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A number of open problems hinder our present ability to extract scientific information from data that will
be gathered by the near-future gravitational-wave mission LISA. Many of these relate to the modeling,
detection, and characterization of signals from binary inspirals with an extreme component-mass ratio of
≲10−4. In this paper, we draw attention to the issue of systematic error in parameter estimation due to the
use of fast but approximate waveform models; this is found to be relevant for extreme-mass-ratio inspirals
even in the case of waveforms with ≳90% overlap accuracy and moderate (≳30) signal-to-noise ratios. A
scheme that uses Gaussian processes to interpolate and marginalize over waveform error is adapted and
investigated as a possible precursor solution to this problem. Several new methodological results are
obtained, and the viability of the technique is successfully demonstrated on a three-parameter example in
the setting of the LISA Data Challenge.
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I. INTRODUCTION

In contrast to present ground-based gravitational-wave
(GW) detectors, the future space interferometer LISA [1] is
expected to find an abundance of long-lived sources
radiating in the millihertz band; among these are the
extreme-mass-ratio inspirals (EMRIs) of compact objects
(white dwarfs, neutron stars, or stellar-mass black holes)
into the supermassive black holes that reside at the centers
of galaxies. Observations of EMRIs will complement
electromagnetic astronomy in probing formation rates
and evolution scenarios for supermassive black holes in

galactic nuclei, and also provide measurements of strong-
field gravity to unprecedented precision [2,3].
A typical EMRI will be observed by LISA for around

105 orbits over the mission lifetime. Although this allows
its properties to be measured very precisely from its
gravitational waveform, the results are consequently sus-
ceptible to any inaccuracy in the efficiency-oriented wave-
form templates that are used in Bayesian inference
algorithms. If this “theoretical error” is too large, it will
dominate over statistical error at high or even moderate
signal-to-noise ratios (SNRs) (as shown in [4], for super-
massive-black-hole mergers). Unfortunately, EMRIs are
indeed difficult to model accurately since the extreme mass
ratio prohibits the use of fully numerical methods. The
present state of the art is a perturbation-theory framework
that computes the self-force effects of the compact object’s
gravitational field on its own orbit [5,6]. Full waveform
models that employ these calculations are still under
development; they will also be computationally expensive
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and are unlikely to be used directly for parameter estima-
tion after they become available.
Current data analysis studies for LISA are therefore

heavily reliant on the approximate EMRI template models
known as kludges [7–11], which are designed for bulk use
and may eventually be modified to include self-force
information. However, it will still be challenging to do a
coarse-grained detection search of the full EMRI parameter
spacewith these templates [12],much less explore it with the
precision required for parameter estimation. EMRI wave-
forms are extremely sensitive to small changes in their
parameters, so the global peak in the vast and multimodal
posterior surface is akin to the proverbial needle in a
haystack.1 This fact, coupled with the theoretical and
computational difficulties of modeling the complex wave-
forms, makes EMRI search and inference the most formi-
dable problem in LISA data analysis.
In this paper, we investigate the machine-learning tech-

nique of Gaussian-process regression (GPR) [14,15] as a
possible strategy for mitigating theoretical error in EMRI
parameter estimation. Specifically, GPR is used to inter-
polate a small set of precomputed waveform differences
between a fiducial model and an approximate one; the GPR
interpolant then provides a prior distribution for the wave-
form difference, which allows theoretical error to be
marginalized over in the standard Bayesian likelihood with
the approximate model [16,17]. The benefits of this method
for GW parameter estimation are twofold: it includes
information from computationally expensive waveforms
while searching with faster but less accurate templates,
and also accounts for any residual model inaccuracy with
more conservative error estimates.
An overview of the marginalized-likelihood method is

given in Sec. II. The technique of GPR (in the context of
waveform interpolation) and the training of the Gaussian-
process model from the precomputed set of waveform
differences are introduced in Secs. II A and II B, respec-
tively. Section II C then briefly summarizes results from a
previous proof-of-concept study, where the method was
applied to parameter estimation for comparable-mass
black-hole binary mergers in the LIGO–Virgo–KAGRA
sensitivity band [17].
In Sec. III, we investigate the viability of the method for

EMRI parameter estimation and deduce that the character-
istic separation of points in the required training set is much
greater than that in a notional set of posterior samples
obtained with the fiducial waveforms. This is verified by
heuristic one- and two-parameter examples in Secs. III A
and III B, respectively, where the (inverse) Fisher informa-
tion is also shown to be a good substitute for the trained
Gaussian-process covariance. We then apply our scheme in
Sec. III C to a modified, scaled-down version of the EMRI

data set from the first round of the new LISA Data
Challenge [18]. Finally, possible computational strategies
for generalizing the method to higher-dimensional searches
are discussed in Sec. IV.

II. MARGINALIZED LIKELIHOOD

In the standard matched-filtering framework for GW data
analysis, single-source data from a two-channel detector can
be written as the time series xðtÞ ¼ sðtÞ þ nðtÞ, where the
source signal s≡ ðsI; sIIÞ is modeled as a deterministic
function h≡ ðhI; hIIÞ of some astrophysical parameters λ,
while the detector noise n≡ ðnI; nIIÞ is assumed to be a
Gaussian and stationary stochastic process. The Bayesian
likelihood LðλÞ ¼ pðxjλÞ for the model parameters is
defined as [19]

L ∝ exp
�
−
1

2
hx − hjx − hi

�
; ð1Þ

with the noise-weighted inner product h·j·i on the space of
finite-length time series given by

hajbi ¼ 4Re
XfN
f>0

df
X
χ¼I;II

ã�χðfÞb̃χðfÞ
Sn;χðfÞ

; ð2Þ

where overtildes denote discrete Fourier transforms, fN is
the Nyquist frequency, and Sn;χðfÞ is the one-sided power
spectral density of the channel noise nχ . A maximum-
likelihood estimation λML of the parameters may then be
obtained by maximizing (1) over the parameter space Λ,
such that

�∂h
∂λ ðλMLÞjx − hðλMLÞ

�
¼ 0: ð3Þ

For a fiducial model hacc that provides an accurate
description of the source, the waveform at the true
parameter values λtrue corresponds to the source signal,
i.e., x ¼ haccðλtrueÞ þ n. Any error λϵ ¼ λML − λtrue in the
measured parameter values is then purely statistical, in that
it is directly proportional to n. Using Einstein notation, we
may write (3) at leading order in λϵ as

h½∂hacc�bjn − ½∂hacc�a½λϵ�ai ≈ 0

⇒ ½λϵ�a ≈ ½Γ−1
acc�abhnj½∂hacc�bi; ð4Þ

where the waveform derivative ∂h and Fisher information
matrix Γ are defined, respectively, as

½∂h�a ¼ ∂h
∂½λ�a ; ½Γ�ab ¼ h½∂h�aj½∂h�bi; ð5Þ

and evaluated at λML.
1Or the not-so-proverbial bacterium on Earth [13], since ∼1030

templates are required for full coverage of the parameter space.
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In general, a template model happ that is used for
parameter estimation will only be approximate, such that
happðλtrueÞ ≠ haccðλtrueÞ. At leading order, any error in the
measured parameter values may be written as

½λϵ�a ≈ ½Γ−1
app�abhnj½∂happ�bi − ½Γ−1

app�abhhϵj½∂happ�bi; ð6Þ

where the first term is statistical in the sense of (4), and the
second term corresponds to the theoretical error that arises
from the difference hϵ between the approximate and
accurate waveforms, i.e.,

hϵ ¼ happ − hacc: ð7Þ

Again, all derivatives in (6) are evaluated at λML, while the
waveform difference hϵ is evaluated at λtrue.2
The statistical-error terms in (4) and (6) are inversely

proportional to the waveform SNR

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
; ð8Þ

since ∂h ∝ ρ and Γ ∝ ρ2. On the other hand, the theoreti-
cal-error term in (6) is independent of ρ. Hence the
systematic bias incurred by using approximate templates
happ in (1) may dominate the noise uncertainty for high-
SNR sources and is likely to be the limiting factor in
extracting parameter information from such signals [4].
One approach to account for this bias is to marginalize

over the error of happ (with respect to hacc) in (1), by
specifying a suitable prior probability distribution pðhϵÞ for
the waveform difference [16]. This “marginalized like-
lihood” is given by the (functional) integral

L ∝
Z
W
DhϵpðhϵÞLacc ð9Þ

on the spaceW of waveform differences; it can be evaluated
analytically if pðhϵÞ is Gaussian since Lacc [Eq. (1) with
hacc ¼ happ − hϵ] is also formally Gaussian. Such a prior
may be obtained through the technique of GPR, which
provides an interpolant for hϵ with an associated (scalar)
variance at each point in parameter space.

A. Gaussian process regression

In the GPR approach, the waveform difference hϵ ∈ W is
modeled as a zero-mean Gaussian process over Λ, i.e.,

hϵ ∼ GPð0; kÞ; ð10Þ

where the mean function is chosen (uninformatively)
as the time series 0 ∈ W, and the covariance function

kðλ;λ0Þ is some symmetric and positive-definite bilinear
form on Λ. For any finite set of parameter points
fλi ∈ Λji ¼ 1; 2;…; Ng, the corresponding set of wave-
form differences fhϵðλiÞ ∈ Wji ¼ 1; 2;…; Ng has a
Gaussian probability distribution N ð0;KÞ on WN , i.e.,

pðhϵðλiÞÞ ∝
1

detK
exp

�
−
1

2
vTK−1v

�
; ð11Þ

where the covariance matrix K and waveform difference
vector v are given, respectively, by

½K�ij ¼ kðλi; λjÞ; ð12Þ

½v�i ¼ hϵðλiÞ: ð13Þ

It is convenient to write the quadratic form in (11) as

vTK−1v ¼ trðK−1MÞ; ð14Þ

where

½M�ij ¼ ½vvT �ij ¼
1

γ
hhϵðλiÞjhϵðλjÞi; ð15Þ

with γ > 0 the overall scale ratio between the frequency-
averaged power spectral densities of the waveform
differences and the detector noise. In choosing a fre-
quency-independent form kðλ; λ0Þ for the covariance func-
tion, we have assumed that the correlations among the
waveform differences across parameter space do not depend
on frequency. The waveform difference at each parameter
point is also taken to be perfectly correlated across all
frequency bins, which gives the particular normalizing
factor in (11). Finally, the inner product for waveform
differences in (15) is chosen to be proportional to the
noise-weighted one in (2). These assumptions simplify
the GPR calculations but are also conservative in the sense
that they generally yield less informative likelihoods; amore
detailed justification is provided in [17].
From the definition of a Gaussian process, the enlarged

set fhϵðλiÞ; hϵðλÞg is again normally distributed with zero
mean and the covariance matrix

K� ¼
�
K k�
kT� k��

�
; ð16Þ

where

½k��i ¼ kðλi; λÞ; k�� ¼ kðλ; λÞ: ð17Þ

If fhϵðλiÞg is known, then the conditional probability
distribution of hϵðλÞ given fhϵðλiÞg is also Gaussian, i.e.,

pðhϵðλÞÞ ∝
1

σ2
exp

�
−
1

2

hhϵðλÞ − μjhϵðλÞ − μi
γσ2

�
; ð18Þ

2However, hϵðλtrueÞ ¼ hϵðλMLÞ at leading order, which allows
the theoretical error in (6) (and λtrue itself in the case of high SNR)
to be estimated for a given measurement λML [4].
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where μðλÞ and σ2ðλÞ are given, respectively, by

μ ¼ kT�K−1v; ð19Þ

σ2 ¼ k�� − kT�K−1k�: ð20Þ

The conditional probability (18) forms the basis of GPR
and yields an interpolation of hϵðλÞ from a small, pre-
computed training set

D ¼ fðλi; hϵðλiÞÞji ¼ 1; 2;…; Ng: ð21Þ

This interpolant is given by the waveform difference mean
μðλÞ, with associated variance σ2ðλÞ; it essentially provides
a new GPR-informed template model

hGPR ¼ happ − μ; ð22Þ

which approximates hacc via (7). Equation (18) also
supplies the prior for hϵ in (9), which evaluates to

L ∝
1

1þ γσ2
exp

�
−
1

2

hx − hGPRjx − hGPRi
1þ γσ2

�
: ð23Þ

The GPR marginalized likelihood has several desirable
features for parameter estimation. A maximum-likelihood
estimation of λ with (23) gives

h½∂hGPR�bjn − hϵ þ μ − ½∂hGPR�a½λϵ�ai ≈ 0; ð24Þ

from (3) with x ¼ haccðλtrueÞ þ n and λϵ ¼ λML − λtrue.
Hence we have

½λϵ�a ≈ ½Γ−1
GPR�abhnj½∂hGPR�bi − ½Γ−1

GPR�abhhϵj½∂hGPR�bi
þ ½Γ−1

GPR�abhμj½∂hGPR�bi; ð25Þ

where the third term is proportional to the GPR interpolant
μ and acts to cancel the second term by design. This
correction greatly reduces the systematic bias due to
theoretical error, provided the interpolant is performing
optimally (i.e., μ ≈ hϵ) near λtrue.
Another safeguard against theoretical error is the pres-

ence of the GPR variance σ2 in (23). This variance is ≪1
when μ ≈ hϵ but may become ∼1 far from all training-set
points, or in the case of a suboptimally chosen training set
or covariance function. The density in (23) is then typically
(but not necessarily) broadened over the accurate likelihood
Lacc, which is conservative as it acts to prevent the true
parameter values from being excluded at high significance.
Lastly, the premise of the GPR approach is based on the

availability of fiducial waveforms hacc that are extremely
expensive to compute and hence unsuitable for use in
Monte Carlo search algorithms with the standard like-
lihood. The marginalized likelihood remains computation-
ally tractable while including information from hacc since it

only uses the approximate templates happ and adds to
them some linear combination of precomputed waveform
differences via (19). Any extra computational cost from
using the marginalized likelihood thus scales linearly with
the size N of the training set. The scaling coefficient
[relative to the cost of (1)] is typically small; for the
analyses in Sec. III, it is ∼10−3.

B. Training the Gaussian process

With the zero-mean assumption in (10), the waveform
difference model is fully specified by the covariance
function k. The standard approach is to define a functional
form for k that depends on a number of hyperparameters θ
and to select values for θ by training the Gaussian process
with information from the set D. A covariance function
kðλ;λ0Þ is stationary if it depends only on the relative
position λ − λ0 of the two parameter points; it is further-
more isotropic if it depends only on

τ2 ¼ gab½λ − λ0�a½λ − λ0�b; ð26Þ

where the gab are the lðlþ 1Þ=2 independent components
of some constant parameter-space metric g on Λ [with
l ¼ dimðΛÞ].
An investigation of various common isotropic (hence

stationary) covariance functions in the GW context finds
the performance of the GPR interpolant and the margin-
alized likelihood to be fairly robust against changes in the
functional form for k [17]. Hence we consider a single fixed
form in this paper: the squared-exponential covariance
function

kSEðλ; λ0Þ ¼ σ2f exp

�
−
1

2
τ2
�
; ð27Þ

which is the smooth limiting case for several different
families of covariance functions. The hyperparameters for
the model GPð0; kSEÞ then comprise only the metric
components gab and some overall scale factor σ2f.
As the size of the training setD increases, the covariance

matrix K rapidly becomes ill conditioned, even for a
modestly sized set with N ≳ 10. This is partly mitigated
by the addition of noise toD, such that the GPR interpolant
need only pass close to—rather than through—each
training-set point. We transform

½K�ij → ½K�ij þ σ2fσ
2
nδij; ð28Þ

where δij is the Kronecker delta, and the fractional noise
variance σ2n of each training-set point is taken to be uniform
and fixed (i.e., not treated as a hyperparameter). In practical
terms, the transformation (28) effectively reduces the
condition number of K, thereby facilitating its numerical
inversion. We use σ2n ¼ 10−4 throughout this paper, which
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is the smallest value compatible with all of the N ≲ 100
training sets considered in Sec. III.
The most straightforward method of selecting the

Gaussian-process hyperparameters θ≡ ðgab; σ2fÞ is through
maximum-likelihood estimation with the hyperlikelihood
ZðθjDÞ ¼ pðhϵðλiÞÞ from (11), i.e., the likelihood for the
hyperparameters given the training set. In other words, an
optimal set of hyperparameters θML is obtained by maxi-
mizing the log-hyperlikelihood

lnZ ¼ −
1

2
trðK−1MÞ − ln detKþ const ð29Þ

over the hyperparameter space Θ.
Part of this maximization may be done analytically since

the overall scale σ2f factors out of the matrix expressions in
lnZ [20]. In the case of (29), lnZ withK ¼ σ2fK̂ achieves a
maximum in σ2f at

σ2f ¼ 1

2N
trðK̂−1MÞ: ð30Þ

Note that σ2f contains a factor of 1=γ through (15), which
effectively cancels out the appearance of γ in (18) and (23).3

Substituting (30) back into (29) then gives a scale-invariant
form for lnZ, i.e.,

lnZ ¼ −N ln trðK−1MÞ − ln detKþ const: ð31Þ

Equations (30) and (31) effectively reduce the dimension-
ality of the hyperparameter space by one [to dimðΘÞ ¼
lðlþ 1Þ=2 for the model GPð0; kSEÞ], which is useful for
the low-dimensional searches conducted in Sec. III.

C. Previous application to binary black holes

The viability of the GPR marginalized likelihood for
improving GW parameter estimation has previously been
demonstrated through a one-parameter (l ¼ 1) study,
using waveforms for merging black-hole binary systems
with comparable component masses ðm1; m2Þ [17]. Two
waveform models implemented in the LIGO Scientific
Collaboration Algorithm Library [21] were considered:
the phenomenologically fitted IMRPhenomC [22] and the
analytic TaylorF2 [23], which were taken as accurate and
approximate, respectively. Even though these two wave-
forms are qualitatively different (IMRPhenomC describes
the full inspiral-merger-ringdown while TaylorF2 is
inspiral-only), the marginalized likelihood functions as
described in reducing systematic bias.
In [17], the marginalized likelihood was used to estimate

the chirp mass M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 from

synthetic data x ¼ haccðλtrueÞ (with a zero realization of
detector noise for simplicity), where haccðλtrueÞ is an
injected IMRPhenomC signal with Mtrue ¼ 5.045 M⊙
and fixed mass ratio m1=m2 ¼ 0.75. As the density of
the training set (with respect to some metric on Λ) was
expected to be the strongest determinant of interpolation
performance, two different grid lengths in M were con-
sidered: ΔM ¼ 10−2 M⊙ and ΔM ¼ 5 × 10−3 M⊙. The
training-set points were gridded uniformly around Mtrue
across the range 5 ≤ M=M⊙ ≤ 5.6, such that the density of
the set was varied by fixing its span and changing its
cardinality. A GPR model with the squared-exponential
covariance function (27) was trained on both sets by
optimizing the single independent hyperparameter, which
was chosen more intuitively in this l ¼ 1 case to be the
covariance length δM ¼ ðgMMÞ−1=2. In general, the opti-
mal value of δM was found to change with the density and
cardinality of the training set, but typically by less than a
factor of 2. The performance of the marginalized likelihood
was found to be similarly robust against the choice of δM
for a given training set.
Unsurprisingly, the performance of the marginalized

likelihood was improved for the denser training set.
Higher fidelity between the GPR waveform (22) and the
accurate waveform was obtained across the span of the set;
this was quantified by overlaps OðhGPRjhaccÞ that were
≳0.999, with Oð·j·Þ defined as

OðajbÞ ¼ hajbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihajaihbjbip : ð32Þ

The variance σ2 associated with the waveform difference
interpolant was smaller for the denser training set as well,
with values that were ≲10−3 relative to σ2f (the limiting
value of σ2 outside the span of the set). A maximum-
likelihood estimation of M with the corresponding mar-
ginalized likelihood was therefore closer to the true value
and better constrained. The sparser training set gave
OðhGPRjhaccÞ≳ 0.985 and σ2=σ2f ≲ 10−2, with a margin-
alized likelihood that was discernibly worse but still
functional. As will be discussed in Sec. III, this is because
its density was close to some threshold determined by the
optimal value of δM (which is largely independent of
training-set density).
Different source SNRs in the range 8 ≤ ρ ≤ 64were also

considered in [17]. The marginalized likelihood for the
sparser training set reduced the systematic error in the
maximum-likelihood estimation of M from Mϵ ¼ 5 ×
10−3 M⊙ (around 10-sigma for a typical LIGO source with
ρ ¼ 16) to Mϵ ¼ 9 × 10−4 M⊙; it also broadened to
remain consistent with Mtrue at 2-sigma, even at high
SNR. These results were obtained in the regime where the
overlaps between the accurate and approximate waveforms
were ≈0.35 across the span of the training set. Although

3This may not be desirable in practice since we may want to
preserve the overall scale ratio between the waveform difference
and noise power spectral densities by fixing σ2f; see Sec. III C.

GAUSSIAN PROCESSES FOR THE INTERPOLATION AND … PHYS. REV. D 101, 044027 (2020)

044027-5



theoretical error will be reduced if the approximate model is
improved, results in Sec. III show that the marginalized
likelihood remains relevant for overlaps as high as 0.97,
which may still lead to significant systematic bias for a
typical EMRI with ρ ¼ 30.

III. APPLICATION TO EXTREME-MASS-RATIO
INSPIRALS

The detection and characterization of EMRIs is a
formidable challenge in GW data analysis, especially in
the broader context of resolving these sources from a LISA
data set that is likely to contain an (over)abundance of long-
lived and overlapping signals [24]. Even as a stand-alone
problem, searches of the EMRI parameter space are greatly
hindered by its large volume as measured by the Fisher
information metric, which suggests ∼1030 waveforms are
required for full coverage in a template bank approach [12].
This is exacerbated by the long and unwieldy templates
themselves; a sampling rate of 0.2 Hz (the approximate
Nyquist rate for an EMRI with a 106 M⊙ central black
hole) yields ∼107 samples for each channel of a year-long
signal.
Due to the OðN3Þ cost of computing (19) and (20), it is

clearly impractical—if not impossible—to cover any sig-
nificant fraction of parameter space with a single training
set. The present purpose of the GPR marginalized like-
lihood is thus restricted to precise parameter estimation in
highly localized regions of parameter space. Furthermore,
if the GPR approach is to be useful for EMRI inference at
all, the typical separation of points in the training set must
be significantly greater than the Fisher metric lengths of the
fiducial waveform model [25], which determine the sam-
pling density required to resolve and reconstruct the
Bayesian posterior (otherwise, generating the training set
would be as expensive as directly sampling with the
accurate waveform, which is intractable).
A simple argument shows that this is normally the case

for waveforms (or waveform differences) hðλÞ with ρ > 1.
We consider a small neighborhood of some point λ0 ∈ Λ,
along with a covariance metric gab for a Gaussian process
that accurately describes the distribution of h over that
neighborhood. The metric defines the short covariance
lengths ½δλ�a ¼ ðgaaÞ−1=2, i.e., the half-widths of the
associated hyperellipsoid when restricted to each one-
dimensional parameter subspace through λ0. These lengths
place upper bounds on the characteristic grid lengths of the
training set and lower bounds on its span, since a training
set with larger grid lengths or a smaller span typically
yields no peak in the log-hyperlikelihood surface (29),
and so the regression becomes suboptimal. Nevertheless,
we may always choose grid lengths as large as ∼½δλ�a if
required.
From the assumption that the Gaussian process describes

the distribution of h accurately, the optimal covariance
lengths δλ approximate the correlation lengths of h itself.

Hence we have ½δλ�a ∼ ½δλover�a, where the overlap lengths
δλover are defined to satisfy

hhðλ0Þjhðλ0 þ PaδλoverÞi ¼ 0 ð33Þ

for each a, with Pa projecting δλover onto the subspace
corresponding to ½λ�a. At leading order, we then have

½δλ�a ∼ hhjhi
jhhj½∂h�aij ¼

ρj sec½ϕ�ajffiffiffiffiffiffiffiffiffiffi½Γ�aa
p ; ð34Þ

where ∂h and Γ are defined as in (5), and ½ϕ�a is the
principal inner-product angle between h and ½∂h�a.
Since the short (i.e., defined analogously to ½δλ�a) Fisher

metric lengths are given by

½δλFish�a ¼
1ffiffiffiffiffiffiffiffiffiffi½Γ�aa

p ; ð35Þ

it follows that ½δλ�a ≳ ρ½δλFish�a, as required for the argu-
ment. In general, any waveform derivative with respect to a
parameter that only affects the amplitude will give ½ϕ�a ≈ 0,
such that we have ½δλ�a ∼ ρ½δλFish�a. Even for such param-
eters, it is still possible to interpolate ρ > 1waveforms with
a training set whose density is below that of a typical set of
posterior samples.
Equations (34) and (35) show that the optimal covariance

lengths (hence permissible grid lengths) are largely inde-
pendent of SNR, while the Fisher metric lengths are
Oð1=ρÞ; thus the computational benefits of using the
GPR marginalized likelihood over the standard likelihood
with accurate waveforms are enhanced for sources with
higher SNR. Furthermore, the Fisher lengths (rescaled by
SNR) give reasonable estimates of the optimal covariance
lengths and are more straightforward to obtain. We show in
the following sections that the Fisher matrix can provide
good initial guesses for the covariance metric when
maximizing the log-hyperlikelihood with standard optimi-
zation routines, or even serve as a proxy for the metric itself
(i.e., foregoing the actual training procedure altogether).
Consequently, it may also be used to specify the placement
of the precomputed waveform differences.
As pointed out in [17], the Fisher metric lengths of the

difference between two waveform models are generally
larger than those of the individual models, especially if both
models generate waveforms with high overlap. However,
the above argument implies it is actually the Fisher metric
for the normalized (i.e., unit-SNR) waveform difference
that is relevant to the GPR approach. Furthermore, for the
examples in the following sections, this is found to be
approximately proportional to the Fisher metric for both the
accurate and approximate unit-SNR waveforms (which are
comparable themselves), with a proportionality factor of
∼1. In other words, the waveform difference varies across
parameter space in a similar fashion to both waveforms.
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We make use of this observation in Sec. III C, where the
numerical derivatives of the accurate waveform, and hence
the waveform-difference Fisher matrix, are expensive to
compute correctly.
The validity of the above argument—and the viability of

the GPR marginalized likelihood for EMRIs—is illustrated
through heuristic one- and two-parameter analyses in
Secs. III A and III B, respectively; the scheme is then
put into practice on a more realistic data set in Sec. III C,
which describes the noisy time-delay-interferometry (TDI)
response [26] of the LISA instrument to an isolated EMRI
signal. Due to their computational practicality, a variety of
kludges (mixed-formalism EMRI template models) with
different degrees of accuracy are used throughout this
study, as either the fiducial or approximate waveform.
The implementations of these are publicly available as part
of the EMRI Kludge Suite [11].

A. 1D parameter estimation

The fiducial model in this section (and Sec. III B) is
taken to be the semirelativistic numerical kludge (NK) [8],
which has high fidelity with the more accurate Teukolsky-
based models [27] up to an orbital separation of ≈5M. A
recent augmentation [9–11] of the analytic kludge [7] is
used as the approximate model; this augmented analytic
kludge (AAK) is faster than the NK and matches its early
phase evolution with high waveform overlap, but it
dephases gradually as the compact object approaches the
plunge. We take the data x to be a NK signal from a 101 M⊙
stellar-mass black hole orbiting a 106 M⊙ central black
hole, in the long-wavelength approximation [28] and with a
zero realization of LISA noise. The signal is two months
long and sampled at 0.2 Hz, while the source distance is
adjusted to specify a SNR of ρ ¼ 30. Other orbital
parameters are chosen such that the NK and AAK wave-
forms (for the same injected parameter values) have an
overlap of 0.97, so as to investigate the scenario in which
the approximate model is fairly accurate to begin with.
In this section, the GPR marginalized likelihood

(23) is used to estimate only the compact-object mass
μtrue ¼ 101 M⊙, assuming all other parameters are known
and fixed at their true values. The covariance metric on the
corresponding parameter subspace has a single component
gμμ, which is optimized through the maximization of the
log-hyperlikelihood (29). This one-dimensional example
provides a simple illustration of the relationships between
the optimal covariance length δμ ¼ ðgμμÞ−1=2, the Fisher
metric length δμFish ¼ ð½Γ�μμÞ−1=2, and the training-set grid
length Δμ.
The GPR model is trained on eight 10-point training sets

with uniform grids, where the grid lengths are distributed in
the range −2.1 ≤ lg ðΔμ=M⊙Þ ≤ −1.4. This range is
chosen to encompass the Fisher length of the unit-SNR
waveform difference, which is approximately constant

across the spans of the considered training sets and
evaluated at μtrue as lg ðδμFish=M⊙Þ ¼ −1.96.4 Each train-
ing set is placed such that μtrue lies at the geometric center
of its span and thus maximally far from the nearest points in
the set.
Figure 1 shows plots of the log-hyperlikelihood for the

eight training sets, with the optimal covariance length
for each set given by the abscissa of the peak (where it
exists). The optimal value δμ is approximately constant
for all valid training sets and falls in the narrow range
lg ðδμFish=M⊙Þ ≤ lg ðδμ=M⊙Þ ≤ −1.8. In comparison to
the approach of [17] described in Sec. II C, varying the
density of the training set here by fixing its cardinality
and changing its span also shifts δμ by less than a factor
of 2, which implies that both span and cardinality have less
impact than density on a training set’s performance.
Hyperlikelihood peaks emerge only for grid lengths
lg ðΔμ=M⊙Þ ≤ −1.8, indicating that 1=δμ corresponds
approximately to a minimum threshold for the density of
an optimal training set. Finally, δμFish appears to set a lower
bound on δμ, which is consistent with the discussion
around (34) and (35).
We now consider the marginalized likelihood itself for

three other 10-point training sets. First, a set DFish is placed
around μtrue with grid length ΔμFish ¼ δμFish; training the
GPR model on this set yields an optimal covariance length
lg ðδμ=M⊙Þ ¼ −1.82. Two more training sets Dcov and
D2cov are constructed in the same way, with the grid lengths
Δμcov ¼ δμ and Δμ2cov ¼ 2δμ, respectively. A different
optimal covariance length is found forDcov, while there is no
hyperlikelihood peak for D2cov. Nevertheless, the above
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FIG. 1. Plots of lnZ against lg ðδμ=M⊙Þ for eight 10-point
training sets with grid lengths −2.1 ≤ lg ðΔμ=M⊙Þ ≤ −1.4
(indicated by the abscissae of the solid circles). The vertical
dashed line corresponds to the Fisher metric length δμFish.

4For comparison, the Fisher lengths of the unit-SNR NK and
AAK waveforms at μtrue are lg ðδμFish=M⊙Þ ¼ −1.86 and
lg ðδμFish=M⊙Þ ¼ −1.85, respectively.
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value of δμ is used for all three training sets, as the
performance of the marginalized likelihood with each set
is found to be practically constant across the range
lg ðδμFish=M⊙Þ ≤ lg ðδμ=M⊙Þ ≤ −1.8.
At a source SNR of 30, a high overlap of 0.97 between

the accurate and approximate waveforms still results in
a 5-sigma bias due to theoretical error; as seen in Fig. 2,
the approximate likelihood Lapp is peaked away from μtrue
with error μϵ ≈ 3 × 10−3 M⊙, while the 1-sigma length for
Lapp (and the accurate likelihood Lacc) is ≈5 × 10−4 M⊙.
The marginalized likelihood with the training set DFish is
virtually identical to Lacc, and with Dcov it is slightly
broader but remains peaked near the true value. For the
sparsest training set D2cov, the peak of the marginalized
likelihood has an error μϵ similar to that of Lapp, although it
is sufficiently broadened to ensure that it is still consistent
with μtrue at 2-sigma significance. These results indicate
that the GPR approach can be viable for EMRIs since even
the densest considered training set DFish has a grid length
that is significantly larger than the width of the accurate
likelihood.
For the given source and waveform parameters, a single

evaluation of the NK likelihood takes 29 s on average, as
compared to an average of 5.6 s per evaluation for the AAK
likelihood. By constructing a few additional training sets
with different sizes N, the marginalized likelihood is found
to take an average of 5.6þ 0.01Ns per evaluation, i.e.,
≈2% longer than the approximate likelihood for a 10-point
training set. It ceases to provide computational savings over
the accurate likelihood when the training set gets too large
(≳2000 points in this particular case). However, the
disparity in cost between the accurate and approximate
waveforms here is only a factor of 5, when, in general, a

realistic fiducial model will be far more expensive or even
completely intractable for bulk use (as seen in Sec. III C).

B. 2D parameter estimation

In this section, the GPR marginalized likelihood (23) is
used to estimate the component masses ðμ;MÞtrue ¼
ð101; 106Þ M⊙ of the source in Sec. III A, again assuming
all other parameters are known and fixed at their true values.
Maximization of the log-hyperlikelihood (29) is now over
the three independent components ðgμμ; gμM; gMMÞ of the
covariance metric on the two-dimensional parameter sub-
space, with gμμgMM > g2μM. The eigensystem fðλi; v̂iÞji ¼
1; 2g of g defines a covariance ellipse with semiprincipal
axes fλ−1=2i v̂ig in the usual way.
Although the component-mass subspace is chosen for

the two-dimensional example here, a straightforward
search in ðμ;MÞ is not necessarily optimal in the context
of higher-dimensional parameter estimation. For example,
since the central mass M ≈ μþM strongly determines the
characteristic frequency of an EMRI waveform, variations
in the waveform difference with respect to M may be
reduced by rescaling the time coordinate to dimensionless
time t=M. This approach has been investigated and yields
longer (by an order of magnitude or so) covariance lengths
as expected. However, it also results in less stable deriv-
atives and poorer interpolation; this is likely becauseM and
μþM are used interchangeably in the AAK model, and so
its waveforms vary differently from the NK waveforms
with respect to M. If more accurate models are used, the
waveform difference will have an infinite covariance length
in total mass, such that rescaling the time coordinate by
μþM reduces the component-mass subspace to a single
degree of freedom (e.g., the mass ratio μ=M).
Three different training sets are considered for the

ðμ;MÞ example in this section. The first is a (6 × 6)-point
set DFish with ðμ;MÞtrue lying at the geometric center of its
span; its points are placed uniformly on a grid defined by
the semiprincipal axes fλ−1=2i v̂igFish of the Fisher metric
ellipse, with fðλi; v̂iÞgFish the eigensystem of Γ for the unit-
SNR waveform difference. Two more (10 × 10)-point sets
Ddense andDsparse are constructed on rectangular grids, with
the grid lengths given by the short and long Fisher lengths,
respectively, i.e.,

ðΔμ;ΔMÞdense ¼

0
B@ 1ffiffiffiffiffiffiffiffiffiffi

½Γ�μμ
q ;

1ffiffiffiffiffiffiffiffiffiffiffiffi½Γ�MM

p
1
CA; ð36Þ

ðΔμ;ΔMÞsparse ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Γ−1�μμ
q

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Γ−1�MM

q �
: ð37Þ

As justified in Sec. III A, the GPR model is trained on a
single training set (Ddense in this case), and the same
optimal covariance ellipse is subsequently used for all
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FIG. 2. One-dimensional likelihood plots for the standard
likelihood with accurate and approximate waveforms, and the
marginalized likelihood with the training sets DFish, Dcov, and
D2cov. The only training-set points within the horizontal plot
range belong to the densest set DFish and are indicated by thick
marks on the horizontal axis.
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three sets. The relative placement of points in the three
training sets is shown in Fig. 3, along with the covariance
and Fisher ellipses. Both ellipses are aligned, and the Fisher
ellipse is slightly smaller, which is consistent with the
discussion around (34) and (35).
From the contour plots in Fig. 4, the measurement of

ðμ;MÞ with the approximate likelihood Lapp has a theo-
retical error of ðμ;MÞϵ ≈ ð2 × 10−3; 6Þ M⊙ and excludes
ðμ;MÞtrue at beyond 2-sigma significance. The margin-
alized likelihood with the training set Ddense is virtually
identical to the accurate likelihood Lacc; so too is the
likelihood for DFish, which is sparser and contains fewer
points. More surprisingly, the training setDsparse also yields
a likelihood that is very similar to Lacc, which indicates that
a training-set density no lower than that corresponding to
the long Fisher metric lengths (i.e., the half-extents of the
unit-SNR Fisher ellipse in each parameter) will still be
optimal on the level of the marginalized likelihood.
However, it may be difficult to learn the optimal covariance
metric from such a training set if it is too sparse or contains
too few points.
It is clear that a simple rectangular grid approach to the

placement of training-set points will not scale well with the
dimensionality l of the parameter space, but uniform
placement on a grid defined by the Fisher metric eigen-
system is also limited at moderately large l. From the
heuristic examples studied so far, six points along each

Fisher eigenvector appear to be the bare minimum for
learning a covariance metric that well describes the wave-
form difference locally. This necessitatesOðN3Þ operations
on a 6l × 6l covariance matrix in the training stage, which
is computationally challenging for l > 5. However, if a
suitable covariance metric can be learnt (or approximated,
as in the following section), the actual set of waveform
differences used in the interpolation stage does not have to
be quite as large or dense as the set required to train the
GPR model.

C. LISA Data Challenge

The heuristic examples in Secs. III A and III B
provide some insight into simplifying usage of the GPR
marginalized likelihood (23) for practical applications.
Specifically, the Fisher information matrix for the unit-
SNR waveform difference is closely related to the training-
set grid (which is obtained through empirical validation)
and the optimal covariance metric (which is obtained
through training of the Gaussian process). This suggests
that it could be used to fully specify both quantities at a
good approximation, thus circumventing the significant
computational cost associated with the two procedures.
In this section, the marginalized likelihood is applied to a

quasirealistic LISA data set containing an isolated EMRI
signal. We now take the fiducial model to be the AAK, but
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FIG. 3. Training-set point placement around ðμ;MÞtrue for
Ddense (dots), DFish (triangles), and Dsparse (squares). The grid
for DFish is defined by the semiprincipal axes of the Fisher metric
ellipse (green) and is aligned with the optimal covariance ellipse
(black) learnt from Ddense. The central grey square corresponds to
the plot range of Fig. 4.
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FIG. 4. Two-dimensional likelihood contour plots for the
standard likelihood with accurate and approximate waveforms,
and the marginalized likelihood with the training sets Ddense,
DFish, and Dsparse. All contours are 2-sigma. The only training-set
points within the plot range belong to Ddense and are indicated by
solid circles.
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processed through the LISACode simulator [29]. The data
then comprise three TDI channels x≡ ðxA; xE; xTÞ that
describe the noisy response of LISA to the signal, while the
inner product (2) generalizes to

hajbi ¼ 4Re
XfN
f>0

df
X

χ¼A;E;T

ã�χðfÞb̃χðfÞ
Sn;χðfÞ

ð38Þ

in both the standard likelihood (1) and the marginalized
likelihood (23).5 Waveforms that are passed through
LISACode take ≳102 s to generate (on top of the original
cost of the waveform), such that the standard accurate
likelihood is intractable to estimate via sampling. For the
approximate model, we keep the AAK as the underlying
waveform and instead apply a response that is faster
and less accurate than LISACode. This is based on the
FastTDI response first introduced in [30] but is adapted to
the AAK model for this work; it relies on an analytic
harmonic decomposition of the waveform to produce fast
TDI templates directly in the frequency domain (under the
stationary phase approximation).
A LISACode data set that mimics the first LISA Data

Challenge set [18] is considered in this work (see Fig. 5).
The only differences between the two data sets are as
follows: (i) the EMRI waveform model describing the
signal is taken to be the AAK instead of the older,
unaugmented variant; (ii) two months of data are produced
instead of two years; (iii) a different noise realization is
generated but according to the same power spectral
densities used in LISACode; and (iv) the source luminosity
distance is reduced from 5.2 to 0.7 Gpc, which raises the
true SNR to ρ ¼ 29.6 (the detection SNR for this particular
noise realization is hxjhi=ρ ¼ 28.0). The remaining source
parameters for the signal, along with the sampling rate of
0.1 Hz, are exactly as given in the Data Challenge set.

Even with fast templates and a relatively short two-
month duration, the full parameter estimation problem
remains computationally out of reach for now. We restrict
the analysis to an estimation of three source parameters: the
component masses ðμ;MÞ as before, and the dimensionless
spin parameter s ¼ a=M. The Data Challenge parameter
values are given by

ðμ;M; sÞtrue ¼ ð29.5 M⊙; 1.13 × 106 M⊙; 0.970Þ: ð39Þ

As it is expensive to compute numerically stable derivatives
for the LISACode waveform (and hence the waveform
difference), we instead use the local Fisher matrix for the
unit-SNR FastTDI waveform to construct a (6 × 6 × 6)-
point training set, with ðμ;M; sÞtrue lying at the geometric
center of its span; again, this is a conservative “worst-case”
choice to ensure that the true parameters are maximally far
from the nearest training-set points.
The computational cost of initializing and evaluating the

marginalized likelihood is reduced by means of a low-pass
filter, which is effectively applied by simply truncating both
the frequency-domain data and templates at 5 mHz (above
which there is no signal information). We further streamline
the analysis by foregoing the training procedure in Sec. II B
and directly using the Fisher matrix for the approximate
waveform as the metric in (26).
The covariance scale σ2f is also not treated as a hyper-

parameter but is instead fixed as

σ2f ¼ γ

2N
trðK̂−1MÞ; ð40Þ

which corresponds to the analytically maximized value
(30), times the empirical ratio between the waveform-
difference and noise power spectral densities (averaged
over frequency bins and training-set examples), i.e.,

γ ¼ 1

MN
tr½hhϵðλiÞjhϵðλjÞi�; ð41Þ

where M is the time series length (≈5 × 105 in this case).
This ensures that γ does not cancel out of the marginalized
likelihood and accounts for the fact that the average power
of the waveform-difference Gaussian process is typically
smaller than that of the noise; hence it prevents the estimate
of statistical error from being dominated by the GPR
variance, which can lead to overly stringent or even
erroneous parameter estimates.
Reconstructing the likelihood through numerical

quadrature (as done in Secs. III A and III B) starts to
become impractical in l≳ 3 dimensions, and so the
Metropolis-Hastings algorithm [31] is used to draw sam-
ples from both the standard approximate likelihood Lapp

and the marginalized likelihood L. As seen in Fig. 6, the
approximate likelihood incurs a theoretical error of
ðμ;M; sÞϵ ≈ ð0.02 M⊙; 30 M⊙; 2 × 10−5Þ, which excludes

FIG. 5. Characteristic strain 2fjh̃χðfÞj of the injected AAK-
LISACode signal, and characteristic sensitivity ðfSn;χðfÞÞ1=2 in
the three TDI channels (with Sn;A ¼ Sn;E).

5With the inclusion of a third independent data channel, (23)
also picks up an additional normalizing factor of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γσ2

p
.
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the true parameters ðμ;M; sÞtrue at beyond 3-sigma signifi-
cance (with strue well approximated by chance). This occurs
even though the approximate waveform itself is reasonably
accurate; the overlap between the FastTDI and LISACode
waveforms at ðμ;M; sÞtrue, and across the span of the
training set, is 0.91.
On the other hand, the marginalized likelihood remains

consistent with ðμ;M; sÞtrue even in the presence of simu-
lated LISA noise. It is also slightly more informative
(precise) than the approximate likelihood, which can be
attributed to the reduced fitting factor of the FastTDI
waveform. The robustness of these results is verified using
several different noise realizations, although only the
likelihood for a single one is presented. Furthermore, the
performance of the marginalized likelihood here is not-
withstanding the untrained and possibly suboptimal GPR
model for the waveform difference, as well as the usage of
the Fisher matrix for the approximate waveform (rather
than the waveform difference). This is encouraging, as such
simplifications might well have to be employed in devel-
oping the method into a more extensive framework for
handling theoretical error, and when integrating it within an
actual EMRI analysis pipeline.

IV. CONCLUSION

In this paper, we have discussed the GPR marginalized-
likelihood scheme [16,17] in the context of EMRI data

analysis and performed a preliminary investigation of its
viability for this purpose through low-dimensional studies.
Even in the considered scenario where the template model
used for parameter estimation has a >90% match with the
source signal at the true parameter values, significant
systematic bias from theoretical error will still arise for
sources with moderate-to-high SNRs (ρ≳ 30). The GPR
approach is shown to mitigate this bias and hence to be
suitable for improving the accuracy of EMRI parameter
estimation (albeit in highly localized regions of param-
eter space).
The performance of the marginalized likelihood is

strongly dependent on the precomputed set of waveform
differences, which relies on the existence of a fiducial
waveform model that reproduces the source signal with
high accuracy. For the method to be practical, the density of
the training set must be significantly lower than that in a
notional template bank search with the fiducial waveforms.
This is shown to be the case for EMRIs through a simple
argument in Sec. III and is verified by the various examples
in Secs. III A–III C. Another key result in these sections is a
demonstration of how the Fisher information matrix of the
(normalized) waveform difference may be used to inform
the placement of training-set points, as well as to estimate a
covariance metric that describes the waveform difference
locally.
While the marginalized likelihood shows early promise

for EMRI parameter estimation, it is akin to other appli-
cations of GPR in being subject to the curse of dimension-
ality. The number of training-set points required to search
an l-dimensional parameter subspace generally grows
exponentially with l, which hinders not just the offline
training stage (since the covariance matrix is larger and
more ill-conditioned) but also the online interpolation stage
(where a new linear combination of waveform differences
is computed for each likelihood evaluation).
One possible approach to these computational problems

is to replace the squared-exponential covariance function
(27) in the GPR model with a covariance function that has
compact support on parameter space (e.g., the Wendland
polynomials [32]), such that the covariance matrix becomes
sparse. Iterative methods [33] may then be used to accel-
erate the Cholesky decomposition of the covariance matrix
in (19), (20), and (29). A compact-support covariance
function also reduces the number of training-set points
summed in (19), which directly determines the evaluation
speed of the marginalized likelihood.
Another strategy is to minimize the size of the training

set itself. As seen throughout Sec. III, the optimal covari-
ance metric (or the Fisher metric) determines a fixed
threshold for the characteristic density of a training set
that functions well at the interpolation stage. However,
it may be possible to lower this threshold density
through reparametrization or dimensionality-reduction
methods, e.g., the component-mass example discussed in

FIG. 6. Projected one- and two-dimensional likelihood plots for
the standard likelihood with approximate waveforms, and the
marginalized likelihood. All contours are 3-sigma. The true
source parameters are indicated by a black cross, while the
training-set points whose projections lie within the plot range are
indicated by green dots.
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Sec. III B. In the case of parameters for which this is not
feasible, the number of training-set points used to cover the
region of relevance may still be reduced through a
nonuniform placement of points, or nongeometric pre-
scriptions such as stochastic placement algorithms [34–36].
Full coverage of the search region with a precomputed
training set might not even be necessary; one possibility
could be to use a “moving” local set that is updated
adaptively as the marginalized likelihood is sampled with
Markov chain Monte Carlo methods.
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