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Abstract. We conduct the first ever statistical comparison between two
Local Optima Network (LON) sampling algorithms. These methodolo-
gies attempt to capture the connectivity in the local optima space of a
fitness landscape. One sampling algorithm is based on a random-walk
snowballing procedure, while the other is centred around multiple traced
runs of an Iterated Local Search. Both of these are proposed for the
Quadratic Assignment Problem (QAP), making this the focus of our
study. It is important to note the sampling algorithm frameworks could
easily be modified for other domains. In our study descriptive statistics
for the obtained search space samples are contrasted and commented
on. The LON features are also used in linear mixed models and ran-
dom forest regression for predicting heuristic optimisation performance
of two prominent heuristics for the QAP on the underlying combinato-
rial problems. The model results are then used to make deductions about
the sampling algorithms’ utility. We also propose a specific set of LON
metrics for use in future predictive models alongside previously-proposed
network metrics, demonstrating the payoff in doing so.

Keywords: Combinatorial Fitness Landscapes, Local Optima Networks, Quadratic
Assignment Problem

1 Introduction

Local optima networks (LON ) are a partial fitness landscape of a combinatorial
optimisation problem [1]. Features of the networks have repeatedly been linked
to heuristic search in various famous problem domains ([2–5]). LONs were orig-
inally used for fully-enumerated fitness landscapes and therefore reflected small
problems. More recently, sampling algorithms have been proposed [5–7] with the
aim of using the analysis on larger problems. The nature, biases and resultant
samples of the algorithms are of critical importance in moving LON analysis to-
wards real-world systems. In this study we conduct the first comparison of sam-
pling algorithms for this purpose. Features of the samples are contrasted, and the



features are used in linear and random forest models for predicting heuristic per-
formance on the underlying combinatorial problems. In other words, we examine
which of the two most recent sampling algorithms ([6, 7]) produces LONs with
more predictive power, in terms of their ability to measure search difficulty. We
also propose using funnel metrics as features for predictive models of algorithm
performance. A funnel is a large fitness landscape feature and is essentially a
basin of attraction at the level of local optima. The main contributions of this
paper are:

1. The first descriptive comparison of local optima network sampling algo-
rithms.

2. Contrast of the differences in predictive power of the LON features for ex-
plaining meta-heuristic variance.

3. The addition of a specific funnel metric set for predicting algorithm perfor-
mance in LON models using linear and random forest regression.

2 Definitions

A fitness landscape [8] is a triplet (S,N, f) where S is the set of all possible
solutions, N : S −→ 2S , a neighbourhood structure, is a function that assigns
to every s ∈ S a set of neighbours N(s), and f is a fitness (objective value)
function such that f : S −→ R, where the fitness value is a real number that can
be viewed as the height of a given solution in the landscape.

A local optima network is a representation of the fitness landscape at the
level of local optima. We now formally define the constituent parts of a local
optima network, before proceeding to describe the object as a whole.

Nodes. The set of nodes, LO, is comprised of local optima, i.e. a solution loi
satisfies the condition that it has superior fitness to all other solutions in its
neighbourhood: ∀n ∈ N(loi) : f(loi) ≥ f(n), where N(loi) is the neighbourhood
and n is a single neighbour.

Edges. The set of edges, E, consists of directed and weighted links. An edge is
traced if the probability of ‘escape’ — using perturbation and then hill-climbing
— from the source node to the destination is greater than zero, and is weighted
with the probability. Formally, local optima loi and loj form the source and
destination of an edge iff wij > 0.

Local optima network (LON). The weighted local optima network LON =
(LO,E) is a graph where the nodes loi ∈ LO are the local optima, and there
exists an edge eij ∈ E, with weight wij , between two nodes loi and loj if wij > 0.
Note that wij may be different than wji. Thus, two weights are needed in general,
and so a local optima network is an oriented transition graph.



2.1 The ‘Network’ Feature Set

We now describe and introduce terminologies for the complex network features
we use in this study. The number of edges found in one of our sampled networks
is referred to as edges. We also use the mean fitness found in the sample of
local optima comprising the network nodes, and denote this as meanfitness. The
network diameter (the longest possible length in number of edges separating
two nodes), diam, and the average out-degree (the number of edges which are
directed away from a particular node), outdegree, are also included.

2.2 The ‘Funnel’ Feature Set

A fitness landscape funnel is a basin of attraction at the level of local optima.
Instead of a single local optimum as an attractor for surrounding solutions,
every member of a funnel is a local optimum. Each of these is on a path which,
if followed, terminates at a single high-quality local optimum — the bottom
of the funnel. These funnel bottoms are also referred to as sinks from a graph
theory perspective, and are simply the nodes with no outgoing edges. We uncover
the funnels by first pruning off any LON edges which are non-improving in
fitness, and then by commencing a depth-first search from a funnel bottom, in
the process revealing the sequences of local optima which must terminate there.

We use four features relating to fitness landscape funnels in our analysis here.
The first is simply the amount of funnels as a proportion of the total node count,
funnel. We also use the number of compressed local optima. The compression
process happens during the network pre-processing for funnel analysis, where the
non-improving edges are removed, and then plateaus at the local optima level
are joined into a single node. The metric ncoptima is the number of optima left
after this processing of the network. Also considered is the incoming flow to sub-
optimal funnel bottoms or sinks (which can be calculated by the addition of the
incoming edge-weights to the sink nodes) — this is referred to as substrength, and
it comes as a proportion of the total flow going to all funnel bottoms, including
optimal ones. The fourth funnel feature is sinkfitness, which is simply the mean
fitness of funnel bottom nodes (sinks in the network).

3 Experimental Setting

3.1 Benchmark Test Problem

Our test instances are Quadratic Assignment Problems (QAP), where an optimal
assignment of N facilities to N locations is sought. Each facility, location pair
has an associated distance and flow between them. An instance of QAP, then, is
defined with two matrices: a distances matrix, and a flow matrix. A solution to
the QAP, π, is a permutation of facilities, while the objective value is calculated
as follows:



C(π) =

n∑
i=1

n∑
j=1

aijbπiπj

where A = {aij} and B = {bij} are the distance and flow matrices, respec-
tively.

We focus exclusively on the much-studied Quadratic Assignment Problem
Library (QAPLIB). QAPLIB boasts a diverse selection of problems, both syn-
thetic and real-world, from different classes. Here we use 30 moderately-sized
instances, from various problem classes. The problem dimensions N are between
25 and 50, meaning 25-50 facilities to be assigned. Occurrences of the QAP
can largely be placed in one of four categories: Uniform random distances and
flows; random flows on grids; real-world problems; and random real-world like
problems. Instances from all of these categories are considered.

Uniform random distances and flows. This class of QAP is known to be difficult
for optimisation heuristics. The entries for both the distance and flow matrices
are taken at random from a Gaussian distribution. The naming convention for
them in the QAPLIB is tainna, with nn being the problem dimension. The
nature of the points on the plane is random. We use here tai25a, tai30a, tai35a,
and tai40a.

Random flows on grids. For these problems, the locations are each situated in
one square on an m*n grid, which is rectangular. The flow matrix entries are
generated randomly. From this category, we use nug25, nug27, nug28, nug30,
sko42, tho30, tho40, and wil50.

Real-world problems. These problems arise from practical applications. We briefly
describe the instances used in this article. We use two bur instances, which
comprise of the average stenotypist’s typing data. Also included are some kra
problems: these were used to plan a German hospital. The esc instance we use
presents itself in computer science (the testing of sequential circuits). In the ste
problem set, the goal is to minimise the length of connections between units
that have to be placed on a rectangular grid. The real-world instances we use in
our analysis are bur26a, bur26b, esc32e, kra30a, kra30b, kra32, lipa30a, lipa30b,
lipa40a, lipa40b, ste36a, ste36b, and ste36c.

Random real-world like problems. The naming convention is tainnb, where nn is
the problem dimension. We use the problems tai25b, tai30b, tai35b, and tai40b.

Miscellaneous. The chr set of problems are a special occurrence of the QAP and
do not fit into any of the previous categories. The flow matrix forms a math-
ematical tree, with no particular specification for the definition of the distance
matrix. We use chr25a from this set.



(a) optSample LON sample
for instance wil50. Top 5% of
optima by fitness.

(b) walkSample LON sample
for instance wil50. Top 0.5%
of optima by fitness.

Fig. 1. A representative LON for an instance from the Quadratic Assignment Problem
Library. Figures show LON samples as obtained by two different sampling methods.
The global optimum or optima in the samples are shown in red.

3.2 The Sampling Algorithms

Snowball (Chain-referral) Sampling. Snowball sampling is a process, originating
in the social sciences, where each respondent in a survey asks a few of their
friends to complete the survey as well. The social network of survey respondents
is then analogous to an ever-growing rolling snowball, growing larger with every
step. This was introduced as the mechanism behind a sampling algorithm for
local optima networks very recently [7].

To construct the local optima network sample, the algorithm first starts from
a random solution and hill-climbs to a local optimum, xt. This local optimum
is the start-point of the walk. Then the recursive snowball procedure branches
from xt: the neighbouring local optima are explored, and then the neighbours
of those are explored, up to a specified ‘depth’ given by a parameter d. The
local optima are found by carrying out mutations followed by hill-climbing. The
hill-climbing used to obtain local optima is best-improvement and uses a random
pairwise swap of facilities as the operator. The perturbation operator is four of
these mutations in a row, i.e. four swaps.

After the snowball expansion of xt, the algorithm returns to the initial local
optimum xt and continues on its walk from there. Specifically, a neighbouring
local optimum which is not already present in the walk is found. If all neighbour-
ing local optima have been expanded, a new random solution is generated and
hill-climbing applied to find a local optimum for inclusion in the random walk.
Then, that optimum is included in the walk as xt+1 and becomes the ‘centre’
from which a new iteration of snowballing expansion begins. The algorithm then



goes back xt+1 and finds a neighbour to be xt+2 on the walk, and so on. The
walk xt...t+n is of a length given by the sampling parameter l.

LON snowball sampling is configurable with three parameters: l (length of
random walk), d (depth of snowballing), and m (number of sampled edges).
We use the three (l, d) combinations suggested in [7] for obtaining our LONs:
(100, 60), (400, 30), and (100, 30), alongside the suggested value for m, which is
two. The parameters l and d can be used to tune the sample obtained.

A full description of LON snowballing, including pseudo-code and descriptive
figures, can be found in [7]. Algorithm 2 is particularly helpful. In the text that
follows, we refer to this sampling algorithm using the term walkSample, to reflect
the fact it is a sample based on a random walk.

Iterated Local Search Sampling. This sampling method is built around the com-
petent Improved Iterated Local Search [9] heuristic for the QAP, and was pro-
posed in [6]. The local optima network is built while the heuristic algorithm is
attempting optimisation. In essence, 200 ILS runs are commenced from different
random solutions; for each run, as the ILS progresses in the minimisation pro-
cess, all local optima encountered are recorded. Alongside these, every transition
between two local optima (using perturbation and then hill-climbing) is saved
as an edge in the network (LON), or if the edge has already been recorded, the
weight of the edge is incremented. Each run terminates either when the global
optimum is found, or after 10000 iterations without improvement.

The local search stage uses a first improvement hill-climbing variant with a
random pairwise swap operator (the same as the LS in walkSample. The per-
turbation operator exchanges k randomly chosen items. In the original ILS al-
gorithm code, a few settings for k are suggested. We use a subset of those in
this study, namely: n4 ,

n
2 , and

3n
4 . These settings are important for the construc-

tion of the LONs, because the perturbation mechanism controls the discovery
and inclusion of network edges (connections between nodes). A comprehensive
description of both the original ILS and the modified version for LON sampling
can be found in [6]. We refer to this sampling process henceforth by optSample,
to reflect the fact that the sampling is done alongside heurisitic optimisation.

Figure 1 compares a sample from optSample algorithm with one obtained
using walkSample. The Figure serves as a precursor to a formal comparative
analysis later on, but captures a remarkable amount of information. Both are
sampled local optima networks, extracted from the same Quadratic Assignment
Problem. The sample in Figure 1a is extracted using optSample, while walkSam-
ple was used to obtain the network in Figure 1b.

In red is the global optimum (or the global optima), while all other nodes are
grey in colour. Both samples have been capped by fitness: only optima in the top
5% (Figure 1a) and 0.05% (Figure 1b) of the fitness distributions are included
in the plots. The latter percentile is lower because the sample had orders of
magnitude more optima and edges crowding its network at this fitness level.

Comparing the two plots, there are striking differences. Taking them in turn,
we can see that the high-quality sub-LON which optSample produces (Figure 1a)
is extremely sparse, and indeed the two global optima are disconnected (isolated)



nodes in this graph. This could indicate that a heuristic would be unlikely to
end up at one of these apparently inaccessible nodes; alternatively, it could be
that the global optima are well connected nodes (or even network hubs), but
their network neighbours exist in lower-quality fitness levels.

Casting our attention to the LON in Figure 1b —– produced by walkSample
—– it is a markedly more dense network. There are significantly more nodes
and edges between them. Recalling that this is only the highest-quality 0.05% of
local optima which were sampled, the implication is that this sampling method
exposes much of the neighbourhood (at the local optima level) surrounding the
global optimum, and may be more suited to characterising this promising area
of the search space. A global optimum can be seen in the centre Figure 1b.

3.3 Heuristics

To gain a view of empirical complexity of the chosen problem instances, we must
collect optimisation data by competent heuristic algorithms.

Two competitive algorithms from the literature are deployed: Stützle’s Im-
proved ILS for the QAP (IILS) [9], and Taillard’s Robust Taboo Search for the
QAP (TS) [10]. IILS comes with a wealth of viable parameter configurations. We
choose here first improvement hill-climbing, in combination with a perturbation
strength of 3n

4 pairwise exchanges of facilities.
To quantify their performance on the thirty problems, we use the performance

gap metric, which is the obtained fitness as a proportion of the desired fitness
after a fixed budget of iterations (1000 here). We take the average of this value
over 1000 runs. In the results that follow, this metric is referred to as IILSp and
TSp (shorthand for ILS and TS performance).

3.4 Predictive Model Setup

We use both linear mixed models and random forest regression models for al-
gorithm performance prediction. When considering our full (90 sampled LON
per sampling algorithm) sets of observations, we conduct random repeated sub-
sampling cross-validation (also known as bootstrapping) for 1000 iterations, each
time shuffling the observations randomly. We do this with an 80-20 training-test
split. For the smaller datasets (split by parameter set), we only have 30 observa-
tions, so we do not split into training and test data, but use all 30 for regression.

In the results that follow, we focus on the R2 associated with each of the
models, which quantifies the amount of variance in the response variable (in our
case either IILSp or TSp) explainable using the set of features in question (either
the full metric set, which is the union of the network and funnel features, or the
funnel or network features exclusively).

For the random forest regression models, we also report the best four pre-
dictors for the models in terms of importance, computed during the model for-
mation. We do not conduct random forest regression on the smaller sets of 30
LONs — only on our two full sets of 90 LONs — to provide enough data for the
process.



4 Results

4.1 Sampling Algorithm Comparison

To have two sampling algorithms produce networks which are somehow corre-
lated would be encouraging. We rely on sampling algorithms for local optima
networks on problems of any reasonable size. As a result, before the algorithms
reach real-world applications, they must be refined. Table 1 provides Spearman
correlation coefficients, calculated between features of LONs obtained by opt-
Sample and walkSample, respectively. An indication of the p-value is given, as
described in the caption. Both network features and funnel features are included
as variables. These were introduced in Sections 2.1 and 2.2, respectively.

Most of the features have a fairly weak correlation, but with a p-value less
than the threshold 0.05, giving evidence against the null hypothesis that the
sample features are unrelated. The correlation for the out-degree of the samples is
moderate, and has an encouragingly small p-value of < 0.001. The two strongest
associations are for the mean fitness in the network, and the mean fitness of the
funnel bottoms (sinkfitness), respectively. These two features seem to show a
great deal of agreement, gaining very strong correlations indicating statistical
significance.

Table 2 attempts to quantify the predictability of optSample and walkSam-
ple. This is done by looking at the ranges of values for important features of
the obtained LONs. The minimum value in the sample set is represented as a
proportion of the maximum value found.

Looking first at the column giving the information on optSample, we can see
that the proportions are mostly much nearer to zero than to one. This means
that the smallest values are completely dwarfed by the values of the largest. The
deduction from this is that you cannot tell this sampling methodology exactly
what which trajectory to follow. This is advantageous in the sense that it is
not rigid or artificially contained, but could also have the potential to result in
unreliable samples. It is, however, promising when considering the wide range
of the average outdegree of the obtained networks; this hints at hub-and-spoke
network structure being exposed (where it exists).

In contrast, the column showing the range information for walkSample shows
much larger proportions between 0.29 and 0.99, telling us that this algorithm
produces a fairly predictable and therefore tuneable number of nodes and edges.
However, because the range for the outdegree is very small (the smallest outde-
gree is almost as big as the largest, arising due to the nature of the algorithm),
important connections between local optima will likely be missed and so-called
network ‘hubs’ may never be found. These are critical because much of the flow
of the network — in our case, prospective heuristic search trajectories — may
pass through them or be drawn towards them.



Table 1. Spearman’s rank correlation, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, for pairs
of features from the two sampling algorithms.

Predictor Corr.

optima 0.239∗

edges 0.149
ncoptima 0.249∗

outdegree 0.441∗∗∗

diam -0.212∗

meanfitness 0.990∗∗∗

sinks 0.112
sinkfitness 0.990∗∗∗

substrength 0.274∗∗

Table 2. The variance (represented as the minimum value as a proportion of the
maximum value) of some key metrics for the sampled LONs.

Predictor optSample walkSample

optima 0.0003 0.2499
edges 0.0003 0.2499

outdegree 0.0508 0.9999
sinks 0.0003 0.2499

4.2 Prediction of Heuristic Competence on the Problems

For our predictions, we computed models based on all 90 sampled LONs (that
is, 90 per sampling algorithm), which comprise LONs generated using three
parameter sets, each of them used for all 30 instances.

We also wanted to see the predictive power when using LONs generated using
a single, fixed set of parameters; therefore, we also considered subsets of the LON
datasets, where we split into sets of 30.

For optSample, the parameter difference came from the perturbation setting
used in the construction of the edges, connecting optima in the sample. The three
settings of this were n

4 ,
n
2 and 3n

4 , and the LON sets corresponding to these are
referred to as set 1, set 2, and set 3 (in that order) in the models that follow.
The set of all 90 LONs together is set 4.

In the case of walkSample, the parameter combinations were of the sampling
depth, d and length of walk, l. The sets used were (60, 100), (30, 400), and (30,
100); these are referred to as set 1, set 2, and set 3, respectively. Again, the set
of all 90 LONs combined is set 4.

Table 3 reports the R2 for several predictive models. Each row gives informa-
tion on the models in question. The columns represent, in order, the sampling
algorithm used to obtain the LON samples (Sample); the type of predictive
methodology (Model, one of random forest, rf, or linear mixed model, lm); the



set of features used as predictors (Features); the parameter set used in the con-
struction of the network samples (Param); and an indication of whether ILS or
TS performance gap was the response variable. The higher the values for the
models, the more explainable the variance in the optimisation metric is using
that set of predictors.

Table 3. R2 values for linear and random forest models to explain heuristic perfor-
mance variation on the combinatorial problems.

Sample Model Features Param. ILS TS

optSample lm all set 1 0.124 0.963
optSample lm all set 2 0.135 0.963
optSample lm all set 3 0.182 0.964
optSample lm all set 4 0.109 0.974
optSample lm funnel set 1 0.114 0.125
optSample lm funnel set 2 0.117 0.124
optSample lm funnel set 3 0.162 0.127
optSample lm funnel set 4 0.094 0.125
optSample lm network set 1 0.069 0.957
optSample lm network set 2 0.065 0.957
optSample lm network set 3 0.075 0.958
optSample lm network set 4 0.061 0.954

optSample rf all set 4 0.307 0.820
optSample rf funnel set 4 0.216 0.892
optSample rf network set 4 0.247 0.775

walkSample lm all set 1 0.640 0.980
walkSample lm all set 2 0.339 0.955
walkSample lm all set 3 0.294 0.964
walkSample lm all set 4 0.158 0.968
walkSample lm funnel set 1 0.200 0.956
walkSample lm funnel set 2 0.104 0.946
walkSample lm funnel set 3 0.086 0.954
walkSample lm funnel set 4 0.061 0.901
walkSample lm network set 1 0.062 0.027
walkSample lm network set 2 0.245 0.042
walkSample lm network set 3 0.248 0.117
walkSample lm network set 4 0.112 0.016

walkSample rf all set 4 0.045 0.910
walkSample rf funnel set 4 -0.017 0.632
walkSample rf network set 4 -0.084 0.249

Focusing on the optSample entries, we can see that the general trend is
that more variance is explained in the TS than in the ILS (compare the two
columns). When considering the 90 LONs together in a linear setting, using all



Table 4. Predictor rankings for the size random forest models.

Sample Features Param Resp. 1 2 3 4

optSample funnel set 4 ILS sinkfitness substrength funnel ncoptima
optSample network set 4 ILS meanfitness edges outdegree diameter
optSample all set 4 ILS meanfitness sinkfitness ncoptima funnel
walkSample funnel set 4 ILS sinkfitness ncoptima funnel substrength
walkSample network set 4 ILS meanfitness outdegree edges diameter
walkSample all set 4 ILS outdegree meanfitness sinkfitness ncoptima
optSample funnel set 4 TS sinkfitness ncoptima funnel substrength
optSample network set 4 TS meanfitness edges diameter outdegree
optSample all set 4 TS sinkfitness meanfitness substrength funnel
walkSample funnel set 4 TS substrength funnel sinkfitness ncoptima
walkSample network set 4 TS meanfitness outdegree diameter edges
walkSample all set 4 TS sinkfitness meanfitness outdegree ncoptima

the features together (all) produces the strongest models of the three predictor
sets (all, funnel, and network). For TS, using only the network set is nearly as
effective as using all the predictors. In the case of ILS, funnel predictors can
explain more search variance than using exclusively network features.

The poorest fits of the optSample linear mixed models come from the predic-
tion of ILS response using network variables. If we compare the random forest
models with the linear mixed models — taking the bottom three optSample rows
against the set 4 (full set) optSample rows — it can be seen that for ILS, these
are stronger than the linear models. Notice that in the optSample random forest
setting with TS response that the models are strong. We also notice that using
exclusively the funnel set produces a stronger R2 value than using the complete
set or the network one.

The walkSample models are summarised in the lower half of Table 3. Let us
first consider the values obtained using the full set of 90 sampled LONs (the
rows where column Param. is stated as set 4 ). Comparing these three with one
another, we see that for ILS, the best predictor set is all the metrics together —
although none of these models fit well. For Tabu Search response, using the full
feature set produces a high R2 value of 0.968. Using exclusively the funnel set
produces a model which is not much weaker. Using only the network features
has a very poor R2.

Just like with the optSample models, the trend over the models here is that
more of the variance in TS is explainable with the predictors than that of the
ILS. This can be seen by locating the ILS column and checking against the
neighbouring TS column entries.

The random forest models for walkSample LONs are useless in the case of
ILS response. In the case of TS, however, we can see that using the full set of
features produces a strong model with the highest of the three R2 values. The



funnel set performs next-best, with the network features ranking lowest within
these three settings.

We now compare the random forest models for the two sampling methodolo-
gies and look at six rows in total (all rows where Model is rf ). What is clear,
if going by these alone, is that optSample has more predictive power for these
problems and algorithms than walkSample. This can be seen in the generally
higher R2 entries.

Doing the same comparison for the linear models for each of our two sam-
pling algorithms (every row where Model is stated as lm), it is less of a clear-cut
distinction. Neither produce strong linear models with ILS as the response vari-
able. For TS, the funnel settings are much weaker with respect to optSample
than walkSample. In contrast, the network set produce much stronger models
when extracted from optSample LONs when compared with walkSample.

Table 4 reports rankings of features in terms of importance in their predictive
random forest models. The column labelled ‘1’ shows the most important feature
from the model specified in that row. In the cases where the full feature set are
used as predictors (the rows where Features are stated as ‘all’), there were eight
variables used, but only the best four are reported in the Table.

We can see from examining the ‘1’ row that almost always, the meanfitness
(mean local optimum fitness in the network) and sinkfitness (mean funnel bot-
tom fitness in the network) are ranked as the most important. outdegree and
substrength also feature more than once among the top two.

Correlation Study. Figure 2 is a correlation matrix contrasting observed fea-
tures (edges, meanfitness, outdegree, diam, substrength, sinkfitness, funnel, and
ncoptima), of the local optima networks sampled by optSample with heuristic
performance on the underlying combinatorial problem (ILSp and TSp).

Each entry in the upper-right triangle is a Spearman correlation between the
row and column variables. The diagonal shows density plots for the features,
with the lower-left triangle showing pairwise scatterplots. The colour in these
represent the split into sampling parameter group.

We are, of course, principally interested in the connections between our
heuristic performance metrics, and the features of the sampled LONs. The easi-
est way to approach this is by locating the ILSp and TSp rows and looking along
them, checking against the intersections for interesting correlations. For ILSp, we
can see that (if we are taking p <0.05 to be indication of statistical significance),
there is a moderate positive correlation with indication of statistical significance
with substrength. Notice also by checking the ILSp column intersections that
there are similar moderate positive correlations with p < 0.001 with ncoptima
and with funnel. In the case of TSp, there are weak negative correlations with
substrength and ncoptima.

Figure 3 has precisely the same layout as Figure 2, but shows results for
walkSample instead of optSample.

If we assess things in the same way: the intersections of ILSp and TSp with
other columns and rows. In general, there are much weaker correlations with the
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Fig. 2. Correlation matrices of performance metrics and optSample-produced LON
features. Lower triangle: pairwise scatter plots. Diagonal: density plots. Upper triangle:
pairwise Spearman’s rank correlation, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
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Fig. 3. Correlation matrices of performance metrics and walkSample-produced LON
features. Lower triangle: pairwise scatter plots. Diagonal: density plots. Upper triangle:
pairwise Spearman’s rank correlation, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.



performance gap data here than we saw for the features of the optSample LONs
and there are no correlations between ILSp and TSp and landscape features
which have p < 0.05. This can be seen in the smaller values and lack of p-value
indications for the feature-performance pairs.

5 Conclusions and Thoughts

We have conducted an empirical comparison between two sampling algorithms
for local optima networks of the Quadratic Assignment Problem. It is essential
to refine sampling for local optima networks before we bring them to real world
systems. A descriptive statistical comparison was reported, as well as findings
pertaining to the algorithms’ predictive power in estimating the performance
gap obtained by two prominent meta-heuristics on the underlying combinatorial
problem.

We found that the two sampling methods exhibited some agreement in the
networks they produced and that we could reject the null hypothesis that they
produce completely independent samples. They differed from a descriptive per-
spective in that walkSample was tuneable and predictable, while optSample var-
ied widely but seemed good at finding hub-and-spoke structure in the local
optima space.

A correlation study for the LON features and the heuristic performance met-
rics was conducted. The correlations were clearer when considering the features
of the LONs obtained using optSample than walkSample.

We also worked on explaining heuristic algorithm performance on the prob-
lems using linear and random forest models, and found that the sampled LON
features (for both optSample and walkSample) better fit the TS response variable
than the ILS one. We saw that overall, including both the funnel metric set and
the network set would be advantageous in explaining search discrepancies for
these two heuristics. An exceptions to this was found when including optSample
LON features in random forest regression with TS response — using only the
funnel set produced a slightly higher R2 values in this case. For both optSample
and walkSample, the extracted funnel metrics proved useful in models involving
TS as a response variable. Going off the random forest models alone, optSample
generally had more explanatory power than its competitor, for these choices of
instances and heuristics.

From the random forest rankings, the most important predictors were those
pertaining to fitness in the sampled networks: the fitness of funnel bottoms, and
of nodes in general in the network. This hints that perhaps fitness levels in the
local optima space are more pertinent to heuristic search than the subset of
transition edges sampled by the LON algorithms.
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