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ABSTRACT
The superfluid and superconducting core of a cold rotating neutron star (NS) is expected
to be threaded by a tremendous number of neutron quantized vortices and proton fluxoids.
Their interactions are unavoidable and may have important astrophysical implications. In this
paper, the various contributions to the force acting on a single vortex to which fluxoids are
pinned are clarified. The general expression of the force is derived by applying the variational
multifluid formalism developed by Carter and collaborators. Pinning to fluxoids leads to an
additional Magnus type force due to proton circulation around the vortex. Pinning in the core
of an NS may thus have a dramatic impact on the vortex dynamics, and therefore on the
magnetorotational evolution of the star.

Key words: stars: interiors – stars: neutron.

1 IN T RO D U C T I O N

Even before their actual discovery, neutron stars (NSs) were
expected to be so dense that neutrons and protons in their interior
may be in a superfluid state (see e.g. Chamel 2017, and references
therein). This theoretical prediction was later confirmed by the
very long relaxation times following the first detections of pulsar
sudden spin-ups so-called frequency glitches (Haskell & Melatos
2015). Nucleon superfluidity in the core of NSs has recently found
additional support from the direct monitoring of the rapid cooling
of the young NS in Cassiopeia A (Page et al. 2011; Shternin et al.
2011). However, the interpretation of these observations remains
controversial (Posselt & Pavlov 2018; Wijngaarden et al. 2019).

Because NSs are rotating, their interior is threaded by a huge
number of neutron quantized vortices, each carrying a quantum
κn = h/(2mn) � 2 × 10−3 cm2 s−1 of circulation, where h is the
Planck constant and mn is the neutron rest mass. The mean surface
density of vortices is proportional to the angular frequency � and
is given by (Chamel 2017)

Nn = 4 mn �/h � 6 × 105/P10 cm−2, (1)

where P10 = P/10 ms is the observed rotation period of the NS.
Assuming that protons in NS cores form a type-II superconduc-
tor (Baym, Pethick & Pines 1969), the magnetic flux penetrates the
stellar interior only via fluxoids, each carrying a quantum magnetic
flux φ0 = hc/(2e) � 2 × 10−7 G cm2, where c is the speed of light
and e denotes the proton electric charge. For typical NS magnetic
fields, the number of fluxoids is considerably larger than that of
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vortices, their mean surface density being given by (Chamel 2017)

Np = B/φ0 � 5 × 1018 B12 cm−2, (2)

where B12 = B/1012 G is the stellar internal magnetic field. Interac-
tions between neutron vortices and proton fluxoids are therefore
unavoidable, and are pivotal in the magnetorotational evolution
of NSs. In particular, vortices may pin to fluxoids (Muslimov &
Tsygan 1985; Sauls 1989; Srinivasan et al. 1990; Ruderman,
Zhu & Chen 1998, see also Alpar 2017 for a recent review),
and this may have important implications for various astrophysical
phenomena, such as precession (Sedrakian, Wasserman & Cordes
1999; Link 2006; Glampedakis, Andersson & Jones 2008), r-
mode instability (Haskell, Andersson & Passamonti 2009; Haskell,
Glampedakis & Andersson 2014), and pulsar glitches (Sedrakian
et al. 1995; Sidery & Alpar 2009; Glampedakis & Andersson
2009; Haskell, Pizzochero & Seveso 2013; Haskell & Melatos
2015; Gügercinoğlu 2017; Sourie et al. 2017; Haskell et al. 2018;
Graber, Cumming & Andersson 2018). However, the detailed force
acting on individual vortices to which fluxoids are pinned remains
poorly understood. In particular, the contribution associated with the
proton circulation induced by pinned fluxoids has been generally
overlooked or treated phenomenologically (see e.g. Glampedakis &
Andersson 2011).

Building on the recent study of Gusakov (2019), who determined
the force acting on a single fluxoid and clarified the role of
degenerate electrons, we derive in this paper the general expression
for the force per unit length acting on a neutron vortex to which
Np proton fluxoids are pinned. To this end, we follow a general
approach originally developed by Carter, Langlois & Prix (2002)
in the relativistic framework, and later adapted to the Newtonian
context by Carter & Chamel (2005a). The general expression of
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Force on a vortex 383

Figure 1. Schematic picture illustrating the fluid element contributing to
the force per unit length acting on the vortex directed along the z-axis. The
parallel sections S(C) lie in the plane perpendicular to this axis. See the text
for details.

the vortex velocity is calculated and the role of pinning on the
vortex dynamics is discussed. The implications for pulsar glitches
are studied in an accompanying paper (Sourie & Chamel 2020).

2 FOR C E AC TING O N A SINGLE VO RTEX
P I N N E D TO FL U X O I D S

2.1 General definition

Let us consider a rigid and infinitely long straight neutron superfluid
vortex to which Np proton fluxoids are pinned. The medium in which
the vortex is embedded is assumed to be asymptotically uniform,
stationary and longitudinally invariant, along say the z-axis.

The force density fff acting on a matter element is defined by the
divergence of the momentum-flux tensor �ij (i, j denoting space
coordinate indices),

fi ≡ ∇j�
j

i . (3)

The force dFFF exerted on a vortex segment of length dz by a matter
element whose volume is delimited by a closed contour C encircling
the vortex and the pinned fluxoids, as represented on Fig. 1, is thus
given by

dFi = −
•

fi dV = −
•

∇j�
j

i dV

=
“

S(C)
�

j

i (z)ẑj dS −
“

S(C)
�

j

i (z + dz)ẑj dS

+ dz

∮
C

�
j

i αj d�, (4)

where we have made use of Stokes’ theorem, and ααα is a unit vector
perpendicular to both the vortex line and the contour C, and is
oriented inside the contour. Longitudinal invariance along the vortex
line implies that �ij is independent of z. The two surface integrals
in the second line of equation (4) thus cancel each other. The force
per unit length acting on the vortex and the pinned fluxoids can be
finally expressed as

Fi ≡ dFi

dz
=

∮
C

�
j

i αj d� . (5)

The force (5) is well-defined provided the contour integral is
evaluated at sufficiently large distances from the vortex where the
force density vanishes, fi = 0. Indeed, considering two different

Figure 2. Schematic picture illustrating the surface S(C2) \S(C1) (shaded
area) delimited by two different contours C1 and C2 around the vortex region.

contours C1 and C2, we have

Fi(C1) − Fi(C2) =
“

S(C2) \S(C1)
fi dS = 0, (6)

where the integration is carried out over the surface area
S(C2) \S(C1) delimited by the two contours (see Fig. 2). Therefore,
Fi(C1) = Fi(C2).

Considering distances sufficiently far from the vortex for the first-
order perturbation theory to hold, the momentum-flux tensor can be
decomposed as

�ij = �̄ij + δ�ij , (7)

where δ�ij denotes a small disturbance of the uniform background
momentum-flux tensor �̄ij . Similarly, any quantity y will be
expanded to first order as y = ȳ + δy, where δy denotes a small
disturbance of the uniform background quantity ȳ. Since the force
for the unperturbed uniform background flows must evidently
vanish by symmetry, the corresponding force in the presence of
the vortex (5) will be given to first order by

Fi =
∮
C

δ�
j

i αj d�, (8)

see also Carter et al. (2002) and Carter & Chamel (2005a).

2.2 Momentum-flux tensor for npe-matter

Let us assume that the vortex and the Np fluxoids pinned to it are
evolving in a cold1 mixture of superfluid neutrons, superconducting
protons, and degenerate electrons. Such conditions are expected
to be met in the outer core of NSs. The basic model of such
a three-component superconducting–superfluid mixture we adopt
here has been described by Carter & Langlois (1998). Although
developed in the relativistic context, their covariant approach
remains formally applicable to the Newtonian space–time since
it is based on Cartan’s exterior calculus (see also Carter & Chamel

1The temperature in mature NSs is expected to be low enough for thermal
excitations to be negligible, see e.g. Potekhin, Pons & Page (2015) for a
review and Beloin et al. (2018) for recent neutron-star cooling simulations.
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2004, 2005a,b for the fully 4D covariant non-relativistic formulation
and a discussion of the specificity of the Newtonian space–time).
The explicit hydrodynamic equations in the usual 3 + 1 space–time
decomposition and based on a similar convective variational action
principle have been derived by Prix (2004, 2005).

The momentum-flux tensor can be decomposed as

�ij = �
(nuc)
ij + �

(e)
ij + �

(em)
ij , (9)

where �
(nuc)
ij , �

(e)
ij , and �

(em)
ij denote the nucleon, electron,

and electromagnetic contributions, respectively. The nucleon part
reads (Carter & Langlois 1998)

�
(nuc)j
i = nj

n πn
i + nj

p

(
π

p
i − e

c
Ai

)
+ � δ

j

i , (10)

where ni
n = nnv

i
n and ni

p = npv
i
p denote the neutron and proton

currents respectively, πn
i and π

p
i stand for the associated generalized

momenta per particle, Ai is the magnetic potential vector, � is the
generalized pressure of the nucleon mixture, and δ

j

i is the Kronecker
symbol. The generalized momenta πn

i and π
p
i are related to the

purely nuclear momenta pn
i and p

p
i (as obtained in the absence

of electromagnetic fields) by the following relations (Carter &
Langlois 1998)

πn
i = pn

i , π
p
i = p

p
i + e

c
Ai . (11)

As stressed by Carter (1989), the distinction between momenta and
currents is crucial. Because neutrons and protons are strongly in-
teracting, they are mutually coupled by non-dissipative entrainment
effects of the kind originally discussed in the context of superfluid
3He−4He mixtures by Andreev & Bashkin (1976) such that the
nucleon momenta are expressible as (Carter & Langlois 1998)

pn
i = γij

(
K nn nj

n + K np nj
p

)
,

p
p
i = γij

(
K pn nj

n + K pp nj
p

)
, (12)

where γ ij denotes the space metric. The entrainment coefficients
K nn, K np = K pn, and K pp are not all independent since Galilean
invariance imposes the following relations:

K nn nn + K np np = mn,

K pn nn + K pp np = mp, (13)

where mp is the proton rest mass. The entrainment coefficients de-
pend on the baryon number density and on the composition (see e.g.
Gusakov & Haensel 2005; Chamel 2008; Kheto & Bandyopadhyay
2014; Sourie, Oertel & Novak 2016). They may also depend on the
relative nucleon currents so that the relations (12) between nucleon
momenta and currents are not necessarily linear (Leinson 2017,
2018).

The electromagnetic momentum-flux tensor is given by the usual
expression (in Gaussian cgs units)

�
(em)j
i = − 1

4π

(
EiE

j + BiB
j − 1

2
EkEkδ

j

i − 1

2
BkBkδ

j

i

)
, (14)

where Ei and Bi denote the electric and magnetic fields.
At the vortex scale, electrons do not form a fluid2 but are in a

ballistic regime following classical trajectories. Instead of following

2We recall here that we are dealing with scales large compared to the size
of the vortex-fluxoid configuration, but small with respect to the typical
intervortex distance dn � 1/

√
Nn ∼ 10−3 cm. The electron mean-free path

is generally much larger than dn, see e.g. Shternin & Yakovlev (2008) and
Glampedakis, Andersson & Samuelsson (2011).

the purely hydrodynamic treatment of Carter & Langlois (1998)
for the electron momentum-flux tensor �

(e)
ij , we adopt here the

expression given by equation (23) of Gusakov (2019).
The total force (8) experienced by the vortex can thus be

decomposed as

Fi = F (nuc)
i + F (e)

i + F (em)
i , (15)

where the separate contributions

F (nuc)
i =

∮
C

δ�
(nuc)j
i αj d�, (16)

F (e)
i =

∮
C

δ�
(e)j
i αj d�, (17)

and

F (em)
i =

∮
C

δ�
(em)j
i αj d�, (18)

are evaluated in Sections 2.3 - 2.5, respectively.

2.3 Nucleon contribution

The first-order perturbation in the nucleon momentum-flux ten-
sor (10) reads

δ�
(nuc)j
i = δnj

n π̄n
i + n̄j

n δπn
i + δnj

p π̄
p
i + n̄j

p

(
δπ

p
i − e

c
δAi

)

+ δ� δ
j

i , (19)

using a gauge such that Āi = 0 (Carter et al. 2002). In the 4D
covariant formulations of Carter et al. (2002) and Carter & Chamel
(2005a), the first-order perturbation of the nucleon pressure can be
expressed as [see equation (A9) of Carter & Chamel (2005b)]

δ� = −n̄n δpn
0 − n̄p δp

p
0 − n̄k

n δpn
k − n̄k

p δp
p
k , (20)

where pn
0 and p

p
0 correspond to the time components of the neutron

and proton four-momenta. These time components can be more
explicitly written as [see equation (34) of Prix (2005)]

pX

0 = −μX + m
X
v2

X
/2 − vk

X
pX

k , (21)

with μX denoting the chemical potential of nucleon species X ∈ {n,p}.
Introducing the time components of the generalized momenta
(Carter & Langlois 1998)

πn
0 = pn

0, π
p
0 = p

p
0 + eA0, (22)

where −A0 denotes the electric scalar potential, the first-order
perturbation in the nucleon momentum-flux tensor (19) can be
written as

δ�
(nuc)j
i = δnj

n π̄n
i + n̄j

n δπn
i + δnj

p π̄
p
i + n̄j

p

(
δπ

p
i − e

c
δAi

)

−
(
n̄nδπ

n
0 + n̄pδπ

p
0 + n̄k

nδπ
n
k + n̄k

pδπ
p
k

)
δ

j

i

+
(
n̄pe δA0 + e

c
n̄k

pδAk

)
δ

j

i . (23)

The nucleon force (16) acting on the vortex can thus be decomposed
as

F (nuc)
i = FE i + Ft i + FMn i + FMp i + F
 i, (24)

where the different force terms are given by

FE i = −
∮
C

(
n̄n δπn

0 + n̄p δπ
p
0 − n̄p e δA0

)
αi d�, (25)

Ft i =
∮
C

(
δnj

n π̄n
i + δnj

p π̄
p
i

)
αj d�, (26)
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FMn i =
∮
C

(
n̄j

n δπn
i − δ

j

i n̄
k
n δπn

k

)
αj d�, (27)

FMp i =
∮
C

(
n̄j

p δπ
p
i − δ

j

i n̄
k
p δπ

p
k

)
αj d�, (28)

and

F
 i = − e

c

∮
C

(
n̄j

p δAi − δ
j

i n̄
k
p δAk

)
αj d� . (29)

Let us first focus on FE i . The equations of motion for the neutron
superfluid and for the proton superconductor, as expressed as the
vanishing of a suitably generalized vorticity tensor, thus take a very
simple form in the 4D covariant approach [see equations (15), (17),
and (18) of Carter & Langlois (1998), or equations (161) and (171)
of Carter & Chamel (2004)]. In the usual space–time decomposition,
the stationary limit of these equations reduces to ∇i πn

0 = ∇i π
p
0 =

0. As shown in Appendix A, this result can also be obtained from
equations (26)–(29) of Prix (2005) or from equations (B4) and (B5)
of Gusakov (2019) in the particular case in which mutual neutron–
proton entrainment effects are neglected. The above equations imply
that both πn

0 and π
p
0 are uniform, i.e. πn

0 = π̄n
0 and π

p
0 = π̄

p
0 , or

equivalently, δπ
p
0 = δπn

0 = 0. Therefore, we get

FE i = n̄p e

∮
C

A0 αi d�, (30)

using the fact that δA0 = A0 − Ā0 = A0 since the uniform back-
ground value vanishes (in an appropriate gauge). Equation (30) can
thus be interpreted as the (opposite of the) force acting on charged
protons due to the electric field.

Introducing the coefficients Dn and Dp as

Dn =
∮
C

nj
n αj d� and Dp =

∮
C

nj
p αj d�, (31)

and recalling that p̄X

i = π̄X

i , the force term Ft i can be rewritten as

Ft i = δDn p̄n
i + δDp p̄

p
i , (32)

where δDn = Dn − D̄n and δDp = Dp − D̄p. Using Stokes’ theo-
rem, Dn and Dp can be equivalently expressed as

Dn = −
“

S(C)
∇kn

k
n dS and Dp = −

“
S(C)

∇kn
k
p dS, (33)

where the integrals are over the surface S (C) delimited by the
contour C and dS is the corresponding surface element. Therefore,
the background values vanish and δDn = Dn and δDp = Dp. The
force Ft i is thus associated with transfusive processes, whereby
particles of different species are converted into each other by nuclear
reactions (Carter & Chamel 2005b). If each species is separately
conserved, ∇kn

k
n = 0 and ∇kn

k
p = 0 must hold everywhere through-

out the fluids. In such a case, we deduce that Dn = Dp = 0, which
leads to Ft i = 0.

Neutron and proton superflows far from the vortex must obey
the irrotationality condition [see equations (15), (17), and (18) of
Carter & Langlois (1998) or equations (161) and (171) of Carter &
Chamel (2004)]

εijk∇jπ
n
k = 0 and εijk∇jπ

p
k = 0, (34)

where εijk is the Levi–Civita symbol. The longitudinal invariance
along the vortex, in association with the previous irrotationality
conditions, lead to ẑj δπn

j = 0 and ẑj δπ
p
j = 0 (Carter & Chamel

2005a). Defining ⊥i
j as the operator of projection orthogonal to the

vortex, i.e. ⊥i
j= δi

j − ẑi ẑj , we thus have

⊥j

i δπn
j = δπn

i , ⊥j

i δπ
p
j = δπ

p
i . (35)

The force term FMn i (27) can therefore be recast as

FMn i =
∮
C

n̄j
nδπ

n
k

[⊥k
i αj− ⊥k

j αi

]
d� . (36)

Introducing the unit vector β i along the contour such that αi =
−εijkβ

j ẑk as illustrated in Fig. 2, and making use of the identity

⊥k
i εjlm− ⊥k

j εilm = ⊥k
l εjim, (37)

the force FMn i can be equivalently written as

FMn i = −εijk ẑ
j n̄k

nδCn, (38)

where the neutron momentum integral Cn is given by

Cn =
∮
C

πn
k d�k, (39)

with d�k = d� βk . Since the background value C̄n vanishes and using
the fact that the neutron momentum circulation integral is quantized,
we have

δCn = Cn = mn κn (40)

in the presence of a single vortex line. The force term FMn i finally
reads

FMn i = −ρ̄n κn εijk ẑ
j v̄k

n, (41)

where ρn = mn nn. This force can thus be recognized as the Magnus
force induced by the (quantized) momentum circulation of the
neutron superfluid around the vortex. Similar arguments also apply
to the proton superconductor, with the only difference that the proton
momentum circulation integral reads

Cp =
∮
C

π
p
k d�k = mp Np κp (42)

with κp = h/(2mp), if Np fluxoids are enclosed inside the contour.
The force term FMp i thus reads

FMp i = −ρ̄p Np κp εijk ẑ
j v̄k

p , (43)

where ρp = mp np.
Finally, since the magnetic field B i = ε ijk ∇ j A k carried by the

vortex-fluxoid configuration is directed along ẑi , the z-component
of the vector potential A i must vanish, i.e. A z = 0 [see e.g.
equations (7) and (9) of Gusakov ( 2019)]. As a consequence, we
have ⊥j

i δAj = δAi . Following a procedure similar to the one used
to derive FMn i and FMp i , we obtain

F
 i = n̄p
e

c

 εijk ẑ

j v̄k
p, (44)

where


 =
∮
C

Akd�k (45)

is the magnetic flux through the surface S (C) delimited by the
contour C, and using the fact that the uniform background flux 
̄

necessarily vanishes. Equation (44) can thus be interpreted as the
(opposite of the) force acting on charged protons due to the magnetic
field.

Collecting terms in equation (24), the nucleon force contribution
is finally expressible as

F (nuc)
i = −ρ̄n κn εijk ẑ

j v̄k
n − ρ̄p Np κp εijk ẑ

j v̄k
p

+ n̄p e

∮
C

A0 αi d� + n̄p
e

c

 εijk ẑ

j v̄k
p . (46)

Let us recall that this expression only holds in the absence of
transfusive processes, i.e. assuming that each species is separately
conserved.
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2.4 Electron contribution

Since electrons are in a ballistic regime at the scale of interest here,
the calculation of F (e)

i needs a specific treatment, see e.g. Gusakov
(2019). Although Gusakov (2019) mainly focused on a single proton
fluxoid, several conclusions of this work are actually very general
and can be readily transposed to the vortex-fluxoid configuration
under consideration. In particular, the electron force term (17) can
be decomposed into two parts, i.e.

F (e)
i = F (e,sc)

i + F (e,ind)
i , (47)

see equation (B27) of Gusakov (2019), where

F (e,sc)
i =

∮
C

δ�
(e,sc)j
i αj d� (48)

is associated with the scattering of electrons off the vortex-fluxoid
system and

F (e,ind)
i =

∮
C

δ�
(e,ind)j
i αj d� (49)

is an ‘induced’ contribution related to the fact that the scattered
electrons carry a charge and thus generate a weak electric field
far from the vortex. Using equation (B15) of Gusakov (2019), this
induced contribution reads3

F (e,ind)
i = −n̄e e

∮
C

A0 αi d� . (50)

Besides, the force term F (e,sc)
i is found to be expressible as

F (e,sc)
i = De v̄e i + D′

e εijk ẑ
j v̄k

e , (51)

see equations (29) and (18) of Gusakov (2019), where v̄i
e denotes

the asymptotically uniform electron velocity (in the frame where
the vortex is at rest). Furthermore, Gusakov (2019) derived the
expressions for the coefficients De and D′

e in the particular context
where F (e,sc)

i is governed by the scattering of electrons off the
magnetic field carried by a single fluxoid. His expression for D′

e

[see equation (61) of Gusakov (2019)], i.e.

D′
e = − e

c
n̄e
, (52)

where 
 is given by equation (45), happens to be very general
in the sense that it does not depend on the detailed structure
of the quantized lines carrying the magnetic flux (as long as
electrons follow classical trajectories). Therefore, equation (52)
remains valid in the present case where electrons are scattered off
the magnetic field carried by the vortex and the pinned fluxoids.4

On the other hand, the expression (60) of Gusakov (2019) for the
drag coefficient De is not applicable here since it depends strongly
on the configuration of the quantized line(s) carrying the flux 
.
The determination of De would thus require (i) to know the exact
geometry and structure of the vortex and the Np fluxoids pinned
to it, and (ii) to generalize the microscopic scattering calculations
carried out by Gusakov (2019) to the present case.

3The quantities ee, φ and ne0 appearing in equation (B15) of Gusakov (2019)
correspond here to −e, −A0, and n̄e, respectively.
4Each proton fluxoid pinned to the vortex carries a quantum of magnetic flux
φ0. Besides, the neutron vortex itself is magnetized due to neutron–proton
entrainment effects, and thus carries a fractional quantum of magnetic flux
φn � −εpφ0, where εp characterizes the importance of entrainment effects
(see e.g. Sedrakian & Shakhabasian 1980; Alpar, Langer & Sauls 1984).

From the previous considerations, the electron force (17) finally
reads

F (e)
i = −n̄p e

∮
C

A0 αi d� + De v̄p i − e

c
n̄p
 εijkẑ

j v̄k
p, (53)

where we have made use of the electric charge neutrality condition
n̄e = n̄p and the so-called screening condition v̄i

e = v̄i
p, see e.g.

Glampedakis et al. (2011) and Gusakov & Dommes (2016).

2.5 Electromagnetic contribution

As can be seen from equation (14), the first-order perturbation in
the electromagnetic stress tensor δ�

(em)j
i only involves terms of

the kind δEj Ēi and δBj B̄i . However, the asymptotically uniform
magnetic and electric fields must vanish in view of the Meissner
effect, i.e. B̄i = 0 and Ēi = 0 (Carter et al. 2002; Gusakov 2019).
From δ�

(em)j
i = 0, we conclude that

F (em)
i = 0 . (54)

2.6 Final expression and comparison with previous studies

Combining equations (46), (53), and (54), the total force per unit
length (15) acting on a neutron vortex to which Np proton fluxoids
are pinned is finally expressible as

Fi = −ρ̄n κn εijk ẑ
j v̄k

n − ρ̄p Np κp εijk ẑ
j v̄k

p + De v̄p i . (55)

Note that the electron force proportional to D′
e derived by Gusakov

(2019), i.e. the last term in equation (53), is exactly cancelled by the
proton forceF
 i . Let us remark that equation (55) is also applicable
to determine the force acting on a neutron–proton vortex cluster of
the kind proposed by Sedrakian & Sedrakian (1995).

In the absence of pinning (Np = 0), a situation considered by
Alpar et al. (1984), a neutron vortex still experiences a drag force
due to the scattering of electrons off the magnetic field induced by
the circulation of entrained protons. By setting Np = 1 and κn = 0,
our expression (55) reduces to that obtained by Gusakov (2019) for
the force acting on a single fluxoid. For NSs with a rotation period
P10 ∼ 1 and a typical magnetic field B12 ∼ 1, the number of pinned
fluxoids may potentially be as large as Np ∼ Np/Nn ∼ 1013 so that
the second term in equation (55) may have a very strong impact
on the vortex dynamics. To illustrate the relative importance of the
different force terms on the vortex motion, we give the expression
of the vortex velocity in the next section.

2.7 Vortex motion

Once expressed in a frame where the neutron vortex moves at the ve-
locity vi

L, the vortex motion can be obtained from the force balance
equation Fi = 0 (neglecting the masses of the different quantized
lines as in previous studies). Following the classical approach of
Hall & Vinen (1956) and considering velocities orthogonal to ẑi ,
the vortex velocity is found to be given by

vi
L = v̄i

p + B εijk ẑj w̄pn k + (
1 − B′) εijk ẑj εklmẑlw̄m

pn

= v̄i
n + B εijk ẑj w̄pn k − B′εijk ẑj εklmẑlw̄m

pn, (56)

where w̄i
pn = v̄i

p − v̄i
n denotes the relative velocity far from the

quantized lines, see Appendix B for details (the coefficients usually
denoted by B and B′ in the neutron-star literature were indicated
by α and α

′
in the standard textbook of Donnelly 2005). In this
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expression, the coefficients B and B′ are expressible as5

B = ξ

ξ 2 + (1 + X)2 and 1 − B′ = 1 + X

ξ 2 + (1 + X)2 , (57)

where the drag-to-lift ratio ξ and the momentum circulation ratio X
read

ξ = De

ρ̄nκn
and X = n̄p

n̄n
Np . (58)

Note that, regardless of the actual values of ξ and X, the following
inequalities hold

B ≤ 1/2 and B′ ≤ 1 . (59)

In the absence of pinning (Np = 0), equation (57) reduces to well-
known expressions (see e.g. Carter 2001). In particular, the vortex
velocity vi

L coincides with v̄i
n and v̄i

p in the weak (ξ � 1) and strong
(ξ 
 1) drag regimes, respectively. The motion of a vortex is more
complicated if proton fluxoids are pinned to it. In particular, the
vortex will move with velocity v̄i

p even in the weak drag limit if the
number of pinned fluxoids Np is large enough such that X 
 1 and

 ξ . However, it should be stressed that the drag-to-lift ratio ξ itself
depends on Np and may thus be also very large (Ding, Cheng &
Chau 1993; Sedrakian & Sedrakian 1995). Because pinning may
lead to a dramatic reduction of the coefficient B, it may also have
important implications for the onset of superfluid turbulence, which
is thought to be governed by the parameter q = B/

(
1 − B′) (Finne

et al. 2003).

3 C O N C L U S I O N S

Following an approach originally proposed by Carter and collab-
orators (Carter et al. 2002; Carter & Chamel 2005a), we have
derived the expression for the force per unit length acting on a
quantized neutron vortex to which Np proton fluxoids are attached,
see equation (55). Our expression is very general and can be applied
to describe various situations. In particular, equation (55) extends
the expression recently obtained by Gusakov (2019) for the force
per unit length acting on a single fluxoid.

By clarifying the different contributions to the force, we have
shown that the proton-momentum circulation around the vortex
induced by the presence of pinned fluxoids gives rise to a Magnus
type force. Due to mutual entrainment effects, the distinction
between momenta (usually improperly introduced in terms of
‘superfluid velocities’) and currents is crucial to obtain the correct
expression of the force. Unlike the drag force, this Magnus force
does not depend on the microscopic arrangement of pinned fluxoids,
as a consequence of the quantization of the proton circulation.

Although the vortex velocity takes a similar form as in the absence
of pinning, see equation (56), the friction coefficients B and B′ are
found to depend on the dimensionless ratio Np × n̄p/n̄n in addition
to the drag-to-lift ratio ξ . Because Np may be potentially as large as
∼1013, pinning may have a dramatic impact on the vortex motion
and the onset of superfluid turbulence. A major complication comes
from the fact that Np, thereby the coefficients B and B′, may vary
along the vortex trajectory: Np may increase as the vortex moves
and encounters more and more fluxoids, but Np may also decrease
as fluxoids get unpinned. The evolution of Np will generally depend

5As shown in the accompanying letter (Sourie & Chamel 2020), the coeffi-
cient B (B′) is associated with the dissipative (conservative) contribution in
the smooth-averaged mutual-friction force arising at scales large compared
to the intervortex spacing.

on the spatial distribution of fluxoids in the outer core of an NS,
which in turn reflects the geometry of the internal magnetic field.
Pinning of neutron vortices to proton fluxoids should thus be taken
into account in the modelling of the magnetorotational evolution of
NSs.
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A P P E N D I X A : STAT I O NA RY E QUAT I O N S O F
MOTION FOR THE N EUTRON SUPERFLUID
A N D F O R TH E P ROTO N S U P E R C O N D U C TO R

In this appendix, we show how the stationary equations of motion
for the neutron superfluid and for the proton superconductor, i.e.

∇i πn
0 = 0 and ∇i π

p
0 = 0, (A1)

can be derived from equations (26)–(29) of Prix (2005) and from
equations (B4) and (B5) of Gusakov (2019), although these two
studies rely on different approaches.

A1 Derivation from Prix (2005)

Using equations (26)–(29) of Prix (2005), the canonical force densi-
ties acting on the neutron superfluid and the proton superconductor
are respectively given by

f n
i = nn

(
∂tp

n
i − ∇ip

n
0

) − εijknnv
j
nεklm∇lp

n
m + nnmn∇iϕ

+�n πn
i , (A2)

f
p
i = np

(
∂tp

p
i − ∇ip

p
0

) − εijknpv
j
pεklm∇lp

p
m + npmp∇iϕ

+�p π
p
i − np e

(
Ei + 1

c
εijkv

j
pBk

)
, (A3)

where ϕ denotes the gravitational gauge field and we have used the
short-hand notations

�n = ∂tnn + ∇i

(
nnv

i
n

)
and �p = ∂tnp + ∇i

(
npv

i
p

)
. (A4)

In the absence of external forces, as characterized by f n
i = f

p
i =

0, and ignoring any transfusive processes, i.e. �n = �p = 0, the
stationary equations of motion reduce to

0 = −∇ip
n
0 − εijkv

j
nεklm∇lp

n
m, (A5)

0 = −∇ip
p
0 − εijkv

j
pεklm∇lp

p
m − e

(
Ei + 1

c
εijkv

j
pBk

)
, (A6)

where we have neglected the small variations of the gravitational
field ϕ on the scales of interest. Making use of the irrotationality
conditions (34), rewritten as

εijk∇jp
n
k = 0 and εijk∇jp

p
k + e

c
Bi = 0, (A7)

in combination with the definition (22) for πn
0 and π

p
0 , equa-

tions (A5) and (A6) reduce to equation (A1), as expected.

A2 Derivation from Gusakov (2019)

In the alternative approach followed by Gusakov (2019), the
conservation equations for the neutron and proton momenta read

∂tGn i = −∇k

(
mnnnv

k
nvn i

) − nn∇iμ
n, (A8)

∂tGp i = −∇k

(
mpnpv

k
pvp i

)
− np∇iμ

p

+np e

(
Ei + 1

c
εijkv

j
pBk

)
, (A9)

where the variations of the gravitational field have been neglected,
see equations (B5) and (B4) of Gusakov (2019). The quantities
Gn i = nn pn

i and Gp i = np p
p
i denote the neutron and proton mo-

mentum densities, respectively, with pn
i = mnvn i and p

p
i = mpvp i

in the absence of mutual neutron–proton entrainment effects [see
equations (12) and (13) with K np = 0], as considered in Gusakov
(2019). Ignoring transfusive processes and focusing on stationary
situations only, equations (A8) and (A9) reduce to

0 = −mnv
k
n∇kvn i − ∇iμ

n, (A10)

0 = −mpv
k
p∇kvp i − ∇iμ

p + e

(
Ei + 1

c
εijkv

j
pBk

)
. (A11)

Making use of the relation

Aj∇jAi = 1

2
∇i

(
AjAj

) − εijkA
j εklm∇lAm, (A12)

valid for any vector field Ai, these equations can then be rewritten
as

0 = −∇i

(
1

2
vk

np
n
k + μn

)
+ εijkv

j
nεklm∇lp

n
m, (A13)

0 = −∇i

(
1

2
vk

pp
p
k + μp

)
+ εijkv

j
pεklm∇lp

p
m

+ e

(
Ei + 1

c
εijkv

j
pBk

)
. (A14)

Using equation (21), which can be recast as

pX

0 = −μX − m
X
v2

X
/2 = −μX − vk

X
pX

k /2, (A15)

in the absence of entrainment effects, equations (A13) and (A14) are
found to be equivalent to (the opposite of) equations (A5) and (A6).
The irrotationality conditions (34) therefore lead to equation (A1),
as in Appendix A1.

APPENDI X B: VORTEX VELOCI TY

In a frame where the neutron vortex and the Np fluxoids pinned to
it move at the velocity vi

L, the total force per unit length (55) acting
on the quantized lines reads

Fi = −ρ̄n κn εijk ẑ
j
(
v̄k

n − vk
L

) − ρ̄p Np κp εijk ẑ
j
(
v̄k

p − vk
L

)

+De

(
v̄p i − vL i

)
. (B1)

Neglecting the masses of the quantized lines (as in previous studies),
the force balance equation Fi = 0 leads to

vi
L = v̄i

p − 1

ξ
εijk ẑj (v̄n k − vL k) − X

ξ
εijk ẑj

(
v̄p k − vL k

)
, (B2)
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where ξ and X are given by equation (58). Projecting this latter
equation along εijk ẑ

j yields

εijk ẑ
j vk

L = εijk ẑ
j v̄k

p − 1

ξ
εijk ẑ

j εklmẑl (v̄n m − vL m)

− X

ξ
εijk ẑ

j εklmẑl

(
v̄p m − vL m

)
(B3)

= εijk ẑ
j v̄k

p + 1

ξ
(v̄n i − vL i) + X

ξ

(
v̄p i − vL i

)
, (B4)

where we have used the fact that εijkε
klm = δl

i δ
m
j − δm

i δl
j , δi

j being
the Kronecker delta, and we have only considered velocities

orthogonal to ẑi . Using equation (B4) in the right-hand side of
equation (B2) now leads to

vi
L

[
1 + (1 + X)2

ξ 2

]
= v̄i

p

[
1 + X (1 + X)

ξ 2

]
+ v̄i

n

1 + X

ξ 2

+ 1

ξ
εijk ẑj

(
v̄p k − v̄n k

)
, (B5)

which can be eventually recast in the equivalent forms (56).
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