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Abstract

Long-lived isomeric states in 97Ag and 101−109In were investigated with the FRS Ion Catcher at
GSI. In the isotope 97Ag, a long-lived

(
1/2-

)
isomeric state was discovered, and its excitation

energy was determined to be 618(38) keV. This is simultaneously the first discovery of a nuclear
isomeric state by multiple-reflection time-of-flight mass spectrometry. The measured excitation
energies were compared to large-scale shell-model calculations, which indicated the importance
of core excitation around 100Sn. Furthermore, advanced mean-field calculations for the 97Ag
nucleus and relevant neighboring nuclei were performed, which contributed to a better under-
standing of the repetitive appearance of certain isomeric structures in neighboring nuclei, and
supported the discovery of the isomeric state in 97Ag in a global shell-evolution scheme.

Keywords: mass spectrometry, multiple-reflection time-of-flight mass spectrometry, nuclear
structure, isomers, isomer-to-ground state ratio, exotic nuclei

1. Introduction

The lifetimes of isomers are much longer than those of common excited states [1]. There are
several reasons for this: the shape, the spin, or the spin orientation relative to a symmetry axis of
the isomeric state. The properties of nuclear isomers [2] are significant for the understanding of
nuclear structure because they provide stringent tests for nuclear models. There is a broad field

Preprint submitted to Physics Letters B December 23, 2019



of applications for nuclear isomers, ranging from new possibilities for the storage of energy to
the impact on nuclear astrophysics and the synthesis of the elements in the universe [3].

The nucleus 100Sn is the heaviest self-conjugate doubly-magic nucleus in the chart of nu-
clides, and therefore, attracts a broad interest in both experimental and theoretical nuclear physics.
Since its discovery [4, 5], it has been the subject of many investigations and measurements, lead-
ing to a better understanding of the nuclear structure in this region of the nuclear chart [6].
Because the experimental access to 100Sn is still limited, most of the data obtained stems from
nuclei in the neighborhood. Therefore, the knowledge of their detailed structure is indispens-
able in understanding this region of the chart of nuclides. Recently, new isotopes in this region
were identified, and their half-lives and decay properties have been measured [7–10]. In-beam
and decay spectroscopy delivered new information on single particle level energies and residual
nucleon-nucleon interaction [6], especially below 100Sn, in the last 20 years. 100Sn, as an open
spin-orbit (SO) core nucleus, allows the study of the 1g9/2 intruder-dominated states, with signifi-
cantly different angular momentum from that of the neighboring states. Consequently, states that
are close in energy have a large difference in spin, causing the existence of long-lived isomeric
states, i.e., meta-stable states. The comparison of large scale shell model (LSSM) and mean field
approaches, and their complementarity, will lead to a clearer understanding of nuclear structure
evolution in this region.

The masses of nuclei reflect their total binding energy, and can be measured directly using
mass spectrometry techniques. The mass reveals basic information about nuclear properties [11].
Despite experimental efforts, documented by many Penning trap measurements [12–15], there is
a large uncertainty still associated with the mass of 100Sn (∆m ≈ 300 keV) [16, 17]. The heaviest
N = Z nuclides with a mass that is measured directly is 76Sr. Those neutron-deficient nuclei are
synthesized in astrophysical environments, where the rapid proton capture process (rp-process)
takes place [18, 19]. The modeling of the rp-process is necessary in understanding the origin of
the elements and the abundances of the isotopes in the universe.

High-resolution mass spectrometry is a relatively new tool to study isomeric states. During
the last two decades, isomeric states were discovered by mass measurements, using storage rings
[20, 21] and Penning traps [22]. The half-lives are difficult to access in the millisecond range
because established high-resolution mass spectrometry methods are either not fast enough, or
have very limited mass ranges that can be simultaneously measured. For decay spectroscopy, the
challenge is the requirement of long coincident-times, which result in a strongly increased back-
ground. The first discovery of a nuclear isomeric state, by multiple-reflection time-of-flight mass
spectrometry, is presented in this paper. The multiple-reflection time-of-flight mass spectrometer
(MR-TOF-MS) of the FRS Ion Catcher [23] is, due to its unique combination of performance
parameters, the ideal device for the search for new isomeric states [24]. It combines a high mass
resolving power (m/∆m > 600, 000), short measurement time (> 0.01 s), high accuracy (relative
mass accuracy of < 10−7), and non-scanning operation. Combined with a gas-filled stopping cell,
it is applicable for production methods at the Coulomb barrier and relativistic energies. There-
fore, the MR-TOF-MS of the FRS Ion Catcher has a high discovery potential for isomeric states
with half-lives as low as the ms region.

2. Experiment

The FRS Ion Catcher [25] is installed, at the final focal plane of the fragment separator
FRS [26] at GSI. The FRS Ion Catcher consists of three main parts: (i) the gas-filled cryogenic
stopping cell (CSC) [27–30], which executes the complete slowing-down of the exotic nuclei
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produced at relativistic energies, (ii) a radio frequency quadrupole (RFQ) beamline [30–33],
which is used for mass-selective transport and differential pumping, and (iii) the MR-TOF-MS
[23, 34, 35], which performs direct mass measurements.

In this experiment, the exotic nuclei and their isomeric states were produced via projectile
fragmentation, using a 600 MeV/u 124Xe projectile beam on a beryllium production target, with
an areal density of 1.622 g/cm2. The intensity was approximately 3 × 108 ions per second, with
a typical spill length of 500 ms and a spill period of approximately 4 s. The mono-energetic de-
grader at the central focal plane [36] had an areal density of 737.1 mg/cm2. The CSC had an areal
density of 4.6±0.15 mg/cm2 helium, corresponding to a pressure of 75 mbar, at a temperature
of 82 K. The extraction time for this experiment was approximately 200 ms [37]. The molec-
ular background, generated in the CSC, was suppressed in the RFQ beamline by the isolation-
dissociation-isolation method [38].

The measurements, in the MR-TOF-MS, were performed with a time-of-flight of approxi-
mately 19 ms (typically about 600 isochronous turns in the analyzer) and a mass resolving power
of up to 450,000. The mono-energetic degrader, at the mid-focal plane, of the FRS ensured that
the isotopes had only a narrow range distribution; this feature was used as an additional identifi-
cation tool [39]. The measurements were done using different settings of the aluminum degrader,
at the final focal plane of the FRS. In addition, a measurement with one more turn in the time-of-
flight analyzer, was performed. This measurement, which had a different number of reflections,
served as further confirmation of the particle identification [40].

The details of the MR-TOF-MS data-analysis procedure were reported in a separate publi-
cation [40]. The procedure allowed accurate mass determination, even in the most challenging
conditions, including very low numbers of events and overlapping mass distributions. In the
mass measurements reported in Ref. [40], a relative uncertainty as low as 6×10−8, was achieved.
Further details on the experiment and the data evaluation employed for the nuclides reported
here, and their isomeric states, are provided in Ref. [39, 41].

3. Experimental Results

The mass-to-charge spectrum for 101g,mIn+ ions in the ground and isomeric state, measured
with the MR-TOF-MS, is shown in Fig. 1. The ground and isomeric states were fitted with
a so-called double hyper-EMG [44] (red line for 101gIn+ and blue line for 101mIn+ ) with one
exponential tail on both sides. The peak shape was determined from a high statistical peak.
For the isomeric state, 9 counts were detected. The background in the spectrum was 1 count
per 3 FWHM.The estimated spins of the ground and isomeric states were

(
9/2+

)
and
(
1/2-

)
,

respectively. This was the first mass measurement for the isotope 101In. A mass excess value for
the ground state was determined to be -68535(20) keV for 101In. The extrapolated value in the
AME 2016 [16] is -68610(200) keV. Our measured value is expected to have an impact on the
nucleosynthesis in the rp-process [45]. The excitation energy of the

(
1/2-

)
isomeric state was

determined to be 608(57) keV. The
(
1/2-

)
isomeric state of 101In was recently confirmed by an

isochronous mass spectrometry measurement at the HIRFL-CSR facility in Lanzhou [46]. An
excitation energy of 659(50) keV was reported, which is in agreement with the result presented
in this paper.

The nucleus 101In was produced in fragmentation, with a production cross section of 230 nbarn
[47]. An isomer-to-ground state ratio of 0.14 ± 0.03 was measured. Therefore, an effective pro-
duction cross section, of approximately 30 nbarn, can be deduced for the isomeric state. This
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Figure 1: Measured mass-to-charge spectrum of 101In+ ions. The fit of the ground state and the
(
1/2-

)
isomeric state are

shown by the red and blue line, respectively. The histogram of the measured spectrum is drawn only to guide the eye.
The evaluation was based on measured unbinned data (“rug” graph below the histogram).
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Figure 2: Measured mass-to-charge spectrum of 97Ag+ ions. The fit of the ground state and the
(
1/2-

)
isomeric state are

shown by the red and blue line, respectively. The histogram of the measured spectrum is drawn only to guide the eye.
The evaluation was based on measured unbinned data (“rug” graph below the histogram).
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Nuclide Half-life MEFRS−IC [keV] MELit [keV] MEFRS−IC - MELit [keV]
97Ag (25.5 ± 0.3) s -70904 ± 12 -70830 ± 110 -74 ± 111
101In (15.1 ± 1.1) s -68535 ± 20 -68610 ± 200 # 75 ± 201
103In (60 ± 1) s -74631 ± 25 -74633 ± 10 2 ± 27
105In (5.07 ± 0.07) m -79677 ± 31 -79641 ± 10 -36 ± 33
107In (32.4 ± 0.3) m -83593 ± 27 -83564 ± 11 -19 ± 29
109In (4.167 ± 0.018) h -86522 ± 34 -86490 ± 4 -32 ± 34

Nuclide Half-life Eexc,FRS−IC [keV] Eexc,Lit [keV] Eexc,FRS−IC - Eexc,Lit [keV]
97mAg 100 ms # 618 ± 38 400 ± 200 # 218 ± 204
101mIn 10 s # 608 ± 57 550 ± 100 # 58 ± 115
103mIn (34 ± 2) s 689 ± 77 631.7 ± 0.1 57 ± 77
105mIn (48 ± 6) s 702 ± 27 674.08 ± 0.25 28 ± 27
107mIn (50.4 ± 0.6) s 663 ± 22 678.5 ± 0.3 -16 ± 22
109mIn (1.34 ± 0.07) m 651 ± 27 650.1 ± 0.3 1 ± 27
109nIn (209 ± 6) ms 2098 ± 11 2101.8 ± 0.2 4 ± 11

Table 1: Measured mass excess (MEFRS−IC) values of the ground states and excitation energies Eexc,FRS−IC of the (1/2)-

and (19/2)+ isomeric state 109nIn. The measured data are compared with the literature values (MELit, atomic mass
evaluation (AME) [16], and Eexc,Lit, the atlas of isomers [42]). In the last column, the difference between the measured
and literature values is given. # The values and uncertainties are extrapolations obtained from [43].

sensitivity was recently reported to be sufficient for the discovery of isotopes [48]. The
(
1/2-

)
isomeric state was measured at a rate of 2 per hour. The high sensitivity, mass resolving power,
and dynamic range make the MR-TOF-MS an ideal tool to measure and identify exotic nuclei in
their ground and isomeric states.

The masses of the ground and (1/2)- isomeric states of the odd nuclides 103−109In were
determined, as seen in Table 1. In this isotopic chain, all odd isotopes have a 9/2+ ground state
and a 1/2- isomeric state [16]. The mass excess values are in good agreement with previous
storage ring and Penning trap measurements [49, 50]. The results for the excitation energies are
in good agreement with previous experiments [51].

The measured mass-to-charge spectrum of 97Ag+ ions is shown in Fig. 2. Ground and iso-
meric states are fitted with a double hyper-EMG [44] (red line for 97gAg+ and blue line for
97mAg+ ), with one exponential tail on both sides. The peak shape was determined from a high
statistical peak. For the isomeric state, 14 counts were detected. The background in the spec-
trum was measured at 1 count per 3 FWHM. The mass excess values of the ground state was
determined to be -70904(12) keV. Previously, the

(
9/2+

)
ground state of 97Ag was measured

indirectly by γ-spectroscopy [52]. The first direct mass measurement is reported in the current
paper. The uncertainty of the mass value was reduced by almost an order of magnitude.

For the
(
1/2-

)
isomeric state, an excitation energy of 618(38) keV was determined from

the mass measurement. Recently, new information was added to the level scheme [53]. The
measurement of the excitation energy now allows the correct positioning of the negative parity
states, i.e., the

(
3/2-

)
state had an energy of 1853(57) keV, and therefore, above the second(

9/2+
)

state.
The nucleus 97Ag was produced in fragmentation, with a production cross section of 1.2 µbarn

[47]. An isomer-to-ground state ratio of 0.078± 0.005 was measured, corresponding to an effec-
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tive production cross section of approximately 90 nbarn for the isomeric state.
The decay properties of 97Ag were investigated in β-delayed γ-spectroscopy, and shell model

calculations were performed [54]. The decay properties and with this, the half-life of the
(
1/2-

)
state crucially depends on its excitation energy. Assuming an excitation energy of approximately
600 keV, de-excitation would be only possible via an M4 transition to the ground state, or a
Gamow-Teller decay, leading to a predicted half-life up to several hundred seconds. This is in
agreement with our expectations, based on the measured extraction time from the CSC of ap-
proximately 200 ms, because the isomeric state survived the transport to the MR-TOF-MS. The
isomer-to-ground state ratio for the

(
1/2-

)
isomeric state of 101In was measured to be approx-

imately a factor of 2 larger. If we assume a similar ratio for 97Ag, we can concluded that the
half-life of 97mAg should be approximately 200 ms.

The measured masses provide information on the evolution of the mass excess values, in the
region below the double magic nucleus 100Sn. From the mass measurement of 97Ag and 101In,
the Qα-value of 101In was directly measured for the first time at -56(23) keV. The extrapolated
value stated in the AME [16] was -210(220) keV. Due to the reduction of the error by an order of
magnitude, an energetically possible α-decay can now be excluded with a two-sigma confidence-
level. In addition, the Qα-values of 105Sb were directly determined to be 2095(30) keV and the
error for 97Ag has been reduced, approximately by an order of magnitude, to -4317(13) keV.
These three Qα-values are necessary for the rp-process calculations [45].

4. Theoretical Results

A comparison of the measured excitation energies of 97Ag and the odd isotopes of 101−109In,
along the isotonic and isotopic chains, with shell-model calculations, provide interesting results.
In particular, new data validates the need to include core excitations across N = 50, in the
calculations.

For the nuclei in the neighborhood of the doubly-magic spherical 100Sn, the leading mecha-
nism of the decay hindrance is associated with the axial symmetry, resulting from the polarization
of the core by a few particles (or holes) on top of the closed main shells at Z = 50 and/or N = 50.
The closed shell structures give rise to the strictly spherical geometry; however, the neighboring
nuclei are expected to manifest a competition between the slightly oblate (β2 < 0) and prolate
(β2 > 0) quadrupole deformations. Such shape distortions can be described using the nuclear
mean-field approach.

4.1. Shell Model Calculation

The evolution of the proton p1/2 and g9/2 single-hole energies was studied using various shell
model (SM) approaches, and compared to the experimental results.

For the N = 50 isotones, an empirically determined isospin-asymmetric interaction (GF) [55]
was used in a πν

(
p1/2, g9/2

)
model space, outside a hypothetical 76Sr core. Two-body matrix

elements (TBME) and single particle energies (SPE) were fitted to energy spectra and binding
energies in N,Z ≤ 50 nuclei.

The theory is in agreement with the measured data for the N = 50 isotones, as seen in Fig. 3.
As a result of the first measurement of the 97Ag (1/2)- state, a reliable extrapolation of the
99In value was possible. The extrapolation of the 99In was used as an anchor point for further
calculations along the indium isotopic chain.
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Figure 3: Excitation energy of the 1/2- isomeric state in odd-even N = 50 nuclei. The excitation energy measured
with the MR-TOF-MS at the FRS Ion Catcher is shown as a red circle. In addition, the values taken from the atlas of
nuclear isomers [42] are shown by black squares, and SM-GF calculations [55] by the green dashed line. The 89Y value
is negative because it is still in the πp1/2 sub-shell and 1/2- is the ground state.
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Figure 4: Excitation energy of the 1/2- isomeric state in odd indium nuclei. The excitation energies, measured with the
MR-TOF-MS at the FRS Ion Catcher, are indicated by red circles and the values taken from the atlas of nuclear isomers
[42], by black squares. The value measured at the HIRFL-CSR facility in Lanzhou [46] is indicated by the blue diamond,
SM-MHJM calculations [56], by the green dashed line, and LSSM-VMU calculations [57], by the yellow solid line.
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The spectra of N ≥ 50 In isotopes were calculated in a π
(
p1/2, g9/2

)
ν(g7/2, d3/2, d5/2, s1/2, h11/2)

model space, with an 88Sr core employing a realistic interaction based on a G-matrix, inferred
from the charge dependence (CD-Bonn) nucleon-nucleon potential. The interaction was renor-
malized with respect to the 88Sr SM core, using many-body theory techniques (MHJM) [56], and
monopole tuned to reproduce the 100Sn single particle/hole neutron/proton energies [58]. The
ππ and νν TBME were marginally monopole corrected to optimize total binding energies in the
N > 50 nuclei. It should be noted that in the overlapping N = 50 isotones, both approaches yield
identical p1/2 − g9/2 excitation energies.

The πν interaction results in a kink in the A = 99 − 101 − 103 evolution of the excitation
energy of the 1/2- state, as can be observed in Fig. 4. This may result from an overestimation
of the effect of the πν interaction for N > 50. In the present model space, the A = 99 − 101
decrease was due to the strong νg7/2 − πg9/2 monopole interaction, as compared to νg7/2πp1/2,
which pulled the proton orbitals closer together. The saturation of the excitation energy, up to
107In, was well reproduced.

An inspection of the wave functions indicated that the 1/2- state was dominantly comprised
of πp1/2 coupled to the 0+ ground state of the Sn isotone; however, in the case of the 9/2+ state,
coupling to the 2+ − 8+ states was also allowed. The effect of core excitations caused the latter
states to increase their excitation, relative to the 0+ ground state, as known from 98Cd [59] and
102Sn [60].

Therefore, as an alternative to the LSSM approach, core excitations across the Z,N = 50
closed shells were included in a πν

(
p1/2, g9/2

)
ν
(
g7/2, d3/2, d5/2, s1/2, h11/2

)
model space. The

interaction was VMU [57] in the πν(gdsh) space, and was from [61]. The interaction was imple-
mented by πν VMU , quenched by a factor of 0.75 in the T = 1 central force channel. The SPE
were chosen to reproduce the present interaction and those of reference [61]. The p1/2 SPE in
99In was adjusted to reproduce the general trend. Truncation was applied to allow for up to 3p3h
excitations across Z,N = 50 and 1p1h from (g7/2, d5/2) to (d3/2, s1/2, h11/2). The results showed
a relatively flat trend along the indium chain, and a reduced kink for 101In. This was in agree-
ment with the experiment (Fig. 4), and documents the impact of core excitations in low-lying,
dominantly single hole states.

4.2. Mean-field Calculation

Large scale nuclear mean-field calculations have been performed for several nuclei in the dis-
cussed region. The calculations employed minimization individually, over the axial deformations
of each nuclear particle-hole excited-state energy (the deformations, β2 and β4, were used). The
choice of the employed mean-field Hamiltonian considers that in contemporary nuclear structure
physics, special attention is payed to the control of uncertainties of the modeling, and in partic-
ular, of the prediction capacities, of nuclei away from the nuclear areas, which served for the
parameter adjustments (as seen in [63–66]). For reasons discussed in some detail in [67–70], the
phenomenological Woods-Saxon Hamiltonian was chosen, with the universal parameterization
of its potential. With a single set of parameters, it describes, on average, all the individual-
nucleonic energy levels in nuclei, throughout the chart of nuclides; the relevant information is
summarized in [71].

This section is limited to illustrating just a few selected results from the large-scale mean-
field calculations addressing K-isomerism in the nuclear mass region, discussed in an upcoming
article [72]. The results presented below are parameter-free — no readjustments, related to either
the isomers or the excitation spectra in the discussed nuclei, have been performed.
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Figure 5: Sequence of deformed mean-field proton configurations (proton single particle levels dependent on the angular
momentum projections m j) corresponding to the maximum alignment state Iπ = 21/2+ and the other states, which can
be connected to it via non-collective E2-transitions, down to the ground-state at Iπ = 9/2+. Full circles represent the
occupied orbitals; open circles, the un-occupied orbitals. All the orbitals, down to the bottom of the potential well (not
shown in the figure), were presumed occupied. A deformation of β2 = −0.09 and β4 = +0.02 were used.
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Figure 6: Comparison between the calculated energies of the Iπ = 9/2+, 13/2+, 17/2+, and 21/2+ sequence, discussed
in the text (with regard to the calculations). The experimental data was obtained from the National Nuclear Data Center
database [62]. A close correspondence of the two sequences can be observed, at the slightly oblate quadrupole deforma-
tion, as indicated in the field of Fig. 5.
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In constructing the nuclear spectra, with the help of mean-field theory, the maximum-alignment
configurations are significant, usually located at or close to, the yrast lines (the term “alignment”
relates to the nucleonic angular momenta). An effective approach to finding these lowest energy
configurations has been proposed by the Copenhagen School, and is known in the literature as
the “tilted Fermi surface method” [73–75]. One of the by-products of the tilted Fermi surface
approach are the diagrams, similar to those in Fig. 5, which display the single-nucleon energy
positions versus angular momentum projections. They also allow a qualitative discussion on the
structures of the configurations, and the varying quadrupole or higher multipolarity axial defor-
mation.

With the help of the aforementioned diagrams, some quantitative or semi-quantitative pre-
dictions were formulated in a simple, pedagogical manner. For example, the spin-parity charac-
teristics of the ground-state must be Iπ = 9/2+, because the proton orbital closest to the Fermi
level in 97

47Ag50 is 1g9/2. According to the distribution of the mean-field proton orbitals, shown in
Fig. 5, an illustration, which is characteristic to the maximum alignment analyses, inherent to the
tilted-Fermi-surface method, can be given. There were 6 protons placed in pairwise antiparallel-
spin orbitals, with spin projections denoted ±m j, the seventh one giving rise to the actual value
of the ground-state spin ( Fig. 12 and 33–35 of [75]).

The lowest energy solutions, obtained with the tilted-Fermi-surface algorithm, often give rise
to the yrast-trap configurations and related isomers (Fig. 32 in [75] and references therein).

The maximum alignment configuration possible, without breaking the Z = 50 core, using the
tilted-Fermi-surface approach, was Iπmax = 21/2. A sequence of low-lying positive parity states,
with spins satisfying 9/2 < I < 21/2, corresponding to different placements of the protons within
the 1g9/2 configuration, were simultaneously pedagogically constructed. Some of these states are
represented in Fig. 5.

Moreover, there exist low-energy excited states, characterized by (1/2)- that were obtained
by promoting one of the protons residing in the 2p1/2 orbital, and occupying one of the three
empty states of 1g9/2. Because the mean-field calculations showed that transitions de-exciting
those latter states are of the type ∆I = 4 or higher, and required a parity change, it was expected
that such states would form long-living isomers.

The energies of the characteristic “inverted parabola” sequence, composed of configurations
from Fig. 5, were compared to the presently known experimental data in Fig. 6. Because there
was no intervention of parameter adjustments, the correspondence can be considered satisfactory,
providing confidence in the underlying mean-field algorithm and its more advanced applications,
which are not discussed here because it is outside the scope of the paper. The correspondence
particularly provides the possibility of formulating some semi-qualitative conclusions about the
nature of the

(
1/2-

)
isomer. Within the mean-field interpretation, and depending on which

member of the 1g9/2 orbital is occupied by the proton originating from the 2p1/2, calculations
suggested that there may exist several structures with 8 protons on 1g9/2, giving rise to a se-
quence of energies centered about the average position E1/2

aver. ≈ 0.6 MeV, within a ±0.4 MeV
interval. This estimate corresponded satisfactorily, to our experimental findings, at least on the
semi-quantitative level.

5. Summary

The first discovery of a nuclear isomeric state, by multiple-reflection time-of-flight mass
spectrometry, was achieved by measuring the

(
1/2-

)
isomeric state in 97Ag. The excitation ener-
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gies of the
(
1/2-

)
isomeric states in the isotopes 97Ag and 101−109In were determined from direct

mass measurements of the ground and isomeric states of these isotopes, at the FRS Ion Catcher,
involving cross sections as low as approximately 30 nbarn. The excitation energy of the

(
1/2-

)
isomeric state in 97Ag was determined to be 618(38) keV. For 109In, a second isomeric state was
measured, the half-life of which was only 209 ms. In order to resolve the low-lying isomeric
states, the MR-TOF-MS was operated with a mass resolving power of up to 450,000 at a duty
cycle of 20 ms. Moreover, the mass of 101In was measured for the first time, and the measure-
ment of the 97Ag ground state mass was improved by more than an order of magnitude. These
results showed that the MR-TOF-MS of the FRS Ion Catcher is an efficient tool for discovery
of isomeric states, with half-lives in the millisecond range, which is not well studied because of
difficulty to access using existing techniques.

The measured excitation energies were compared with shell-model calculations, indicating
the need to include core excitations to describe the excitation energies of the 1/2- isomeric
states along the Indium chain. Furthermore, results obtained within the mean-field approach
for the nucleus 97Ag were shown, allowing a better understanding of the level scheme from the
“universal parametrization” point of view, and supporting the discovery of the isomeric state in
97Ag.
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inazzo, N. Goel, M. Górska, S. Ilieva, N. Inabe, T. Isobe, A. Jungclaus, D. Kameda, Y.-K. Kim, Y. K. Kwon,
I. Kojouharov, T. Kubo, N. Kurz, G. Lorusso, D. Lubos, K. Moschner, D. Murai, I. Nishizuka, J. Park, Z. Patel,
M. Rajabali, S. Rice, H. Schaffner, Y. Shimizu, L. Sinclair, P.-A. Söderström, K. Steiger, T. Sumikama, H. Suzuki,
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[10] G. Häfner, K. Moschner, A. Blazhev, P. Boutachkov, P. Davies, R. Wadsworth, F. Ameil, H. Baba, T. Bäck, M. De-
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A. Blazhev, P. Boutachkov, F. Browne, I. Čeliković, G. de France, P. Doornenbal, T. Faestermann, Y. Fang,
N. Fukuda, J. Giovinazzo, N. Goel, M. Górska, H. Grawe, S. Ilieva, N. Inabe, T. Isobe, A. Jungclaus, D. Kameda,
G. D. Kim, Y.-K. Kim, I. Kojouharov, T. Kubo, N. Kurz, Y. K. Kwon, G. Lorusso, K. Moschner, D. Murai,
I. Nishizuka, Z. Patel, M. M. Rajabali, S. Rice, H. Sakurai, H. Schaffner, Y. Shimizu, L. Sinclair, P.-A. Söderström,
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mann, M. Górska, H. Grawe, A. Jungclaus, M. Karny, M. Kavatsyuk, O. Klepper, R. Kirchner, M. La Commara,
K. Miernik, I. Mukha, C. Plettner, A. Płochocki, E. Roeckl, M. Romoli, K. Rykaczewski, M. Schädel, K. Schmidt,
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[73] M. Cerkaski, J. Dudek, Z. Szymański, C. G. Andersson, G. Leander, S. Åberg, S. G. Nilsson, I. Ragnarsson, Search

for the yrast traps in neutron deficient rare earth nuclei, Physics Letters B 70 (1) (1977) 9–13.
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