 

inclusions are not precisely described by the low sized image. Moreover, the voxel size of 3 μm 

reached with the local tomography does not enable to distinguish the different inclusions: all of 

them have the same grey levels. 

The calculated Young's moduli are higher than the experimental one (fig. 12). Caty et al. [26] 

also noticed this overestimation and pointed out the presence of different defects in the solid 

phase such as some pores as a possible reason. Otherwise, the choice of the material constitutive 

law can explain the phenomenon. An elasto-plastic law of a bulk 6101 aluminum alloy was 

used to model this sample. But, Zhou et al. [27] performed in situ tensile tests of Duocel foam 

struts in a SEM. In particular, they obtained a lower Young's modulus than the one of the 

aluminum bulk alloy. These tests tend to indicate that the mechanical behavior of an aluminum 

strut is different from that of an aluminum bulk alloy. The authors related it to some differences 

of microstructure (i.e., chemical composition and type of inclusions) in the aluminum struts and 

in the bulk alloy. It can also be noted that the small size of the tested struts can explain their 

results. The measurement of the cross sectional area of a strut is also delicate easy. For these 

reasons, we preferred using the data of a bulk alloy. Moreover, the measured weight fractions 

of the alloying elements (and especially of Mg and Si) in the foam are low compared to the 

nominal composition of the 6xxx alloys [18]. It is possible that the elasto-plastic law of a bulk 
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6101 alloy is not the most adequate behavior for this sample. Performing different calculations 

with different elasto-plastic constitutive laws for aluminum alloys would be necessary. 

The experimental plastic domain is well reproduced by the FE model which does not take into 

account the inclusions (Fig. 12). It indicates that the choice of the material behaviors (i.e., 

elasto-plastic law combined with a GTN model) enables to model the tensile test of this sample. 

However, an optimization of the parameters (especially for the GTN model) is still needed to 

understand better their respective influence on the calculations. The calculated macroscopic 

stress is increased when the inclusions are present in the model. It is due to the constitutive law 

chosen for this phase. In the absence of data from the literature, we "built" a constitutive 

stress/strain law from the one of aluminum. For simplicity, we used the same Gurson parameters 

for the elements containing inclusions. A better choice would have been to promote damage in 

these elements. Gurson's model being mostly deformation-driven, damage is obviously 

underpredicted in these elements in our model compared to reality. A deeper study would be 

necessary to test different damage behaviors for this phase or to characterize better the 

mechanical properties of the inclusions. 

The analysis of the local stress distributions given by the FE calculation brings important 

information to explain the local struts fracture. The local stress distributions obtained by the 

two calculations are different. It allows for explaining the fracture of some struts for which no 

architectural feature was found (Fig. 13b and 13d). The analysis of the 3D images and the stress 

distributions in the struts evidence the importance of taking into account the two characteristic 

scales of the cellular samples (i.e., mesoscale and microscale).  

It is important to note that the approach presented here is more qualitative than quantitative. To 

perform calculations with a reasonable time, the image was meshed with tetrahedra having an 

average size of 76 μm. This size is slightly high compared to the inclusions size (between 10 

and 160 μm, Fig 8). As already mentioned, the image processing steps artificially increase the 
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inclusions size and volume fraction in the final image. As explained in section 2.6, when 

associating an element to a grey level of the image, each element is represented by its 

barycentre. For these reasons, some elements may be associated to the inclusions although they 

physically correspond to zones containing both inclusions and aluminum matrix. 0.3% of the 

elements were associated to the inclusions whereas the volume fraction of inclusions in the 

struts was evaluated to 0.06%. This large difference could be partly corrected by a refinement 

of the mesh, but it would be detrimental to the duration of the calculation. Scanning the initial 

samples at higher resolution would also bring a finer characterization of the inclusions shape 

and size. The high-resolution scans of the struts (Fig. 7b) show that a scan with a voxel size 

smaller than 1 μm can provide a precise characterization of the inclusions size and morphology. 

In the model presented here, the tetrahedra are separated in two groups, i.e., the ones associated 

to the aluminum phase and the ones associated to the inclusions. This means that all the 

inclusions are modelled by a unique material behavior. However, a careful examination of the 

high-resolution 3D images shows that slight variations of grey levels appear in some inclusions 

(Fig. 14a), which are related to a local difference of volume fraction or of composition of 

inclusions. This can be preserved in the thresholded 3D image by a series of different 

thresholding. This resulted that thresholded 3D image would contain a gradient of grey levels 

to describe the inclusions (Fig. 14b). By assigning a different material constitutive law to each 

grey level, it would be possible to obtain a finer description of the sample behavior. Higher 

resolution images and characterization of the local properties of the inclusions could also result 

in a classification of the inclusions according to their chemical composition. Different types of 

Fe-rich inclusions have already been identified in the AlMgSi alloys [6, 7, 8], that could be 

taken into account in the model. 

Our approach needs to be validated with experimental data at local scale to better characterize 

the local constitutive laws of the different phases considered. Some authors have already 
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performed local mechanical tests on aluminum foams [6, 27] or on FIB-machined samples in 

fibers of 10 µm diameter [38], smaller than the inclusions found in the present study. To go 

further, it could be possible to perform in situ tensile tests of a single strut using our approach. 

The use of Digital Image Correlation could also improve our approach to evaluate the strains 

in the struts and to compare it with simulated ones [39, 40].  

 
(a)                                                                           (b) 

Fig. 14: Illustration of a possible improvement of the FE models including a gradient in 

inclusions properties: (a) slice of a high-resolution image (voxel size of 3 μm) showing 

differences in grey levels in the inclusions and (b) slice of a thresholded high-resolution image 

where the difference of grey levels in the initial image can be taken into account by a change 

of grey levels thanks to different thresholding steps. 

 

5. Conclusion 

This paper reports an original approach based on X-ray tomography to characterize and model 

the mechanical behavior of an aluminum foam taking into account its microstructural features 

at two length scales. The architecture and the microstructure of the solid phase were 

characterized thanks to scanning of the samples at two resolutions. The higher resolution 3D 

images (voxel size of 3 µm) were obtained from local tomography and reveal the presence of 
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intermetallic inclusions typical of 6xxx aluminum alloys. Then the progressive deformation of 

the sample was followed thanks to an in situ tensile test. The comparison between the 3D images 

of the deformed sample and the high-resolution 3D images of the initial sample showed the 

presence of inclusions along the fracture path for most broken struts. For this reason, FE models 

including the presence of these inclusions were built. The model was based on the meshing of 

a low sized 3D image containing the inclusions and processed from the high-resolution images. 

The model used specific constitutive laws for the aluminum matrix and the inclusions. A 

classical elasto-plastic law combined with a GTN model was chosen to model the damageable 

behavior of the aluminum matrix. The Young's modulus of the inclusion was determined using 

nano-indentation. Inclusions were considered as stiffer and less ductile than the matrix. The 

presence of the inclusions in the model resulted in local stress concentration explaining the 

early fracture of some struts where no architectural specific features were noticed. It showed 

the importance of the microstructural features to explain the macroscopic properties of the 

cellular samples. The approach we propose in this paper could complete previous works on 

cellular samples where the intermetallic inclusions were not considered. However, it is 

important to note that our results are mainly qualitative at this stage. A better fitting between 

the experimental and simulated stress/strain curves could be obtained. Different improvements 

were proposed in the paper to improve the quantification of properties (use of higher resolution 

3D images, consider gradients in properties). 
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