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Sharp bounds of various kinds for the famous unnormalized sinc function sin x/x are useful in mathematics, physics and engineering. In this paper, we reconsider the Cusa-Huygens inequality by solving the following problem: given real numbers a, b, c ∈ R and T ∈ (0, π/2], we find the necessary and sufficient conditions such that the inequalities sin x x > a + b cos c x, x ∈ (0, T ) and sin x x < a + b cos c x, x ∈ (0, T ) hold true. We use the elementary methods, only, improving several known results in the existing literature.

Introduction

The following inequality is the main inspiration of this paper: sin x x < 2 + cos x 3 , x ∈ (0, π/2).

(1.1)

In the existing literature, it is known as the Cusa-Huygens inequality [START_REF] Mitrinović | Analytic Inequalities[END_REF]; for more details, we refer the reader to [START_REF] Bhayo | New trigonometric and hyperbolic inequalities[END_REF][START_REF] Chen | Inequality chains for wilker, huygens and lazarević type inequalities[END_REF][START_REF] Chen | Sharp cusa and becker-stark inequalities[END_REF][START_REF] Huygens | Oeuvres completes[END_REF][START_REF] Mitrinović | Analytic Inequalities[END_REF][START_REF] Mortici | The natural approach of wilker-cusa-huygens inequalities[END_REF]. This inequality has been extended and sharpened in many different ways [START_REF] Bagul | Refined forms of oppenheim and cusa-huygens type inequalities[END_REF][START_REF] Dhaigude | About trigonometric-polynomial bounds of sinc function[END_REF][START_REF] Malešević | Some new estimates of precision of cusa-huygens and huygens approximations[END_REF][START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the cusa-huygens, wilker and huygens inequalities[END_REF][START_REF] Sándor | Sharp cusa-huygens and related inequalities[END_REF][START_REF] Sándor | On huygen's trigonometric inequality[END_REF][START_REF] Sándor | On cusa-huygens type trigonometric and hyperbolic inequalities[END_REF][START_REF] Zhu | An unity of mitrinović-adamović and cusa-huygens inequalities and the analogue for hyperbolic functions[END_REF]. For example, in [START_REF] Chen | Sharp cusa and becker-stark inequalities[END_REF][START_REF] Sándor | Sharp cusa-huygens and related inequalities[END_REF], it is obtained that

2 + cos x 3 α < sin x x < 2 + cos x 3 ζ , x ∈ (0, π/2), (1.2) 
where α = ln(π/2)/ ln(3/2) ≈ 1.11374 and ζ = 1 are the best possible constants. A very simple proof of (1.2) is offered in [START_REF] Bagul | Remark on the paper of zheng jie sun and ling zhu[END_REF]. In [START_REF] Bhayo | New trigonometric and hyperbolic inequalities[END_REF], it is proved that, for every x ∈ (0, π/2), we have

α -1 + cos x α < sin x x < β -1 + cos x β , (1.3) 2 + cos x 3 α 1 < sin x x < 2 + cos x 3 β 1 , (1.4 
)

2 α 2 + cos x 3 < sin x x < 2 β 2 + cos x 3 , (1.5) 
with the best positive constants α ≈ 2.75194, β = 3; α 1 ≈ 1.04198, β 1 = 1 and α 2 ≈ 0.93345, β 2 = 1.

The main aim of this paper is to consider the following problem. Let a, b, c ∈ R and T ∈ (0, π/2] be given real numbers; find the necessary and sufficient conditions such that the inequalities sin x x > a + b cos c x, x ∈ (0, T ) (1.6) and sin x x < a + b cos c x, x ∈ (0, T ) (

hold true. We completely solve this problem and thus provide generalizations to numerous known special results in the existing literature. We also consider the inequality 2 + cos a x 3 < sin x x < 2 + cos b x 3 , x ∈ (0, T ) and propose several auxiliary results of independent interest. For the sake of brevity and better exposition, we will not analyze the hyperbolic analogues of obtained results here.

Preliminaries and lemmas

We need to remind ourselves of the statement which is known in the existing literature as l'Hospital's rule of monotonicity; see, e.g., [START_REF] Anderson | Conformal Invarients, Inequalities and Quasiconformal maps[END_REF]: Lemma 1. Let f (x) and g(x) be two real valued functions which are continuous on [a, b] and differentiable on (a, b), where -∞ < a < b < ∞ and g (x) = 0, for all x ∈ (a, b). Let,

A(x) = f (x) -f (a) g(x) -g(a) , x ∈ (a, b)
and

B(x) = f (x) -f (b) g(x) -g(b) , x ∈ (a, b).
Then, we have:

(i) A(•) and B(•) are increasing on (a, b) if f (•)/g (•) is increasing on (a, b). (ii) A(•) and B(•) are decreasing on (a, b) if f (•)/g (•) is decreasing on (a, b).
The strictness of the monotonicity of A(•) and B(•) depends on the strictness of monotonicity of f (•)/g (•).

We proceed with some original lemmas and observations we will use later on.

Lemma 2. ( [4]) The function

F (x) := sin x -x cos x x 2 sin x , x ∈ (0, π/2)
is positive and strictly increasing on (0, π/2).

Remark 1.

(i) The proof of [4, Lemma 2.2] contains a small mistake since the function x → -x tan x + 3, x ∈ (0, π/2) has a unique zero ζ ∈ (0, π/2) so that an application of l'Hospital's rule of monotonicity shows that the function F (•) is strictly increasing on (0, ζ), only. But, the result is actually true because in the former step of proof we have

H 1 (x)/H 2 (x) = sin x/(2 sin x + x cos x) = 1/(2 + x cot x), x ∈ (0, π/2),
which is strictly increasing on (0, π/2). (ii) It is clear that, due to Lemma 2, we have that for each number σ ∈ (-∞, 2] the function

F σ (x) = sin x -x cos x x σ sin x , x ∈ (0, π/2)
is positive and strictly increasing on (0, π/2). Consider now the case that σ > 2. Then, for each x ∈ (0, π/2), we have

F σ (x) = x σ sin x -2 x σ-1 x 2 -x sin x cos x -σ(sin 2 x -x sin x cos x) . So, if σ ≥ σ 0 := sup x∈(0,π/2) x 2 -x sin x cos x sin 2 x -x sin x cos x := sup x∈(0,π/2) Q(x) = π 2 4 ,
then the function F σ (•) is strictly decreasing on (0, π/2). In order to prove that σ 0 = π 2 /4, we can use the facts that lim x→0 Q(x) = 2, established with the help of l'Hospital's rule, and Q(•) is strictly increasing on (0, π/2), which follows by applying l'Hospital's rule of monotonicity twice. Strictly speaking, by applying the usual l'Hospital's rule twice, we get

lim x→0 Q(x) = lim x→0 2x -sin x cos x -x cos 2x sin x cos x -x cos 2x = lim x→0 1 -cos 2x + x sin 2x x sin 2x = lim x→0 1 + 1 -cos 2x x sin 2x = lim x→0 1 + tan x x .
For the applications of l'Hospital's rule of monotonicity, we only need to observe yet that

sin x cos x -x cos 2x = cos 2x[(tan(2x)/2) -x] = cos 2x tan x(1 -tan 2 x) -1 -x > cos 2x[tan x -x] > 0, x ∈ (0, π/2)
and the function tan(•)/• is strictly increasing on (0, π/2). Finally, the above also implies that for each number σ ∈ (2, σ 0 ) there exists a unique number x σ ∈ (0, π/2) such that the function F σ (•) is strictly decreasing on (0, x σ ) and F σ (•) is strictly increasing on (x σ , π/2).

Lemma 3. For x ∈ (0, π/2), it is true that

2x 2 π < x sin x -cos x < 2x 2 3 ,
which is equivalent to

3 2x 2 + 3 cos x < sin x x < π 2x 2 + π cos x .
Proof. Let us consider the function

f (x) = x 2 sin x x -sin x cos x , x ∈ (0, π/2).
We have

(x -sin x cos x) 2 f (x) = (x -sin x cos x)(x 2 cos x + 2x sin x) -2 sin 2 x(x 2 sin x) = x 3 cos x + 2x 2 sin x -x 2 sin x cos 2 x -2x sin 2 x cos x -2x 2 sin 3 x = x 3 cos x + x 2 sin x cos x -2x sin 2 x cos x = x∆(x) cos x, where ∆(x) = x 2 + x sin x cos x -2 sin 2 x (x ∈ (0, π/2)). Now, let us notice that ∆ (x) = 2x + x cos 2 x -x sin 2 x + sin x cos x -4 sin x cos x = x + 2x cos 2 x -3 sin x cos x, x ∈ (0, π/2) and ∆ (x) = 1 + 2 cos 2 x -4x sin x cos x -3 cos 2 x + 3 sin 2 x = 4 sin 2 x -4x sin x cos x = 4 sin x(sin x -x cos x), x ∈ (0, π/2).
Since sin x-x cos x > 0 for x ∈ (0, π/2), we get ∆ (x) > 0, implying that ∆ (•) is strictly increasing on (0, π/2) and, a fortiori, ∆(x) > ∆(0+) = 0, implying that f (x) > 0. Hence, f (•) is strictly increasing on (0, π/2) and f (0+) < f (x) < f (π/2), with f (0+) = 3/2 by l'Hospital's rule and f (π/2) = π/2. This ends the proof of Lemma 3.

In the remainder of paper, it will be always assumed that T ∈ (0, π/2]. Observe also that the equation sin x/x = 2/3 has a unique zero ν belonging to the interval (0, π/2); furthermore, we have ν ≈ 1.49578, as well as sin x/x > 2/3 and x ∈ (0, π/2) iff x ∈ (0, ν). Lemma 4. For each number b ∈ (1/3, F (T )), there exists a unique number σ b,T ∈ (0, T ) such that

x cos x -sin x x 2 sin x + b = 0 holds with x = σ b,T .
Proof. Follows immediately from Lemma 2 as well as the limit equalities lim x→0+

x cos x -sin x x 2 sin x = -1 3 and lim

x→T -

x cos x -sin x x 2 sin x = -F (T ), which can be easily verified.

The function

W (x) := cos x x 2 + x sin x cos x -2 sin 2 x (sin x -x cos x)x sin 2 x , x ∈ (0, π/2)
has an important role in our study, as well. This function is positive (see the proof of Lemma 3, showing that

x 2 + x sin x cos x -2 sin 2 x > 0, x ∈ (0, π/2)). Moreover, we have lim x→π/2-W (x) = 0 and lim x→0+ W (x) = 2/15 because (sin x -x cos x)x sin 2 x ∼ x 6 /3, x → 0+ and x 2 + x sin x cos x -2 sin 2 x ∼ 2x 6 /45, x → 0+. Lemma 5. The function W (•) is strictly decreasing on (0, π/2). Proof. Set W 0 (x) := cos x x 2 + x sin x cos x -2 sin 2 x x 3 sin 3 x , x ∈ (0, π/2).
Then, we have W 0 (x) > 0 for all x ∈ (0, π/2). Therefore, due to Lemma 2 and the decomposition

W (x) = x 2 sin x sin x -x cos x W 0 (x), x ∈ (0, π/2),
it suffices to show that the function W 0 (•) is strictly decreasing on (0, π/2). Towards this end, we note that the calculus established with the use of symbolab.com package shows that, for every x ∈ (0, π/2), we have:

W (x) = - 2x 2 + x sin 2x -4 sin 2 x 2x 3 sin 2 x + cot x × -6x 3 sin 2x -4x 2 sin 2 x + 4x 2 sin 2 cos 2x + 24 sin 4 x -3x 2 sin 2 x 4x 4 sin 4 x .
After multiplying the first addend with 2x sin 2 x and grouping the terms, we need to show that, for every x ∈ (0, π/2), we have 4x 2 cos x sin x cos 2x + 24 cos x sin 3 x + 8x sin 4 x -12x 3 cos 2 x < 4x 2 cos x sin x + 12x 2 cos 3 x sin x + 4x 3 sin 2 x + 2x 2 sin 2x sin 2 x.

Since 1-cos 2x = 2 sin 2 x and sin 2 x+cos 2 x = 1, after collecting similar terms and dividing with 4, the above is equivalent with

2x 3 cos 2 x + x 3 + 3x 2 sin x cos x > 6 cos x sin 3 x + 2x sin 4 x, x ∈ (0, π/2). (2.1) 
Suppose first that x ∈ (0, ν). Then, (1.1) implies cos x > 3(sin x/x) -2 > 0 so that

2x 3 cos 2 x + x 3 + 3x 2 sin x cos x > 2x 3 3 sin x x -2 2 + x 3 + 3x 2 sin x 3 sin x x -2 = 27x sin 2 x + 9x 3 -18x 2 sin x.
Therefore, it suffices to show that 27x sin 2 x + 9x 3 > 6 cos x sin 3 x + 2x sin 4 x + 18x 2 sin x.

This follows from the inequalities 9x sin

2 x + 9x 3 ≥ 2 √ 9 2 x 4 sin 2 x = 18x 2 sin x, 18x sin 2 x < 18x 3 and 6 cos x sin 3 x + 2x sin 4 x < 6x 3 + 2x 5 < 8x 3 . If x ∈ [ν, π/2)
, then the proof is much simpler and follows from the fact that, for such values of variable x, we have x 3 > 2x ≥ 2x sin 4 x and x 2 > 2 ≥ 2 sin 2 x, implying that 3x 2 sin x cos x > 6 cos x sin 3 x (see (2.1)).

Hence, inf{W (x) : x ∈ (0, π/2)} = 0 and min{W (x) : x ∈ (0, π/2)} does not exist as well as sup{W (x) : x ∈ (0, π/2)} = 2/15 and max{W (x) : x ∈ (0, π/2)} does not exist.

Main results

Now we are in a position to prove the main results of the paper. We start by stating the following Remark 2. Theorem 1 improves the well-known Baricz's inequality

1 + cos x 2 ≤ sin x x , x ∈ (0, π/2); see [5, p. 111].
It is clear that Theorem 1 substantially improves the left hand sides of equations (1.3)-(1.5) with T = π/2. Strictly speaking, Theorem 1 implies that β = π/π -2 is the smallest positive constant strictly greater than 1 such that the left hand side of (1.3) holds, which can be simply inspected.

We can similarly prove the following extension of the Cusa-Huygens inequality, which taken together with Theorem 1 provides a proper generalization of [6, Theorem 1.6, Theorem 3.9]: (see, e.g., [START_REF] Bhayo | On carlson's and shafer's inequalities[END_REF]).

Suppose now that a, b, c ∈ R and c > 1. Consider the function

M 1 (x) := sin x x -b cos c x, x ∈ (0, T ),
whose first derivative is given by M 1 (x) = cos c-1 x sin x x cos x -sin x x 2 sin x cos c-1 x + bc , x ∈ (0, T ).

Using Lemma 2 and the assumption c > 1, it follows that the function x → (x cos x -sin x)/(x 2 sin x cos c-1 x), x ∈ (0, T ) is strictly decreasing; moreover, the range of this function is equal to (-∞, -1/3), if T = π/2, resp. (-F (T ) cos 1-c T, -1/3), if T < π/2. Therefore, arguing as above, we may conclude that the following holds: 

x cos x -sin x x 2 sin x cos c-1 x + bc = 0, x ∈ (0, T ), provided that T < π/2.
Therefore, it remains to consider the case in which a, b, c ∈ R and c < 1. In this case, we have

x cos x -sin x x 2 sin x cos c-1 x = cos -c x x cos x -sin x x 2 × cos x x 5 sin 2 x -x 2 (sin x -x cos x)(2x sin x + x 2 cos x) (sin x -x cos x)x 4 sin 2 x + c -1 = cos -c x x cos x -sin x x 2 cos x x 2 + x sin x cos x -2 sin 2 x (sin x -x cos x)x sin 2 x + c -1 = cos -c x x cos x -sin x x 2 W (x) + c -1 , x ∈ (0, T ).
Based on this computation, Lemma 5 and the analysis preceding it, we can clarify the following extension of Lemma 2:

Proposition 1. Let d ∈ R. Then, the function Q d (x) := x cos x -sin x x 2 sin x cos d-1 x , x ∈ (0, T )
has the following properties:

(i) Q d (•) is strictly increasing on (0, T ) iff d ≥ 1 -W (T ). (ii) Q d (•) is strictly decreasing on (0, T ) iff d ≤ 13/15. (iii) If d ∈ (13/15, 1 -W (T )), then there exists a unique number θ d,T ∈ (0, T ) such that the function Q d (•) is strictly increasing on (0, θ d,T ) and Q d (•) is strictly decreasing on (θ d,T , T ).
We continue with the analysis of case a, b, c ∈ R and c < 1. In actual fact, the following theorem holds true: 

(T -) < M 1 (ζ 1 b,c,T ) or a < M 1 (ζ 1 b,c,T ) ≤ M 1 (T -), resp. a ≥ 1 -b > M 1 (ζ 2 b,c,T ) or a > M 1 (ζ 2 b,c,T ) ≥ 1 -b. Proof.
The proof of theorem is very similar to those of Theorem 1 and Theorem 2, and we will only outline the main details for the statement (iii). If c ∈ (13/15, 1 -W (t)) and bc ≤ -Q c (θ c,T ), we have that the function M 1 (•) is strictly decreasing on (0, T ) since its first derivative is non-negative, which simply implies that the statement 1. holds true. Similarly, if we have bc ≥ -min(-1/3, Q c (T )), then the function M 1 (•) is strictly increasing on (0, T ) and the statement 2. follows as above. If -bc ∈ (min(-1/3, Q c (T )), Q c (θ c,T )), the equation can have exactly one or exactly two zeroes belonging to the interval (0, T ). In the first case, the function M 1 (•) is strictly decreasing on (0, ζ b,c,T ) and the function M 1 (•) is strictly decreasing on (ζ b,c,T , T ), while in the second case, the function M 1 (•) is strictly decreasing on the intervals (0, Theorem 4 is an abstract result and the direct use of l'Hospital's rule of monotonicity is sometimes a much better choice for examing the best possible constants for which certain concrete inequalities hold true. The theorem below presents the sharp bounds of the form (2 + cos u x)/3 for sin x/x. In order to formulate this theorem, let us recall that ν ≈ 1.49578 denotes the unique solution of equation sin x/x = 2/3 on (0, π/2). 

Theorem 1 .

 1 Let a, b ∈ R. Then, the inequality sin x x > a + b cos x, x ∈ (0, T ) (3.1) holds iff 1. b ≤ 1/3 and a ≤ (sin T /T ) -b cos T, or 2. b ≥ F (T ) and a ≤ 1 -b, or 3. b ∈ (1/3, F (T )) and a ≤ min(1 -b, (sin T /T ) -b cos T ).Proof. It is clear that (3.1) holds iff a < inf{(sin x/x) -b cos x : x ∈ (0, T )} or a ≤ inf{(sin x/x) -b cos x : x ∈ (0, T )} if there is no x ∈ (0, T ) such that (sin x/x) -b cos x = a. Consider the function M (x) := sin x x -b cos x, x ∈ (0, T ).Then, a simple computation shows thatM (x) = sin x x cos x -sin x x 2 sin x + b , x ∈ (0, T ). Note that {(x cos x -sin x)/(x 2 sin x) : x ∈ (0, T )} = (-F (T ), -1/3) (seeLemma 2 and Lemma 4) and F (0+) = 1-b. Hence, if b ≤ 1/3, then M (x) ≤ 0 for all x ∈ (0, T ) and the zeroes of function M (•) do not form an interval in (0, T ) so that the function M (•) is strictly decreasing on (0, T ) and therefore (3.1) holds iff a ≤ (sin T /T ) -b cos T. Similarly, if b ≥ F (T ), then the function M (•) is strictly increasing on (0, T ) and (3.1) holds iff a ≤ 1 -b. Finally, if b ∈ (1/3, F (T )), then the function M (•) strictly increases on (0, σ b,T ) and the function M (•) strictly decreases on (σ b,T , T ) (see Lemma 4) which implies that inf{(sin x/x) -b cos x : x ∈ (0, T )} = min(1 -b, (sin T /T ) -b cos T ) and (3.1) holds iff a ≤ min(1 -b, (sin T /T ) -b cos T ).

Theorem 2 .

 2 Let a, b ∈ R. Then, the inequality sin x x < a + b cos x, x ∈ (0, T ) holds iff 1. b ≤ 1/3 and a ≥ 1 -b, or 2. b ≥ F (T ) and a ≥ (sin T /T ) -b cos T, or 3. b ∈ (1/3, F (T )) and a > (sin σ b,T /σ b,T ) -b cos σ b,T . Remark 3. Taken together, Theorem 1 and Theorem 2 improve the well-known results of J. Sándor and R. Oláh-Gal [18, Theorem 1, Theorem 2] and the wellknown Oppenheim's double inequality 2 + (π -2) cos x π < sin x x < 2 + (4/π) cos x π

Theorem 3 .

 3 Suppose that a, b, c ∈ R and c > 1. Then, we have the following:(i) The inequality (1.6) holds iff: 1. bc ≤ 1/3 and a ≤ 2/π, or bc > 1/3 and a ≤ min(1 -b, 2/π), provided that T = π/2. 2. bc ≤ 1/3 and a ≤ (sin T /T ) -b cos c T, or bc ≥ F (T ) cos 1-c T and a ≤ 1 -b, or bc ∈ (1/3, F(T )) and a ≤ min(1 -b, (sin T /T )b cos c T ), provided that T < π/2. (ii) The inequality (1.7) holds iff: 1. bc ≤ 1/3 and a ≥ 1 -b, or bc > 1/3 and a > (sin σ b,c /σ b,c )b cos c σ b,c , where σ b,c denotes the unique solution of equation x cos x -sin x x 2 sin x cos c-1 x + bc = 0 on (0, π/2), provided that T = π/2. 2. bc ≤ 1/3 and a ≥ 1-b, or bc ≥ F (T ) cos 1-c T and a ≥ (sin T /T )b cos c T, or bc ∈ (1/3, F (T )) and a > (sin ζ b,c,T /ζ b,c,T )-b cos c ζ b,c,T , where ζ b,c,T denotes the unique solution of equation

Theorem 4 .

 4 (i) Let c ≤ 13/15. Then, (1.6), resp. (1.7), holds iff:1. bc ≥ 1/3 and a ≤ 1 -b, resp. bc ≥ 1/3 and a ≥ 2/π if c > 0 andT = π/2 [bc ≥ 1/3 and a ≥ M 1 (T ) if T < π/2], or 2. bc ≤ F (T ) cos 1-c T and a ≤ (sin T /T ) -b cos c T if T < π/2 or T = π/2 and c ≥ 0, or a ∈ R, b < 0, c < 0, T = π/2 or bc ≤ 0, a ≤ 2/π, b = 0, c < 0, T = π/2, resp. bc ≤ F (T ) cos 1-cT and a ≥ 1 -b, or 3. bc ∈ (F (T ) cos 1-c T, 1/3). Then, there exists a unique number σ b;c;T ∈ (0, T ) such that the equationsin x -x cos x x 2 sin x cos 1-c x =bc holds with x = σ b;c;T ; in this case, (1.6), resp. (1.7), holds iff a < (sin σ b;c;T /σ b;c;T ) -b cos c σ b;c;T , resp. c > 0 and a ≥ max(1b, M 1 (T -)). (ii) Let c ≥ 1 -W (T ) and T < π/2. Then, (1.6), resp. (1.7), holds iff: 1. bc ≤ F (T ) cos 1-c T and a ≤ sin T /T , resp. a ≥ 1 -b, or 2. bc ≥ 1/3 and a ≤ 1 -b, resp. bc ≥ 1/3 and a ≥ M 1 (T ), or 3. bc ∈ (F (T ) cos 1-c T, 1/3) and a < M 1 (η b;c;T ), where η b;c;T denotes the unique solution of equation Q c (x) + bc = 0 on (0, T ), resp. bc ∈ (F (T ) cos 1-c T, 1/3) and a ≥ max(1 -b, M 1 (T )). (iii) Let c ∈ (13/15, 1 -W (T )). Then, (1.6), resp. (1.7), holds iff: 1. bc ≤ -Q c (θ c,T ) and a ≤ M 1 (T -), resp. bc ≤ -Q c (θ c,T ) and a ≥ 1 -b, or 2. bc ≥ -min(-1/3, Q c (T )) and a ≤ 1 -b, resp. bc ≥ -min(-1/3, Q c (T )) and a ≥ M 1 (T -), or 3. -bc ∈ (min(-1/3, Q c (T )), Q c (θ c,T )) and the equation Q c (x)+bc = 0 has exactly one zero ζ b,c,T in (0, T ). Then, (1.6), resp. (1.7), holds iff a < M 1 (ζ b,c,T ), resp. a ≥ max(1 -b, M 1 (T -)). 4. -bc ∈ (min(-1/3, Q c (T )), Q c (θ c,T )) and the equation Q c (x)+bc = 0 has exactly two zeroes ζ 1 b,c,T and ζ 2 b,c,T in (0, T ) such that, say, ζ 1 b,c,T < ζ 2 b,c,T . Then, (1.6), resp. (1.7), holds iff a ≤ M 1

3 √

 3 ζ 1 b,c,T ) and (ζ 2 b,c,T , T ) and the function M 1 (•) is strictly increasing on (ζ 1 b,c,T , ζ 2 b,c,T ). Remark 4. Theorem 4 improves the well-known inequality cos x < sin x x , x ∈ (0, π/2) due to by D. D. Adamović and D. S. Mitrinović (see, e.g., [13, p. 238]).

Theorem 5 .< sin x x < 2 +

 52 Let λ ∈ (0, α) with α ≈ 1.49578. Then, the best possible constants a and b such that2 + cos a x 3 cos b x 3 , x ∈ (0, λ)are log(3 sin λ/λ -2)/ log(cos λ) and 1, respectively.Proof. Let us consider the functionf (x) = log(3 sin x/x -2) log(cos x) = f 1 (x) f 2 (x) , x ∈ (0, λ).For such values of x, we havef 1 (x) f 2 (x) = 3(sin x -x cos x) x 2 sin x x cos x 3 sin x -2x = f 3 (x)f 4 (x),where f 3 (x) = 3(sin x-x cos x)/(x 2 sin x) and f 4 (x) = x cos x/(3 sin x-2x). It follows by Lemma 2 that f 3 (•) is positive and strictly increasing. Now, remark that(3 sin x -2x) 2 f 4 (x) = -3x + 3 sin x cos x + 2x 2 sin x,which is positive by Lemma 3. Hence, f 4 (•) is also positive and strictly increasing. Therefore, f 1 (•)/f 2 (•) is strictly increasing and, by l'Hospital's rule of monotonicity (see Lemma 1), f (•) is strictly increasing on (0, λ) with f (0+) < f (x) < f (λ). We end the proof of Theorem 5 by noticing that f (0+) = 1 by l'Hospital's rule and f (λ) = log(3 sin λ/λ -2)/ log(cos λ).

Figure 1 ( 2 + 3 Figure 1 .

 1231 Figure 1 displays the functions involved in the inequalities of Theorem 5.
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