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Abstract

We present a family of novel Lax operators corresponding to representations of the RTT-realisation of 
the Yangian associated with D-type Lie algebras. These Lax operators are of oscillator type, i.e. one space 
of the operators is infinite-dimensional while the other is in the first fundamental representation of so(2r). 
We use the isomorphism between the first fundamental representation of D3 and the 6 of A3, for which 
the degenerate oscillator type Lax matrices are known, to derive the Lax operators for r = 3. The results 
are used to generalise the Lax matrices to arbitrary rank for representations corresponding to the extremal 
nodes of the simply laced Dynkin diagram of Dr . The multiplicity of independent solutions at each extremal 
node is given by the dimension of the fundamental representation. We further derive certain factorisation 
formulas among these solutions and build transfer matrices with oscillators in the auxiliary space from 
the introduced degenerate Lax matrices. Finally, we provide some evidence that the constructed transfer 
matrices are Baxter Q-operators for so(2r) spin chains by verifying certain QQ-relations for D4 at low 
lengths.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The study of the Yangian beyond algebras of A-type bears many open questions. The first 
results on D-type algebras, which we will study in this note, date back to the 1970th where 
the fundamental R-matrix was found for the defining representation [1]. Shortly after the R-
matrix that intertwines the defining and the spinor representations has been obtained in [2]. A 
few years later Reshetikhin then found the symmetric generalisations of these Lax matrices in [3]
keeping one space in the defining representation while the spinor-spinor R-matrix was presented 
in [4]. Further, the Bethe ansatz for so(2r) has been studied in [3,5]. It seems that the topic 
of determining explicit R-matrices did not attract much attention in the following years, for 
which the reason may well be that closed expressions for representations corresponding to non-
extremal nodes of the Dynkin diagram are difficult to obtain. Unlike in the A-type Yangian the 
irreducible representations of the Lie algebra do not lift to representations of the Yangian [6] and 
an evaluation map does not exist. See in particular [7] for an explicit example of an R-matrix of 
this kind derived via fusion.

The Yangian arising from the R-matrix found in [1] was carefully studied in the more recent 
work [8]. In the following, we mostly follow the conventions used in that article. Here we also 
like to mention the series of papers [9–16] which rehabilitated the study of R-matrices and their 
representations beyond sl(r + 1) including the ones for so(2r).

In the following we will be interested in certain oscillator type realisations that were used to 
construct Q-operators for A-type algebras in [17–19] following the ideas of [20]. These oscil-
lator realisations can be understood as certain degenerate limits of the Lax matrices presented 
in [4]. The ordinary Yangian is obtained from the expansion of the RTT-relation in the spectral 
parameter around the identity. The oscillator type solutions relevant for the construction of Q-
operators do not belong to this class. The first term in the expansion of the spectral parameter can 
be degenerate, i.e. diagonal with vanishing matrix elements. The quantum group arising from the 
latter is also referred to as shifted Yangian, cf. [21]. We present the degenerate Lax matrices that 
correspond to the spinor and first fundamental representation. To obtain them we make use of the 
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isomorphism between D3 and A3 for which the oscillator type Lax matrices of representations 
apart from the first fundamental of A-type are known [19]. The multiplicity of linear independent 
solutions that we find is given by the dimension of the corresponding fundamental representation. 
It is also shown that the degenerate Lax matrices obey certain factorisation formulas which relate 
them to the Lax matrices found in [4], here realised in terms of Holstein-Primakoff oscillators 
(free field realisation) and that they can be used to define the transfer matrices with oscillators in 
the auxiliary space. We expect that the transfer matrices constructed here are Q-operators and that 
the factorisation formulas will allow to derive certain functional relations among them. For the 
case of r = 4 we briefly address the functional relations (QQ-relations) among the Q-operators 
corresponding to the different nodes of the Dynkin diagram.

The paper is structured as follows. We begin in Section 2 by discussing the relation between 
the R-matrix introduced in [1] and the one used in [8] to define the Yangian. Further we introduce 
some symmetries of the Yang-Baxter equation. In Section 3 we discuss the isomorphism between 
A3 and D3 and use the degenerate Lax matrices obtained in [19] to derive the ones for D3. 
In Section 4 we show that the Lax matrices corresponding to the spinor nodes of the Dynkin 
diagram can be lifted to Dr and show that they satisfy the Yang-Baxter equation. We also give the 
Lax matrices at the first fundamental node for Dr . In Section 5 we discuss several factorisation 
formulas and Section 6 is devoted to the construction of transfer matrices/Q-operators using some 
of the previously derived Lax matrices and also contains some QQ-relations for r = 4. Finally in 
Section 7 we end with a conclusion.

2. Fundamental R-matrix

The fundamental R-matrix for so(2r) corresponding to the first fundamental representation 
was obtained in [1]. It is a 4r2 ×4r2 matrix acting on the tensor product of two spaces C2r ⊗C2r

and is commonly written as

R(z) = z(z + κ)I + (z + κ)P − zK . (2.1)

Here z is the spectral parameter and κ is related to the rank of the Lie algebra via κ = r − 1. 
Furthermore we introduced the identity I, the permutation P and the K matrix. The latter ones 
are defined as

P =
2r∑

A,B=1

eAB ⊗ eBA , K =
2r∑

A,B=1

eAB ⊗ eAB , (2.2)

respectively. Here eAB denotes the 2r × 2r unit matrices with (eAB)CD = δACδBD . Throughout 
this article we work in the basis used in [8]. In this basis the R-matrix is written as

R(z) = z(z + κ)I + (z + κ)P − zQ , (2.3)

where P again denotes the permutation operator but Q differs from K. We have

P =
r∑

a,b=−r
a,b �=0

Eab ⊗ Eba , Q =
r∑

a,b=−r
a,b �=0

Ea,b ⊗ E−a,−b . (2.4)

The unit matrices Eab denote 2r × 2r matrices with the indices a, b ∈ {−r, . . . , −1, 1, . . . , r}. 
They can be defined in terms of the unit matrices eAB , with A, B ∈ {1, . . . , 2r}, via
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E−i,−j = er−i+1,r−j+1 , E−i,j = er−i+1,r+j , (2.5)

Ei,−j = er+i,r−j+1 , Ei,j = er+i,r+j . (2.6)

The small Latin indices take the values i, j ∈ {1, . . . , r}. The explicit relation between the R-
matrices (2.1) and (2.3) reads

(S ⊗ S)R(z)(S−1 ⊗ S−1) = R(z) , (2.7)

where the similarity transformation is given by the 2r × 2r block matrices

S = 1√
2

⎛
⎝ −i J J

i I I

⎞
⎠ , S−1 = 1√

2

⎛
⎝ i J −i I

J I

⎞
⎠ , (2.8)

with i2 = −1. Each block in (2.8) is of the size r × r and I denotes the identity matrix of appro-
priate size while J denotes the exchange matrix or reversed identity matrix defined as

J =
⎛
⎜⎝

0 0 1

0 . .
.

0
1 0 0

⎞
⎟⎠ . (2.9)

The relation above in (2.7) can be verified noting that the identity and the permutation matrix 
are unaffected by the similarity transformations while (S ⊗ S)K(S−1 ⊗ S−1) = Q as shown in 
Appendix A.

In the following we study solutions to the RTT-relation

R(x − y) (L(x) ⊗ I) (I ⊗ L(y))) = (I ⊗ L(y)) (L(x) ⊗ I)R(x − y) , (2.10)

where L denotes a 2r × 2r matrix with non-commuting entries. Any solution L of the RTT-
relation (2.10) can be transformed via S−1L(z)S to yield the corresponding solution to the RTT-
relation with R(x −y) exchanged by R(x −y). As discussed in [8] the R-matrix (2.3) is invariant 
under the transformation

[R(z),B ⊗ B] = 0 , (2.11)

if BB′ = I. Here the prime denotes the transposition E′
ab = E−b,−a . This symmetry stems from 

the so(2r) invariance of the R-matrix R in (2.1). It follows that B L(z) B′ is a solution to the 
RTT-relation (2.10) if L(z) is.

Finally, we introduce two sets of permutation matrices that satisfy the invariance condition 
(2.11). The first one is labelled by a vector �α = (α1, α2, . . . , αr) with elements αi = ±1. When 
applied to L it permutes the ith and −ith row and ith and −ith column for each i with αi = −1. 
It can explicitly be realised as

B(�α) = 1

2

r∑
i=1

(
(1 + αi)(E−i,−i + Ei,i) + (1 − αi)(E−i,i + Ei,−i )

)
. (2.12)

The second permutation matrix is labelled by two indices i, j = 1, . . . r . When applied to L it 
permutes the ith and j th rows and columns and the −ith and −j th rows and columns. It can be 
written as

B̃ij =
r∑

k=1

(E−k,−k + Ek,k) + E−i,−j + E−j,−i + Ei,j + Ej,i . (2.13)
k �=i,j
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Fig. 1. Dynkin diagram for A3 with the number of degenerate Lax-operators corresponding to Q-operators indicated for 
each node.

Here the matrix B̃ij is symmetric in the exchange of i and j and we assumed that 1 ≤ i �= j ≤ r . 
It is straightforward to show that the matrices above satisfy the conditions B(�α) = B ′(�α) and 
B̃ij = B̃ ′

ij as well as the conditions BB′ = I. For the matrices B(�α) we find that

B(�α)B ′(�α) = 1

2

r∑
i=1

(
(1 + α2

i )(Ei,i + E−i,−i ) + (1 + αi)(1 − αi)(E−i,i + Ei,−i )
)

= I ,

(2.14)

where we used that αi = ±1 in the last step and for the matrices B̃ij we get

B̃ij B̃
′
ij =

r∑
k=1

k �=i,j

(E−k,−k + Ek,k) + E−i,−i + E−j,−j + Ei,i + Ej,j = I . (2.15)

3. Lax matrices for D3

Before studying solutions to the RTT-relation (2.10) for general rank we restrict ourselves 
to r = 3. In this case we can obtain the Lax matrices for Q-operators by making use of the 
isomorphism between the algebras A3 and D3. We keep the presentation short as this section 
only serves to motivate the Lax matrices introduced for so(2r) in Section 4.

The relevant degenerate Lax matrices for Ar of oscillator type were derived in [19]. In the 
case of A3 there are in total 16 such solutions Lrep

I (z) labelled by the set I which takes values 
I ⊆ {1, 2, 3, 4} and the representation (“rep”) in the matrix space. Here the full and the empty 
set represent trivial solutions which are proportional to the identity. The solutions can be distin-
guished by the level |I | = k with k = 0, . . . , 4 which corresponds up to the trivial solutions to the 
kth node on the Dynkin diagram of A3. At each level there are 

(4
k

)
solutions as indicated in Fig. 1. 

They can be evaluated straightforwardly once the representation of the algebra is fixed. Here we 
evaluate the degenerate Lax matrices for the antisymmetric six-dimensional representation ‘6’ 
of A3. Following the notations used in [19] we find that the level 1 and level 3 Lax matrices 
are linear in the spectral parameter. In particular for the set I = {1, 2, 3} the Lax matrix can be 
brought to the form

L6{1,2,3}(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

z − N1 − N2 −ā1a3 ā2a3 ā1 ā2 0
−ā3a1 z − N2 − N3 −ā2a1 ā3 0 −ā2
ā3a2 −ā1a2 z − N1 − N3 0 −ā3 −ā1
−a1 −a3 0 1 0 0
−a2 0 a3 0 1 0

0 a2 a1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.1)

where we introduced the oscillators [ai , ̄aj ] = δij . One can check that this Lax matrix is a solu-
tion to the RTT-relation (2.10). Further, by evaluating all other remaining Lax matrices of the 1st 
and 3rd level one finds that, up to particle hole transformations and renaming of the oscillators, 
all these solutions can be brought to the form B(�α)L6{1,2,3}(z)B ′(�α) with the similarity transfor-
mation given in (2.12) for some choice of �α. Here we observe that the similarity transformations 
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with 
∏3

i=1 αi = 1 map to the degenerate Lax operators at the same level 3, i.e. the same note 
on the Dynkin diagram, while the ones with 

∏3
i=1 αi = −1 map to the opposite extremal node 

corresponding to level 1.
Similarly we can evaluate the 2nd level degenerate Lax matrices and find that the solutions 

are quadratic in the spectral parameter. In particular we find that for the set I = {1, 2} they can 
be brought to the form

L6{1,2}(z) = eM+M0(z)e
M− , (3.2)

with

M+ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ā1 ā2 ā3 ā4 0
0 0 0 0 0 −ā4
0 0 0 0 0 −ā3
0 0 0 0 0 −ā2
0 0 0 0 0 −ā1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, M− =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
−a1 0 0 0 0 0
−a2 0 0 0 0 0
−a3 0 0 0 0 0
−a4 0 0 0 0 0

0 a4 a3 a2 a1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(3.3)

and the middle part

M0(z) = diag(z2 − z, z, z, z, z,1) . (3.4)

Again one can check that the Lax matrix L6{1,2}(z) in (3.2) is a solution to the RTT-relation 
(2.10). The remaining degenerate LAx matrices of the 2nd level can be related to the R-matrix 
L6{1,2}(z), again up to particle-hole transformations and renaming of the oscillators, by apply-
ing the similarity transformations as defined in (2.13) and the similarity transformation with 
B(−1, −1, −1).

The solutions of the corresponding YBE with R(z) in (2.1) can be obtained through the sim-
ilarity transform (2.8). However, we note that in this basis the spectral parameter does not only 
appear on the diagonal in the Lax matrix (3.1) and not only on the diagonal of the middle part 
L6

0(z) of the Lax matrix (3.2).

4. Minimal solutions of oscillator type for Dr

In this section we introduce a set of new solutions of oscillator type and show that they satisfy 
the RTT-relation (2.10).1 To do so it is convenient to introduce the 2r × 2r matrix

L(x) =
r∑

a,b=−r

La,b(x)Eab , (4.1)

with non-commuting entries La,b(x) and write the RTT-relation as the commutation relations

[La,b(x),Lc,d (y)] = 1

x − y

(
Lc,b(y)La,d (x) − Lc,b(x)La,d (y)

)
+ 1

x − y + κ

(
δa,−c

(
Lt (x) J L(y)

)
bd

− δb,−d

(
L(y) J Lt (x)

)
ca

)
,

1 Parts of the discussion are postponed to Section 5.2.
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Fig. 2. Dynkin diagram for Dr with the expected number of R-operators corresponding to the dimension of the funda-
mental representations on the extremal nodes.

(4.2)

cf. [8]. Here we defined the transposition as Et
ab = Eba and J was defined in (2.9).

In the following we present one family of solutions that is linear in the spectral parameter 
and one that is quadratic. They correspond to the spinor nodes and the first fundamental node 
respectively, cf. Fig. 2. Their form in the basis of R in (2.1) can be obtained through the similarity 
transform (2.8).

4.1. Linear solutions

The first Lax matrix we introduce is linear in the spectral parameter and contains r(r−1)
2 pairs 

oscillators. It is the generalisation of (3.1) and can conveniently be written as a 2 ×2 block matrix

L(z) =
⎛
⎝ z I + ĀA Ā

A I

⎞
⎠ , (4.3)

where each block is of the size r × r and I denotes the identity matrix. Explicitly the matrices Ā
and A which contain the oscillators [ai,−j , ̄a−k,l] = δilδjk are of the form

Ā =

⎛
⎜⎜⎜⎜⎝

ā−r,1 · · · ā−r,r−1 0
... . .

.
0 −ā−r,r−1

ā−2,1 0 . .
. ...

0 −ā−2,1 · · · −ā−r,1

⎞
⎟⎟⎟⎟⎠ ,

A =

⎛
⎜⎜⎜⎜⎝

−a1,−r · · · −a1,−2 0
... . .

.
0 a1,−2

−ar−1,−r 0 . .
. ...

0 ar−1,−r · · · a1,−r

⎞
⎟⎟⎟⎟⎠ . (4.4)

Alternatively, the Lax matrix above can naturally be written in the factorised form

L(z) =
⎛
⎝ I Ā

0 I

⎞
⎠

⎛
⎝ z I 0

0 I

⎞
⎠

⎛
⎝ I 0

A I

⎞
⎠ . (4.5)

In the following we show that the Lax matrix L(z) in (4.3) satisfies the commutation relations of 
the Yangian in (4.2) and therefore is a solution to the RTT-relation (2.10).

We begin with computing the explicit form of the products in the second line of (4.2). One 
finds
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Lt (x) J L(y) =
⎛
⎝ (x − y + κ)JA (x + κ)J

yJ 0

⎞
⎠ ,

L(y) J Lt (x) =
⎛
⎜⎝ (x − y + κ)ĀJ yJ

(x + κ)J 0

⎞
⎟⎠ .

(4.6)

Here we used the relations J Ā J = −ĀT and J A J = −AT where ĀT and AT denote the transpose 
of the matrices Ā and A in (4.4) along the main diagonal.

Further it is convenient to split the commutation relations (4.2) that arise from the RTT-
equation into block structure and write the resulting equations as a 4 × 4 block matrix, cf. (4.3). 
We note that for the choice of the Lax operator (4.3) the first and second term on the right-hand-
side of (4.2) are antisymmetric under the consecutive exchange: a ↔ c, b ↔ d and x ↔ y. This 
is consistent with the commutator on the left-hand-side. Thus the 4 × 4 matrix is antisymmet-
ric and the number of constraining equations reduces to 10. In the following we verify these 
commutation relations.

We begin with the diagonal terms. Obviously the term in the second line of (4.2) does not 
contribute and the only non-vanishing commutator arises for a = −i, b = −j , c = −k and d =
−l. It reads

[(ĀA)−i,−j , (ĀA)−k,−l] = (ĀA)−k,−j δi,l − δk,j (ĀA)−i,−l , (4.7)

and can be verified using the explicit form of Ā and A in (4.4). Here and in the following we use 
the notation Ā−i,j to denote the element in the (r − i + 1)th row and j th column of the matrices 
in Ā and Ai,−j to denote the element in the ith row and (r − j + 1)th column of the matrices in 
A in (4.4), cf. (2.5) and (2.6). Such that Ā−i,j = −Ā−j,i and Ai,−j = Aj,−i and

[Ai,−j , Ā−k,l] = δikδjl − δilδkj , (4.8)

where i, j, k, l ∈ {1, . . . , r}. We verify the remaining 6 conditions case by case. For a = −i, 
b = −j , c = −k, d = l we get

[(ĀA)−i,−j , Ā−k,l] = Ā−i,kδjl − Ā−i,lδjk , (4.9)

which can be shown straightforwardly employing (4.8). Here we used that (ĀJ)−k,−i = −Ā−i,k . 
Similarly, using (JA)−j,−l = −Al,−j we find

[(ĀA)−i,−j ,Ak,−l] = Ak,−j δil − Al,−j δik , (4.10)

for a = −i, b = −j , c = k, d = −l which follows from (4.8). Further the case a = −i, b = j , 
c = k, d = −l reduces to (4.8). Here the first and second term on the right-hand-side stem from 
the first and second term in (4.2) respectively. For the remaining cases one has to verify that 
the second term on the right-hand-side of (4.2) vanishes. This can be done using the explicit 
expression given in (4.6). Finally we conclude that the Lax matrix (4.3) is a solution to the RTT-
relation (2.10).

We note that one can obtain further solutions by permuting the −ith and ith row and column 
using the transformation in (2.12). In this way we obtain solutions with a different distribution 
of the spectral parameter on the diagonal. In total we find 2r solution

L�α(z) = B(�α)L(z)B(�α) , (4.11)

which are labelled by the vector �α = (α1, . . . , αr) with αi = ±1.
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4.2. Quadratic solutions

The second Lax matrix we introduce is quadratic in the spectral parameter and contains 2(r −
1) pairs of oscillators. It generalises the Lax matrix for D3 in (3.2) and can be written as the 
block matrix

L(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z2 + z(2 − r − w̄w) + 1

4
w̄Jw̄twt Jw zw̄ − 1

2
w̄Jw̄twt J −1

2
w̄Jw̄t

−zw + 1

2
Jw̄twt Jw zI − Jw̄twt J −Jw̄t

−1

2
wt Jw wt J 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.12)

Here the size of the blocks on the diagonal is 1 × 1, (2r − 2) × (2r − 2) and 1 × 1, respectively. 
Further we defined the vectors w̄ and w containing the oscillators [aa, ̄ab] = δab with the indices 
taking the values a, b = −r + 1, . . . , −1, 1, . . . , r − 1 as

w̄ = (ā−r+1, . . . , ā−1, ā1, . . . , ār−1) , w = (a−r+1, . . . ,a−1,a1, . . . ,ar−1)
t . (4.13)

It follows that

1

2
w̄t Jw̄ =

r−1∑
k=1

āk ā−k ,
1

2
wt Jw =

r−1∑
k=1

aka−k . (4.14)

We note that it is rather involved to explicitly check that the Lax matrix in (4.12) satisfies the 
RTT-relation (2.10). However we were able to verify it for r = 4. An argument for arbitrary r
based on the factorisation of two spinor type Lax matrices (4.3) is provided in Section 5.2.

By acting with the similarity transformation (2.13) we obtain r solutions with different distri-
butions of the spectral parameter on the diagonal. All these solutions have the term quadratic in 
the spectral parameter on a different position on the diagonal of the upper left r × r block matrix. 
Using the similarity transformation (2.12) with αi = −1 we obtain the corresponding solutions 
with the quadratic term on the diagonal of the lower right r × r block matrix. In total we find 2r

solutions.
Finally we note that the Lax matrix in (4.12) can be written in the factorised form

L(z) =

⎛
⎜⎜⎜⎜⎜⎝

1 w̄ −1

2
w̄Jw̄t

0 I −Jw̄t

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

z(z − r + 2) 0 0

0 zI 0

0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

−w I 0

−1

2
wt Jw wt J 1

⎞
⎟⎟⎟⎟⎟⎠ .

(4.15)

A similar factorisation as for the Lax matrices studied here for Dr in (4.5) and (4.15) was ob-
served in [19] for the case of Ar .
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5. Factorisation formulas

In the following we study certain factorisation formulas among the degenerate Lax matrices 
that we have introduced in the previous section. More precisely we derive the oscillator realisa-
tion of the Lax matrices for the spinor and first fundamental representation in Section 5.1 and 5.3
respectively. In other words we recover the Holstein-Primakoff realisation (free field realisation) 
of the so(2r) generators Fa,b with Fab = −F−b,−a satisfying the commutation relations

[Fab,Fcd ] = δc,bFa,d − δa,dFc,b − δc,−aF−b,d + δd,−bFc,−a . (5.1)

Additionally, in Section 5.2 we present a relation between the linear and quadratic solutions 
in Section 4 which may serve as a proof, which we had skipped earlier, that the quadratic Lax 
matrix in (4.12) indeed satisfies the RTT-relation.

5.1. Spinor representation

In this subsection we derive the full Lax matrix in oscillator form corresponding to a spinor 
representation. We introduce the Lax matrix

L(−1,...,−1)(z) =
⎛
⎜⎝ I −AT

−ĀT z I + ĀT AT

⎞
⎟⎠ , (5.2)

which can be obtained by applying the similarity transformation (2.12) to (4.3) and thus satisfies 
the RTT-relation. Multiplying this solution with L(z) defined in (4.3) in the matrix space and 
taking the tensor product in the oscillator space we find that the result can be decomposed as

L[1](z + s)L[2]
(−1,...,−1)

(z − s − κ) = SL[1]
s (z)G[2]S−1 . (5.3)

Here Ls denotes the Lax matrix

L[1]
s (z) =

⎛
⎜⎝ (z + s)I + Ā[1]A[1] −Ā[1](2s + κ + A[1]Ā[1])

A[1] (z − s − κ)I − A[1]Ā[1]

⎞
⎟⎠ , (5.4)

while

G[2] =
⎛
⎜⎝ I −AT[2]

0 I

⎞
⎟⎠ , (5.5)

is independent of the spectral parameter. It is straightforward to verify that the matrix G satisfies 
GG′ = I and thus solves the RTT-relation. The similarity transform S is defined via

S = exp[− tr(Ā[1]ĀT[2])] , (5.6)

induces the shifts SA[1]S−1 = A[1] − ĀT[2] and SAT[2]S−1 = AT[2] − Ā[1]. It is introduced to sep-
arates the dependence in the oscillators. We remark that this factorisation formula is similar to 
the one in the su(2) case studied in [17]. It is clear that the product on the left-hand-side of (5.3)
satisfies the RTT-relation. This is a consequence of the computation done in Section 4.1 and 
the symmetries of the R-matrix as discussed in Section 2. Therefore also the expression on the 
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right-hand-side satisfies the RTT-relation. Further, as S only depends on the oscillators and G, 
whose entries commute with the ones of Ls , satisfies the RTT-relation we can conclude that also 
Ls satisfies the RTT-relation. A similar argument has been given in [17].

The Lax matrix in (5.4) is linear in the spectral parameter and thus we expect that the os-
cillators realise a spinor representation of Dr , cf. [2,4]. This can be seen when identifying the 
generators via

Ls(z) = z +
∑
a,b

EabF
s
ba . (5.7)

The generators F s
ab defined by equating (5.4) and (5.7) satisfy the commutation relations in (5.1). 

Further, when acting on the Fock vacuum which is annihilated by aab such that aab|0〉 = 0 for 
arbitrary a and b we find

Fab|0〉 = 0 for a < b , Fii |0〉 = −fi |0〉 . (5.8)

The weight vector f = (f1, . . . , fr) is given by f = (s, . . . , s). Thus the generators defined in 
this way indeed realise a spinor representation with the Fock vacuum |0〉 as the highest weight 
state, cf. e.g. [22]. This representation is finite-dimensional for 2s ∈ N0. The generators obey the 
characteristic identity

(
F s

ab + sδab

) (
F s

bc − (s + κ)δbc

) = 0 . (5.9)

This can be verified using the factorised form of the Lax matrix2

L[1]
s (z) =

⎛
⎝ I Ā[1]

0 I

⎞
⎠

⎛
⎝ (z + s)I 0

A[1] (z − s − κ)I

⎞
⎠

⎛
⎝ I −Ā[1]

0 I

⎞
⎠ . (5.10)

Here the difference in sign in the characteristic identity compared to [3] arises from the definition 
of the generators.

The Lax matrix (5.4) corresponding to the spinor representation f = (−s, s, . . . , s) can 
be obtained by applying the similarity transformation (2.12) with α1 = −1 and αi = 1 for 
i = 2, 3, . . . , r to the Lax matrix in (5.4) in order to exchange the rows and columns corre-
sponding to the indices 1 and −1. Further we note that the Lax matrix (4.3) can be deduced from 
(5.4) by taking a limit

L(z) = lim
s→∞

Ls(z − s)

i
√

2s

⎛
⎜⎜⎜⎝

i
√

2s I 0

0 − i√
2s

I

⎞
⎟⎟⎟⎠ , (5.11)

in analogy to the sl(2) case discussed in e.g. [17,23]. Here the matrix on the right satisfies the 
condition in (2.11).

2 A similar Lax matrix in factorised form was obtained in [10] where the matrix space is given by a spinor representa-
tion.
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5.2. From spinor to first fundamental

We will now derive the quadratic Lax matrices (4.12) from the linear Lax matrices (4.3). For 
this purpose it is convenient to write the linear Lax matrix in (4.3) as a 4 × 4 block matrix

L(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

z − v̄v v̄A v̄ 0

−Āv zI + ĀA − Jv̄tvt J Ā −Jv̄t

−v A I 0

0 vt J 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.12)

where the blocks on the diagonal are of the size 1, r − 1, r − 1 and 1 respectively. Here we 
defined the vectors v and v̄ containing the oscillators [ai , ̄aj ] = δij where i, j = 1, 2, . . . , r − 1
as

v = (
a1 a2 · · · ar−1

)t
, v̄ = (

ā1 ā2 · · · ār−1
)

. (5.13)

The block matrices Ā and A are defined as before in (4.4) but here they stand for the correspond-
ing matrices of the size (r − 1) × (r − 1). Explicitly we have

Ā =

⎛
⎜⎜⎜⎜⎝

ā−r+1,1 · · · ā−r+1,r−2 0
... . .

.
0 −ā−r+1,r−2

ā−2,1 0 . .
. ...

0 −ā−2,1 · · · −ā−r+1,1

⎞
⎟⎟⎟⎟⎠ , (5.14)

and

A =

⎛
⎜⎜⎜⎜⎝

−a1,−r+1 · · · −a1,−2 0
... . .

.
0 a1,−2

−ar−2,−r+1 0 . .
. ...

0 ar−2,−r+1 · · · a1,−r+1

⎞
⎟⎟⎟⎟⎠ . (5.15)

In addition to the Lax matrix (5.12) we introduce the Lax matrix

L(−1,...,−1,+1)(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z − v̄v v̄J −v̄JAt 0

−Jv I −At 0

Āt Jv −Āt zI + ĀtAt − Jv̄tvt J −v̄t

0 0 vt 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5.16)

which can be obtained from (5.12) by applying the similarity transformation B(−1, . . . , −1, 1), 
cf. (2.12). We proceed as in Section 5.1 and introduce two sets of oscillators to multiply the Lax 
matrices (5.12) and (5.16) in the matrix space while taking the tensor product in the oscillator 
space. One finds that the product can be written as

L[1](z + s)L[2]
(−1,...,−1,+1)(z − s − κ + 1) = SLs(z)GS−1 . (5.17)

Here not all oscillators [2] can be absorbed into the matrix G. The latter takes the form
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G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 I −At
[2] 0

0 0 I 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.18)

which again satisfies GG′ = I and thus G is a solution to the RTT-relation. It contains (r−1)(r−2)
2

annihilation oscillators. Their conjugates have been absorbed by the similarity transformation in 
the oscillator space

S = exp
[− tr(Ā[1]Āt

[2]) − v̄[2]JĀ[1]v[1]
]

. (5.19)

It transforms the oscillators in A as follows

SAt
[2]S−1 = At

[2] − Ā[1] , SA[1]S−1 = A[1] − Āt
[2] − v[1]v̄[2]J + v̄t

[2]v
t
[1]J (5.20)

SA[1]S−1 = A[1] − Āt
[2] − v[1]v̄[2]J + v̄t

[2]v
t
[1]J (5.21)

while the remaining oscillators transform as

S v̄[1]S−1 = v̄[1] − v̄[2]JĀ[1] , Sv[2]S−1 = v[2] + JĀ[1]v[1] , (5.22)

from which follows that

S v̄t
[1]S−1 = v̄t

[1] + JĀ[1]v̄t
[2] , Svt

[2]S−1 = vt
[2] − vt

[1]JĀ[1] . (5.23)

The final Lax matrix Ls(x) then depends on (r+2)(r−1)
2 pairs of oscillators. It can be written as

Ls(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(z + s)(z − s − κ + 1) − w̄Ls (z)w + 1

4
w̄Jw̄t wt Jw w̄Ls (z) − 1

2
w̄Jw̄twt J −1

2
w̄Jw̄t

−Ls (z)w + 1

2
Jw̄twt Jw Ls (z) − Jw̄t wt J −Jw̄t

−1

2
wt Jw wt J 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.24)

where we used the relations v̄JĀv̄t = 0 as well as vJĀvt = 0. Here Ls(x) denotes the spinorial 
Lax matrix in (5.4) of size 2(r − 1) × 2(r − 1) containing (r−1)(r−2)

2 pairs of oscillators. The Lax 
matrix Ls can be written in the factorised form

Ls(z) =

⎛
⎜⎜⎜⎜⎜⎝

1 w̄ −1

2
w̄Jw̄t

0 I −Jw̄t

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

(z + s)(z − s − κ + 1) 0 0

0 Ls(z) 0

0 0 1

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

−w I 0

−1

2
wt Jw wt J 1

⎞
⎟⎟⎟⎟⎟⎠ ,

(5.25)
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where

w̄ =
(

v̄[2]J v̄[1]
)

, wt J =
(

vt
[1]J vt

[2]
)

, (5.26)

and

Jw̄t =
⎛
⎜⎝ Jv̄t

[1]

v̄t
[2]

⎞
⎟⎠ , w =

⎛
⎝ Jv[2]

v[1]

⎞
⎠ . (5.27)

To conclude this section, we remark that the Lax matrix Ls within Ls is build from the oscil-
lators in (5.14) and (5.15) with subindex [1] which commute with w and w̄. As such they form 
a closed so(2(r − 1)) algebra in the representation labelled by s. For s = 0 and highest weight 
state |0〉, the Fock vacuum of the annihilation operators ai,j in Ls satisfying ai,j |0〉 = 0, we find 
that

L0|0〉 = zI|0〉 . (5.28)

This corresponds to the trivial one-dimensional representation of the Lax matrix in (5.7). The 
observation (5.28) allows us to identify 〈0|L0(z)|0〉 = L(z), cf. (4.12). As such L(z) is inter-
preted as a reduction of Ls where the so(2(r − 1) subalgebra mentioned above is in the trivial 
representation. Since the oscillators w and w̄ commute with Ls , this can be seen as a proof that 
L(z) is a solution to the RTT-relation. This is similar to the case of A-type studied in [18].

5.3. First fundamental representation

In the following we derive the quadratic solution Ln,s(z) corresponding to the representation 
f = (s, s, . . . , s, n) of so(2r). In particular for s = 0 we recover the Lax matrix for the first funda-
mental representations f = (0, . . . , 0, n) [3,4] realised in terms of Holstein-Primakoff oscillators. 
To derive the more general solution Ln,s(z) we multiply the Lax matrix (5.24) containing Ls with 
a Lax matrix of the type (4.12) where s = 0. For this we define

L(+1,...,+1,−1)(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 wt J −1

2
wt Jw

−Jw̄t zI − Jw̄twt J −zw + 1

2
Jw̄twt Jw

−1

2
w̄Jw̄t zw̄ − 1

2
w̄Jw̄twt J z2 + z(2 − r − w̄w) + 1

4
w̄Jw̄twt Jw

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.29)

which is obtained from (4.12) by acting with the similarity transformation B(1, . . . , 1, −1) in 
(2.12). Here w and w̄ denote the vectors defined in (4.14). Multiplying the two solutions (5.24)
and (5.29) we find

L[1]
s (z − x1)L

[2]
(+1,...,+1,−1)(z − x2) = SL[1]

n,s(z)G[2]S−1 . (5.30)

Here the parameters x1,2 are fixed to be

x1 = 2 − r − n
, x2 = r + n

, (5.31)

2 2
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while the matrix G reads

G[2] =

⎛
⎜⎜⎜⎜⎜⎝

1 wt
[2]J −1

2
wt

[2]Jw[2]

0 I −w[2]

0 0 1

⎞
⎟⎟⎟⎟⎟⎠ . (5.32)

Again we determine G′ and verify that GG′ = I. The similarity transformation is defined via

S = exp
[−w̄[1]Jw̄t

[2]
]

. (5.33)

It acts on the oscillators in (w, w̄) as

Sw[2]S−1 = w[2] + Jw̄t
[1] , Swt

[2]S−1 = wt
[2] + w̄[1]J , (5.34)

and

Sw[1]S−1 = w[1] + Jw̄t
[2] , Swt

[1]S−1 = wt
[1] + w̄[2]J . (5.35)

The final Lax matrix takes a rather lengthy form and here we only present it in the more concise 
factorised form

L[1]
n,s(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 w̄[1] −1

2
w̄[1]Jw̄t

[1]

0 I −Jw̄t
[1]

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

D[1]
s (z)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −w̄[1] −1

2
w̄[1]Jw̄t

[1]

0 I Jw̄t
[1]

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(5.36)

where the middle part is written as

D[1]
s (z) =

⎛
⎜⎜⎜⎜⎜⎝

(z − x1)(z − x1 − r + 2) 0 0

−Ls(z − x1)w[1] (z − x2)Ls(z − x1) 0

−1

2
wt

[1]Jw[1] wt
[1]J(z − x2) (z − x2)(z − x2 − r + 2)

⎞
⎟⎟⎟⎟⎟⎠ .

(5.37)

Here Ls denotes the spinorial Lax matrix in (5.4). With the same argument as outlined in the 
previous subsection we can consider the trivial representation with s = 0. Then the middle part 
of the Lax matrix in (5.36) simplifies and yields

D[1]
0 (z) =

⎛
⎜⎜⎜⎜⎜⎝

(z − x1)(z − x1 − r + 2) 0 0

−w[1](z − x1) I(z − x1)(z − x2) 0

−1

2
wt

[1]Jw[1] wt
[1]J(z − x2) (z − x2)(z − x2 − r + 2)

⎞
⎟⎟⎟⎟⎟⎠ .

(5.38)
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The matrix Ln,s contains (r−1)(r+2)
2 pairs of oscillators while after taking s = 0 we reduce the 

number of oscillators by (r−1)(r−2)
2 and effectively remain with 2(r − 1) pairs of oscillators in 

Ln. By construction these are solutions to the RTT-relation.
In the latter case with s = 0 we can compare our result to the quadratic solutions known in the 

literature corresponding for the symmetric generalisations of the first fundamental representation 
[4] where the generators MAB , as discussed in Appendix A, were used. In our basis it can be 
written in terms of the so(2r) generators Fab as

Ln(z) = z2 + zEabFba + EabGba , (5.39)

where Gab can be expressed in terms of the generators Fab as

Gab = 1

2
FcbFac + κ

2
Fab − 1

4

(
(κ − 1)2 + 2κn + n2

)
δab . (5.40)

The constraint satisfied by the generators is cubic and reads

(Fab − δab) (Fbc − nδbc) (Fcd + (n − 2κ)δcd) = 0 , (5.41)

cf. [4]. We have verified (5.40) and (5.41) for r = 3, 4, 5 using a computer algebra program. We 
refer the reader to [11] where the constraints on the Lax matrix are studied in general.

The resulting Holstein-Primakoff realisation is labelled by the weights f = (0, . . . , 0, n) with 
the Fock vacuum as the highest weight state. It is finite dimensional for n ∈ N0. Inserting the 
first fundamental representation in terms of matrices Fab = Eab −E−b,−a into (5.39) we recover 
R(z − κ

2 ). We further note that we recover the degenerate Lax matrix (4.12) by taking the limit

L(z) = lim
n→∞

Ln(z + x1)

n

⎛
⎜⎜⎜⎝

n 0 0

0 −I 0

0 0 n−1

⎞
⎟⎟⎟⎠ . (5.42)

To end this section we remark that one can show that the linear order of Ln,s yields a repre-
sentation of so(2r) in Holstein-Primakoff form with the Fock vacuum as a highest weight state 
and the representation labels f = (s, . . . , n). For the equivalent Lax matrix in Jordan-Schwinger 
form we refer the reader to [15]. We expect that the Lax matrix corresponding to the represen-
tation labeled via f = (−s, s, . . . , s, n) can be obtained in the same way by replacing the Lax 
matrix Ls with the one for the other spinor note as discussed in Section 5.1.

6. Towards Q-operators for so(2r) invariant spin chains

This section is devoted to the definition of transfer matrices from monodromies containing 
the solutions we have introduced in the previous section. The fundamental transfer matrix is well 
known. It can explicitly be defined as

T(x) = tra DaRa1(x)Ra2(x) · · ·RaN(x) , (6.1)

where we introduced the diagonal twist matrix only acting non-trivially in the auxiliary space

D = diag (exp[−φr ], . . . , exp[−φ1], exp[+φ1], . . . , exp[+φr ]) . (6.2)

Here the twist parameters are complex variables φi ∈ C with i = 1, . . . , r and the twist matrix 
enjoys the property DD′ = I. As a consequence of the Yang-Baxter equation, the transfer matrix 
constructed in this way commutes with itself at different values of the spectral parameter
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[T(x),T(y)] = 0 . (6.3)

Below we construct further members of the commuting family of operators from the minimal 
oscillator type solutions introduced in Section 4. Here the oscillator space will take the role of 
the auxiliary space. We expect that these transfer matrices are the Q-operators corresponding to 
the nodes of the Dynkin diagram such that their eigenvalues are polynomials with zero’s given 
by the Bethe roots of the appropriate nesting level.

6.1. Spinor type

We can construct a Q-operator from the spinor type solution in (4.3) that commutes with the 
fundamental transfer matrix (6.1) by multiplying N Lax matrices L(x) in the oscillator space 
while taking the tensor product in the matrix space. The Q-operator is then given as the regu-
larised trace over the oscillator space. It reads

Qs(x) = trosc Ds L(x) ⊗ L(x) ⊗ . . . ⊗ L(x) (6.4)

where we introduced the twist (regulator)

Ds = exp

⎡
⎣ ∑

1≤i<j≤r

(φi + φj )ā−j,iai,−j

⎤
⎦ . (6.5)

We can verify that the adjoint action of the twist matrix D on the Lax matrix L(x) can be absorbed 
by the twist in the oscillator space

[L(z),D ⊗ Ds] = 0 (6.6)

As a consequence of the RTT-relation and the property (6.6) it follows that the operator Qs(x)

belongs to the commuting family of operators. In total we can define 2r Q-operators using the 
transformation given in (2.12). They are labeled by the vector �α and defined via

Qs(x; �α) = (B(�α) ⊗ . . . ⊗ B(�α))Qs(x) (B(�α) ⊗ . . . ⊗ B(�α)) |φi→αiφi
. (6.7)

All of them commute with the transfer matrix T(x) at different points of the spectral parameter. 
This can be shown using the relation

(B(�α) ⊗ . . . ⊗ B(�α))T(x) (B(�α) ⊗ . . . ⊗ B(�α)) = T(x)|φi→αiφi
, (6.8)

which follows from the invariance of the R-matrix and the explicit form of the twist in (6.2).

6.2. First fundamental type

A similar construction can be done for the oscillator type solutions on the first fundamental 
node. Here the Q-operator is defined via

Qf (x) = trosc Df L(x) ⊗ L(x) ⊗ . . . ⊗ L(x) . (6.9)

The Lax matrix L(x) was introduced in (4.12) and the twist (regulator) reads

Df = exp

[
r−1∑

(φr + φi)āiai

]
exp

[
r−1∑

(φr − φi)ā−ia−i

]
. (6.10)
i=1 i=1
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Again one can verify that it obeys the corresponding relation as presented for the spinorial case 
in (6.6) and conclude that it commutes with the transfer matrix T(x). Further Q-operators on 
the same node can be obtained from the one defined in (6.9) using the similarity transformations 
introduced in Section 2. Noting that B(−1, . . . , −1) = J, see (2.12), we define the operator

Q̄f (x) = (J ⊗ . . . ⊗ J)Qf (x) (J ⊗ . . . ⊗ J) |φi→−φi
. (6.11)

Further using the transformation in (2.13) we define

Qf (x; i) =
(
B̃ir ⊗ . . . ⊗ B̃ir

)
Qf (x)

(
B̃ir ⊗ . . . ⊗ B̃ir

)
|φr↔φi

, (6.12)

and

Q̄f (x; i) =
(
B̃ir ⊗ . . . ⊗ B̃ir

)
Q̄f (x)

(
B̃ir ⊗ . . . ⊗ B̃ir

)
|φr↔φi

, (6.13)

with 1 ≤ i ≤ r − 1. Thus we found in total 2r Q-operators for the first fundamental node. It can 
be shown using a similar argument as done for the spinor case that the Q-operators obtained from 
Qf commute with the transfer matrix. We expect that the construction of the transfer matrices 
for the remaining Lax matrices can be done analogously.

6.3. Some QQ-relations for D4

In this subsection we present some QQ-relations which support the identifications of the op-
erators introduced in this section with Baxter Q-operators. We focus on the first non-trivial case, 
i.e. r = 4. The quantum space for a given length N of the spin chain is of the size 8N which com-
plicates numeric checks even at low length. For N = 1, 2, 3 we were able to check the following 
QQ-relations:

• 1st spinor node:

eφ1Q[x−1]
s (z; {2})Q[x]

s (z; {1}) − eφ2Q[x]
s (z; {2})Q[x−1]

s (z; {1}) = (
eφ1 − eφ2

)
A[x](z)

(6.14)

• 2nd spinor node:

eφ1Q[x−1]
s (z; ∅)Q[x]

s (z; {1,2}) − e−φ2Q[x]
s (z; ∅)Q[x−1]

s (z; {1,2}) = (
eφ1 − e−φ2

)
A[x](z)

(6.15)

• 1st fundamental node:

eφ3Q[x+1]
f (z)Q[x]

f (z;3) − eφ4Q[x]
f (z)Q[x+1]

f (z;3) = (
eφ3 − eφ4

)
A[x](z)Q[x]

0 (z) (6.16)

for any constant x. Here we employed the standard notation f [x](z) = f (z + x) and denoted the 
Q-operators via Qs(z; I ) = Qs(z; �α) where I = {i1, . . . ik} denotes the positions of k minus signs 
in �α, e.g. {2} ↔ (1, −1, 1, . . . , 1). Further Q0(z) denotes the diagonal Q-operator

Q0(z) = (z + 1)N . (6.17)

It may be viewed as the transfer matrix built from the Lax matrix (5.4) when taking the trivial 
representation in the auxiliary oscillator space. We expect that the matrix A(z) is a Q-operator 
that corresponds to the middle node on the Dynkin diagram of D4, cf. Fig. 2, for which we do 
not have a Lax matrix construction. We have also checked that the operators commute among 
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themselves at different values of the spectral parameter for the cases considered. Further func-
tional relations can be obtained by applying the similarity transformations (2.12) and (2.13) in 
the quantum space and subsequently interchanging the twists as discussed previously. Similar 
relations were proposed in [24] in connection to the ODE/IM correspondence [25]. We plan to 
study the functional relations for D-type spin chains in further detail in an upcoming publication.

7. Conclusion

In this article we obtained four families of solutions to the Yang-Baxter equation of so(2r). 
Two of them seem to be completely new and important for the construction of Q-operators for 
so(2r) spin chains. Two others were known but the realisation of the so(2r) algebra in terms of 
the oscillators has not been considered in the literature. They can be used to construct transfer ma-
trices. We found that it is natural to work in the basis considered in [8] where the degenerate Lax 
matrices have the spectral parameter at leading order on the diagonal and the Yangian commuta-
tion relations can be written in a rather compact form. Further, we showed several factorisation 
formulas among the Lax matrices. All of them are resembling the form of the factorisation that 
appeared in [20] and later in the construction of Q-operators for spin chains in [17,18]. Also we 
have shown that vice versa they are related by taking a limit as familiar for sl(2), see e.g. [17,23], 
or [26] for the trigonometric case of sl(2|1). We expect that the transfer matrices defined in Sec-
tion 6 are the Q-operators corresponding to the extremal nodes of the Dynkin diagram. This is 
supported by our case study of the QQ-relations for r = 4 and low lengths. To proof directly that 
the operators constructed here are indeed the Q-operators one may either show that they obey TQ-
relations, cf. [27], or diagonalise them directly using the algebraic Bethe ansatz, cf. [17,18] and 
[28] for the case of A-type Lie algebras. Further it would be interesting to compare our results to 
the construction in [27] using the prefundamental representation [29]. See also [30,31] where the 
relation between oscillator and prefundamental representations is discussed for the trigonometric 
setup with A-type. For the corresponding Lax matrices including the supersymmetric extension 
we refer the reader to [32] and references therein.

There are several directions that we plan to explore in the future. In particular the construction 
of all Q-operators and T-operators using the oscillators as introduced here and a full derivation 
of the functional relations among them is an interesting goal to pursue. For this purpose, it may 
be advantageous to also study the relation to the construction using characters as done in [33] for 
A-type. The factorisation formulas found here are expected to yield proofs of certain functional 
relations of Q-operators with transfer matrices. We expect that our construction can be gener-
alised to the case where the quantum space (matrix space) is in spinor representation as well 
as to symmetric analogs of the fundamental representation, see [19] for the case of Ar . This is 
also suggested by the factorised form of the Lax matrices. It seems however difficult to obtain 
solutions corresponding to non-extremal nodes of the Dynkin diagram. So far our attempts of 
deriving them via fusion have failed. To understand such representations but also to achieve a 
more complete classification we plan to evaluate the Lax matrices from the shifted Yangian [21]
as done for A-type in [34]. We plan to report on this subject in an upcoming publication. It would 
further be interesting to verify the spectral properties of the Lax matrices as predicted in [35,36]. 
This has been studied in [37] for case of A-type Lie algebras. Other directions include the study 
of oscillator type K-matrices as done in [38–40], the generalisation of the obtained solutions to 
the trigonometric case and of course the study of oscillator type Lax matrices, Q-operators and 
functional relations that emerge from Yangians corresponding to other Lie algebras.
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Appendix A. Generators and commutation relations

It is straightforward to compute the action of the similarity transformation S in (2.8) on the 
matrix elements eAB . We find

Sei,j S−1 = 1

2

(
E−i,−j − E−i,j − Ei,−j + Ei,j

)
, (A.1)

Sei,r+j S−1 = i

2

(−E−i,−j − E−i,j + Ei,−j + Ei,j

)
(A.2)

Ser+i,j S−1 = i

2

(
E−i,−j − E−i,j + Ei,−j − Ei,j

)
, (A.3)

Ser+i,r+j S−1 = 1

2

(
E−i,−j + E−i,j + Ei,−j + Ei,j

)
, (A.4)

where i, j = 1, . . . , r . It now follows immediately that

1∑
k1,k2=0

(
Serk1+i,rk2+j S−1

)
⊗

(
Serk2+j,rk1+iS

−1
)

=
∑

k1,k2∈{+1,−1}
Ek1i,k2j ⊗ Ek2j,k1i ,

(A.5)

cf. Section 2, and we find (S ⊗ S)K 
(
S−1 ⊗ S−1

) = Q after summing over the indices i, j .
The Lax matrices for so(2r) are commonly written in terms of the generators

[MAB,MCD] = δADMBC + δBCMAD − δACMBD − δBDMAC , (A.6)

with MAB = −MBA. In Section 5 we defined the generators Fab which are related to MAB via∑
a,b

EabFba =
∑
A,B

SeABS−1MBA . (A.7)

This identification can be written in terms of components as

F−i,−j = 1

2

(
Mi,j + iMi,j+r − iMi+r,j + Mi+r,j+r

)
, (A.8)

F−i,j = 1 (−Mi,j + iMi,j+r + iMi+r,j + Mi+r,j+r

)
, (A.9)
2

https://lapth.cnrs.fr/conferences/RAQIS/RAQIS18/
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Fi,−j = 1

2

(−Mi,j − iMi,j+r − iMi+r,j + Mi+r,j+r

)
, (A.10)

Fi,j = 1

2

(
Mi,j − iMi,j+r + iMi+r,j + Mi+r,j+r

)
. (A.11)
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