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We present a comprehensive theory of the dynamics and fluctuations of a two-dimensional sus-
pension of polar active particles in an incompressible fluid confined to a substrate. We show that,
depending on the sign of a single parameter, a state with polar orientational order is anomalously
stable (or anomalously unstable), with a nonzero relaxation (or growth) rate for angular fluctua-
tions at zero wavenumber. This screening of the broken-symmetry mode in the stable state does
lead to conventional rather than giant number fluctuations as argued by Bricard et al., Nature 503,
95 (2013), but their bend instability in a splay-stable flock does not exist and the polar phase has
long-range order in two dimensions. Our theory also describes confined three-dimensional thin-film
suspensions of active polar particles as well as dense compressible active polar rods, and predicts a
flocking transition without a banding instability

Biological systems are powered by energy supplied di-
rectly and independently at the level of constituent par-
ticles, and move systematically while dissipating it. This
can lead to macroscopic stresses and currents responsible
for diverse phenomena ranging from crawling of conflu-
ent cellular cultures to coherent motion of animal flocks.
Artificial analogues of coherently moving biological sys-
tems have also been developed, most notably polar flocks
in vibrated granular layers [1] and self-propelled rollers
[2]. “Active hydrodynamics” [3–7], which seeks to under-
stand how nonequilibrium currents and forces affect the
orientational order of anisotropic units, presents a gen-
eral framework to study the large scale dynamics in such
microscopically driven systems.

Active phases frequently defy expectations rooted in
equilibrium physics. Motile XY spins [3–5, 8] on a sub-
strate display long-range orientational order even in two
dimensions, and anomalous number fluctuations with the
standard deviation in number N of particles in a region
growing more rapidly than

√
N [3, 8–10]. Enhancing the

noise in this system leads to a disordered phase through a
transition that is again distinct from its equilibrium ana-
logue: an instability towards an inhomogeneous banded
phase generically occurs between the homogeneously or-
dered and disordered phases ultimately rendering the
transition discontinuous [11, 12].

Much of our understanding of polar active systems [8,
11, 12] comes from studies that ignore any ambient sol-
vent, but biological systems are typically suspensions in
an incompressible fluid that mediates long-range hydro-
dynamic interactions. This aspect is well dealt with for
bulk suspensions [3, 13], but subtleties arise for a sys-
tem confined to two dimensions by walls or adsorption
on a substrate. The Stokesian hydrodynamic interac-
tion, although screened at leading order by the bounding
surfaces, leaks through in a weakened form through the
inescapable nonlocal constraint of incompressibility [14–

16].
In this Letter we present a general theory of polar ac-

tive particles with a nonconserved velocity field on a two-
dimensional substrate, taking the effects of confined in-
compressible flow correctly into account. In such systems
motility drives flow, and flow reorients motility. These
tendencies, if mutually reinforcing and strong enough,
are known [1, 2] to lead to spontaneous flocking.

Here are our main results. (i) Through the interplay of
motility and incompressibility, such a flock is stable for all
directions of wavevector, with both bend and splay defor-
mations of the orientational broken-symmetry variable in
such a flock relaxing on a finite, non-hydrodynamic time
scale as the wavenumber q → 0. This contradicts the
claimed generic bend instability [2] of confined incom-
pressible flocks, and is of course contrary to conventional
expectations [17] of a vanishing relaxation rate in the
long-wavelength limit. (ii) Motility and incompressibility
also suppress the instability towards the inhomogenoeus
banded state that generically occurs in compressible po-
lar systems between the ordered and the disordered states
implying that a direct transition from an isotropic state
to a homogeneous flock is possible, without the inter-
vention of a banded phase. (iii) The variance of orien-
tational fluctuations is non-divergent for q → 0, with a
correlation length that is finite for any nonzero motility.
As a consequence number fluctuations are normal, with
variance proportional to the mean [18]. (iv) Our main
results remain correct up to very large length scales even
in weakly compressible systems [1, 8]. Our theory is rele-
vant to all current experiments on planar confined active
polar suspensions [19–21], which we illustrate by show-
ing how it emerges from the averaging of the dynamics of
three-dimensional polar fluid confined in one direction.

We start by constructing the general dynamical equa-
tions for the polarisation p(r, t) and the concentration
c(r, t) of a collection of active units suspended in a fluid
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with the total velocity field of the particles and the fluid
being u(r, t), where r is a two-dimensional position vec-
tor. The joint density ρ of the particles and the fluid is
incompressible i.e. ρ̇ = 0 implying ∇ · u = 0. In the
absence of activity and fluid flow, their equilibrium re-
laxation derives from a Landau-de Gennes free energy,
which we write in the single Frank constant approxima-
tion for simplicity [22]:

H =

∫
r

[
α(c)

2
|p|2 +

β

4
|p|4 +

K

2
|∇p|2 + γp · ∇c+ c ln c

]
,

(1)
where the sign of α(c) determines the stability of the
isotropic, flow-less phase. A negative α thus gives rise
to a non-zero polarization, which remains bounded due
to the confining β-term and whose heterogeneities are
suppressed by the elasticity constant K. The γ-term de-
scribes the tendency of the polarity to align along or op-
posite to concentration gradients as allowed by symmetry
[23], while the last term is characteristic of an ideal solu-
tion (setting kBT = 1).

To lowest order in gradients, the generic dynamical
equation for p is

∂tp = Λu− δH
δp

, (2)

where the coefficient Λ aligns the polarisation vector with
the local suspension velocity and is specific to systems
in contact with a substrate [1, 24, 25]. We treat it as
independent of the direction of p, which does not qual-
itatively modify our conclusions [26]. The coefficient in
front of the second term of the right-hand side of Eq. (2)
is set to one through a proper choice of time units. Sim-
ilarly, ignoring inertia, Newton’s second Law reduces to
force balance which to lowest order in gradients is

Γu = υp−∇Π− Λ
δH
δp

, (3)

where Γ is the coefficient of damping by the substrate
and Π is the pressure that enforces incompressibility, i.e.,
∇ · u = 0. The υp denotes the active polar force density
of the particles. The final term on the right-hand-side of
Eq. (3) is required by Onsager symmetry to ensure that
the steady-state in the limit of vanishing activity reduces
to the equilibrium distribution. Finally, the continuity
equation for the concentration field to second order in
gradients is

∂tc+ u · ∇c = −∇ ·
(
υpcp−Dcc∇

δH
δc

)
. (4)

where vpcp denotes an active concentration current due
to the motility of the particles [3–5, 8, 27]. The sec-
ond term of its right-hand-side leads to standard diffu-
sive dynamics. Equations (2-4) are similar to the ones

for a two-fluid polar active system [1], with the only dif-
ference being the incompressibility of the joint density of
the particles and the fluid.

To determine the stability of a homogeneous isotropic
(|p| = 0) state, we perform a linear stability analysis of
Eqs. (2) and (3). For Λυ > 0, the state is destabilised
when [1]

α̃ = α(c)− Λυ

Γ + Λ2
= α(c)− w < 0. (5)

Thus, for υ > 0, a positive alignment parameter Λ
favours the instability of the homogeneous disordered
phase, as it reinforces the particles’ alignment once
they have started moving [24]. Following this insta-
bility, a homogeneous ordered phase with p = p0x̂,
c = c0 and u = u0x̂ may form, where p2

0 = |α̃/β|
and u0 = (w/Λ)p0. To study its stability, we project
Eq. (3) transverse to the wavevector q to eliminate the
velocity field. Introducing the polarisation fluctuations
δp = (p0 + δp)(cos θx̂+ sin θŷ)−p0x̂, we find closed form
equations for small deviations from the ordered state:
∂t(δc, δp, θ) = M · (δc, δp, θ). The three eigenvalues of
matrix M each characterize a relaxation mode of the sys-
tem. Naively, the presence of both a conservation law for
the concentration and of a broken continuous symmetry
in the orientation of p would suggest that two of these
modes should relax on slow ‘hydrodynamic’ time scales,
i.e., that the associated eigenvalues vanish in the q→ 0
limit. A detailed calculation however reveals that this is
not correct [26] in the presence of the long-range hydro-
dynamic interactions mediated by the incompressibility
of the fluid. Such long-range interactions typically sup-
press fluctuations in the ordered state and thus stabilize
it, as is the case in dipolar XY models [28]. Here, they
imply that our system has only one hydrodynamic mode
associated with the relaxation of the concentration with
relaxation rate κc ∝ q2, the stability of which we dis-
cuss later. The remaining two eigenvalues, which govern
the dynamics of the polarization fluctuations, are non-
hydrodynamic, and thus go to a finite limit as q → 0,
namely

κ± =− 1

2

[
w + 2|α̃|

(
1 +

Λ2

Γ
sin2 φ

)
(6)

±

√[
w + 2|α̃|

(
1 +

Λ2

Γ
sin2 φ

)]2

− 8|α̃|w sin2 φ

(
1 +

Λ2

Γ

) ,
where φ is the angle between q and x̂. For w < 0, one
of the eigenvalues is always positive, implying a generic
instability. For w > 0, both κ+ and κ− are stabilising,
though one of the two eigenvalues vanish for fluctuations
whose wavevectors are aligned precisely in direction of
ordering. This implies that all components of the polari-
sation vector have a finite exponential-decay time to their
steady state value even in infinite systems. The ordered
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state is thus exceptionally stable to polarisation fluctua-
tions, a consequence of both activity-induced motility υ
and long-range hydrodynamic interactions due to incom-
pressibility.

While Eq. (6) demonstrates that two of the eigenval-
ues of the dynamical matrix M are stabilising, its third
and only hydrodynamic eigenvalue κc(φ) also has to be
negative to ensure that a homogeneous polar phase ex-
ists (see the supplemental material for the full expression
of κc [26]). However, close to the transition (i.e., for
α̃ → 0−), this eigenvalue is known to always turn pos-
itive for φ = 0 in compressible systems [3], implying a
generic instability towards a non-homogeneous, banded
phase [11, 12, 29, 30]. In our incompressible system how-
ever, this instability is suppressed for all−γυp < Dcw/c0,
which is simply the condition for the stability of the ho-
mogneous flock:

lim
α̃→0

κc(0) = −
[
Dc +

c0γυp
w

]
q2
x (7)

As a result, the transition to the ordered state in a polar
suspension in an incompressible fluid will not necessarily
proceed via a banded phase and can thus differ from that
of flocks in the absence of a fluid medium.

To determine the effect of noise on the ordered phase of
our system, we first compute the static structure factor of
its angular fluctuations in the presence of an additional
zero-mean Gaussian white noise ξ(r, t) in the right-hand
side of Eq. (3) with 〈ξ(r, t)ξ(r′, t′)〉 = 2Bδ(r−r′)δ(t−t′).
In the aligned phase, this yields:

S(q, φ) = 〈|θ(q)|2〉 =
B

Kp(φ)q2 + w sin2 φ
(8)

where the somewhat cumbersome form of Kp(φ) is given
in the supplement [26]. The integral of this structure
factor over wavevectors q converges, implying a finite
amplitude for the angular fluctuations and thus the ex-
istence of a long-range ordered aligned polar phase. To
verify that this conclusion, which we obtained by lin-
earizing Eqs. (2-4), is not modified by the inclusion of
nonlinearities, we consider the simple case of a flock in
which number is not conserved [31]. In this simple case,
our model exactly maps onto the polar flock with con-
straint ∇ ·p = 0 studied in Ref. [32]. This mapping ulti-
mately yields exact equal-time exponents of the ordered
phase via a transformation to the KPZ equation [26].
This implies that our model, in which there is no explicit
constraint on p, also has long-range order in two dimen-
sions with the same roughness and anisotropy exponents
as in Ref. [32]. This relation between the nonlinear the-
ory of polar swimmers without number conservation in
incompressible polar fluid and a theory of a suspension
of polar active particles with ∇ · p = 0 is unusual; for
instance, an apolar system in an incompressible fluid de-
scribed in [9] does not correspond to a theory in which
∇∇ : Q = 0, where Q is the apolar order parameter. In

addition, removing the condition of fixed concentration
introduces additional relevant nonlinearities and spoils
the mapping, likely resulting in an ordered phase with
distinct behaviour.

Beyond the existence and stability of an ordered phase
in two dimensions, a hallmark of active matter physics is
the possibility of much larger density fluctuations than
allowed by equilibrium physics. To assess their existence
in our system, we add a non-conserving Gaussian white
noise to Eq. (2) and a conserving noise to Eq. (4). We
find that the number fluctuations now scale as

√
N as

in equilibrium systems [26], despite the presence of an
active particle current ∝ p in Eq. (4). Indeed, since all
components of p have fast, non-hydrodynamic relaxation
rates, the polarisation quickly aligns with any gradient
in concentration and p ∼ ∇c on long (hydrodynamic)
time and length scales. As a result, the active ∝ p cur-
rent is equivalent to a passive diffusive current, implying
equilibrium-like statistics for the concentration fluctua-
tions. This is a direct result of the nonzero restoring
torque of our system for orientational distortions even in
the limit of long wavelengths [18].

While the above results are directly relevant for the
experiments on single layers of motile particles [2], our
theory also describes the effective thickness-averaged dy-
namics of three-dimensional films of polar active particles
in an incompressible fluid of lateral dimension L, con-
fined along the z direction over a length scale h � L.
To demonstrate this, we describe the three-dimensional
polar fluid by the three-dimensional polarisation vector
field p̄(x̄, t) = (p̄⊥, p̄z), velocity ū(x̄, t) = (ū⊥, ūz) and
particle number c̄(x̄, t), where x̄ is a three-dimensional
position vector, and p̄⊥ and p̄z and ū⊥ and ūz are the
projections transverse to and along the confining direc-
tion of the three-dimensional polarisation and velocity
respectively. We further denote the three-dimensional
gradient by ∇̄. We describe the three-dimensional dy-
namics of our system using a standard set of constitutive
equations [33, 34], and describe our detailed thickness-
averaging calculation in the supplementary material [26].
Essentially, we use the lubrication approximation of thin-
film flows [35] to project our equations in two dimensions,
exploiting the fact that the gradients along z are large,
namely ∂z̄ = O(1/h) � ∂x̄, ∂ȳ. As is standard in such
theories, the thickness average of the three-dimensional
viscous force density η̄∇̄2ū, with η̄ being the viscosity of
the three-dimensional fluid, yields the friction-like force
−Γu in Eq. (3) to lowest order in h/L, where Γ = 12η̄/h2

and u is the thickness-averaged velocity in the xy plane,
with the three-dimensional incompressibility condition
translating into ∇ · u = 0. Beyond this standard viscous
force and other passive terms reminiscent of classical hy-
drodynamics, our three-dimensional dynamical equations
feature two three-dimensional active polar force densi-
ties, namely ∇̄2p̄ and ∇̄ · (p̄p̄) [34]. The former char-
acterises the fore-aft symmetry around, and hence the
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FIG. 1. A log-log plot of the dimensionless decay rates for the
two eigenmodes associated with the coupled dynamics of the
total density and angular fluctuations in a weakly compress-
ible system [Eq. (9)]. While both modes display a diffusive
(slope 2) relaxation at low dimensionless wavevector q̃, tak-
ing the dimensionless compressibility χ̃ to zero shifts the blue
curve to the left, implying that the relaxation rate associ-
ated with any finite q̃ goes to infinity. Meanwhile, the second
relaxation rate (black curve) develops a wide q̃-independent
plateau, mimicking the non-hydrodynamic relaxation rate as-
sociated with a truly incompressible system.

motility of, an elementary active object. Upon thick-
ness averaging it leads to the two-dimensional propulsive
force ∝ p of Eq. (3), where p is the thickness average of
the transverse polarization p̄⊥. The latter active term
determines the contractile or extensile character of ac-
tive units, and leads to a force ∝ ∇ · (pp), which is
subdominant at large lateral scales and is thus not in-
cluded in our two-dimensional equations. We similarly
obtain Eq. (2) for the polarisation field by choosing walls
forcing a non-trivial z̄-dependence on the polarisation p̄
through the boundary conditions p̄z̄=0 = ẑ and p̄z̄=h =
−ẑ. Polarization is generically affected by shear, which
we describe through the symmetric strain rate tensor
Ū = (1/2)[∇̄ū + (∇̄ū)T ]. This coupling gives rise to two
different contributions to ∂tp̄ in the three-dimensional
polarization equation, namely ∇̄ · Ū = (∇̄ · ∇̄)ū which
describes the alignment of the polarisation vector with
with the local gradients of the shear rate, and p̄·Ū, which
describes its alignment to a local shear flow. Again us-
ing lubrication arguments, we obtain the first term on
the right-hand-side of Eq. (2) from the former. The lat-
ter leads to the usual flow-alignment, which aligns the
polarity with the two-dimensional velocity gradient and
due to its subdominance is not included in (2). Finally,
the thickness-averaged concentration equation (4) is ob-
tained by imposing no-flux boundary condition on the
three-dimensional continuity equation for c̄.

While strictly valid for incompressible systems, our
conclusions regarding the non-hydrodynamic relaxation
of angular fluctuations and non-giant number fluctua-
tions are also applicable up to very large length scales
in weakly compressible systems such as fluid-less collec-
tions of motile particles or active polar rods in a dense
bead medium [1]. To characterize such systems, we rein-

troduce the dynamics of their overall density field ρ which
now satisfies the conservation equation ∂tρ = −∇ · (ρu).
We disregard the relaxation of the polar particle concen-
tration c for simplicity, and consider only the coupled
dynamics of ρ and of small fluctuations in the angle θ
described by Eqs. (2-3). We assume a system deep in
the ordered phase, implying that δp quickly relaxes to
zero on hydrodynamic time scales. We assume a linear
relation between small changes in the pressure Π and the
density ρ: Π(ρ)−Π(ρ0) ' δρ/(χρ0), where χ is the fluid’s
compressibility, ρ0 is the average density and δρ is the de-
viation of the local density from its average value. Defin-
ing the non-dimensional compressibility χ̃ = χKpρ0Γ, we
first check the fate of the relaxation rate of angular fluctu-
ations (the wavevector-independent relaxation rate being
strictly valid only for χ̃ = 0) in our weakly compressible
fluid (χ̃ � 1). We focus our discussion on the direction
φ = π/2, which displays the strongest incompressibility-
induced stabilization in the incompressible case. The
eigenvalues associated with the coupled relaxation of the
density and orientational fluctuations (δρ, θ) read

κ′± = −wq̃
2

2χ̃

[
1 + χ̃±

√
(1− χ̃)2 − 4χ̃

q̃2

]
. (9)

with q̃ = q
√
K/w. We see in Fig. 1 that κ′+ ∼

−wq̃2/χ̃ becomes infinitely large as χ̃ → 0, indicating
that the pressure homogenises very quickly in a nearly-
incompressible medium. Following this rapid homogeni-
sation, the alignment direction θ relaxes at a rate κ′−.
In an incompressible system, this relaxation rate was
non-hydrodynamic, i.e., went to a finite limit as q → 0,
leading to polar-ordered states that were singularly less
susceptible to angular fluctuations than any equilibrium
system or even highly compressible flocks [8]. This is
not strictly the case here, as κ′− ∝ −q̃2 for very small
wavevectors q̃ < χ̃1/2. However, κ′− has a plateau for
intermediate wavevectors χ̃1/2 < q̃ < 1 that extends to
q → 0 for χ̃→ 0. As the smallest wavevector realisable in
a system of size L is π/L, this implies that a weakly com-
pressible polar fluid will be indistinguishable from a truly
incompressible polar system as long as L� 1/

√
χwρ0Γ.

Furthermore, to assess the effect of noise, we recom-
pute the structure factor of Eq. (8) for our weakly com-
pressible system to find

Sχ̃(q, π/2) =

(
1 +

χ̃

1 + χ̃
q̃−2

)
S(q, π/2), (10)

where S(q) is the incompressible structure factor of
Eq. (8). Again, we find that our weakly compressible sys-
tem behaves as an incompressible one down to q̃ ≈

√
χ̃,

implying that intermediate-size compressible systems are
deprived of giant-number fluctuations similar to strictly
incompressible systems, while very large ones do display
them.
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While our discussion has so far focused on polar par-
ticles that align with the local flow (w > 0), consistent
with existing experiments [1, 2], systems with w < 0 are
conceivable [36]. One possibility would be particles that
point opposite to the local flow (Λ < 0) while moving
along their polarity (υ > 0). In this case the homo-
geneous ordered phase is unstable and all perturbations

with wavenumber smaller than
√
K/(|w| sin2 φ) grow ex-

ponentially.
The analysis presented here clarifies theoretical expec-

tations on the structure of number fluctuations in exist-
ing experiments on active systems in an incompressible
fluid, which in conjunction with experimental challenges
have been a source of confusion [2, 14]. It moreover pro-
vides a framework to analyze the dynamics of numerous
quasi-2D biological systems, which are almost invariably
immersed in an incompressible fluid, from the scale of
the intracellular medium [19] to that of crawling cell lay-
ers [37]. Its predictions of non-hydrodynamic relaxation,
the possible absence of a banding phase at the disorder-
order transition and normal number fluctuations should
be testable in any of these contexts or in artificial chemo-
tactic colloids [38]; such artificial systems could addition-
ally be engineered to align antiparallel to the motility
direction (Λυ < 0), which we predict will abolish long-
range order altogether. Our results are also largely ap-
plicable to weakly compressible systems such as dense
granular layer of polar rods or dense mixtures of rods
and beads [1]. From a theoretical standpoint, our work
establishes that the hydrodynamic interaction singularly
alters equal-time as well as time-displaced correlations of
the orientation even when the long-wavelength fluctua-
tions of the fluid momentum-density are damped by fric-
tion with a substrate. Alongside the now-classic breaking
of the Hohenberg-Mermin-Wagner theorem [4, 8] and ex-
istence of anomalously large fluctuations [3, 5, 8], this
finding constitutes another striking violation of equilib-
rium expectations in active matter.
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