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1 Introduction

Many real life applications in the geosciences like oil and gas recovery, basin modelling,
energy storage, geothermal energy or hydrogeology involve two-phase Darcy flows in het-
erogeneous porous media. Such models are governed by nonlinear partial differential
equations typically coupling elliptic and degenerate parabolic equations. Next to the in-
herent difficulties posed by such equations, further challenges are due to the heterogeneity
of the medium and the presence of discontinuities like fractures. This has a strong impact
on the complexity of the models, challenging the development of efficient simulation tools.

This work focuses on the numerical modelling of two-phase Darcy flows in fractured
porous media, for which the fracture network is represented as a manifold of co-dimension
one with respect to the matrix domain. These reduced models are obtained by averaging
the physical unknowns as well as the conservation equations along the fracture width.
They are termed hybrid-dimensional or also Discrete Fracture Matrix (DFM) Darcy flow
models. Given the high geometrical complexity of real life fracture networks, the main
advantages of these hybrid-dimensional compared with equi-dimensional models are both
to facilitate the mesh generation and the discretisation of the model, and to reduce the
computational cost of the resulting schemes. This type of hybrid-dimensional models is
the object of intensive researches since the last 15 years due to the ubiquity of fractures in
geology and their considerable impact on the flow and transport in the porous medium.

DFM models are closed with appropriate transmission conditions at matrix fracture
(mf) interfaces which differ for fractures acting as drains or as barriers. For single-phase
flows there are two major approaches. The first, designed for modelling highly conductive
fractures and referred to as continuous pressure model [7, 16], assumes the continuity of
the fluid pressure at the mf interfaces. The second approach, referred to as discontin-
uous pressure model [31, 40, 38, 10, 32, 14, 23], allows to represent fractures acting as
permeability barriers by imposing Robin-type transmission conditions at mf interfaces.
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When the modelling of two-phase flow is concerned, three major types of models
can be distinguished. The first and most common type is based on a straightforward
adaptation of the single-phase continuous pressure model to the two-phase setting (see
[19, 43, 42, 37, 12, 13]), it assumes the continuity of each phase pressure at mf interfaces
which allows to capture the saturation jump for fractures acting as drains and matrix
as barrier. As for single-phase flow, this approach cannot account for fractures acting as
barriers. In contrast to the single-phase context, let us stress that, due to heterogeneous
capillary pressures, fractures having a large absolute permeability may still act as barriers
for a given phase, typically for the wetting phase for fractures filled by the non-wetting
phase (see [1]). Another existing type of models, accounting for both drains or permeabil-
ity barriers, is based on the linear (without mobility but including gravity) single-phase
Darcy flux conservation equation imposed at mf interfaces for each phase. It is usually
combined with Two-Point [40, 1] or Multi-Point [47, 44, 4, 35, 5, 48] cell-centred finite
volume schemes for which the interfacial discontinuous pressures are eliminated when
building the single phase Darcy flux transmissibilities. These models account for the dis-
continuity of the pressures but not of the mobilities at mf interfaces. Both previous types
of models are based on linear mf transmission conditions. The last type of models con-
siders nonlinear mf transmission conditions which are based on the nonlinear (including
mobility) two-phase normal flux continuity equations at mf interfaces. This type of mod-
els is considered in [15, 24, 2, 1, 6] using a two-point flux approximation in the fracture
width with upwinding of the mobilities, and in [39, 3] using a global pressure formulation.
Such nonlinear transmission conditions account for the discontinuity of both the phase
pressures and the mobilities at mf interfaces. A comparison of these three types of models
using reference equi-dimensional solutions can be found in [15, 1].

Having in mind that tetrahedral meshes are commonly used to cope with the geo-
metrical complexity of fracture networks, nodal discretizations of DFM two-phase Darcy
flow models have a clear advantage over cell-centred or face based discretizations thanks
to their much lower number of degrees of freedom (d.o.f.). This is in particular the case
when considering fully coupled implicit time integration which are necessary to avoid se-
vere time step restrictions in high velocity regions such as fractures and to account for
the strong coupling between the pressure and saturation unknowns at mf interfaces [9].
Alternatively, cell centred discretizations have been considered for DFM two-phase flow
models using the Two-Point Flux Approximation (TPFA) as in [40, 1, 6] or Multi-Point
Flux Approximations (MPFA) as in [35, 5, 48]. Face based discretizations have been
considered in [37, 3] using the Mixed Hybrid Finite Element (MHFE) method and in
[36, 2] using the Hybrid Finite Volume (HFV) scheme. Non conforming discretizations
have also been developed for this type of models using XFEM discretizations as in [33] or
Embedded Discrete Fracture Models as in [46].

Nodal discretizations, such as the Control Volume Finite Element (CVFE) method,
have been first introduced in [19, 43, 42, 34] for DFM two-phase Darcy flow models with
continuous pressures at mf interfaces accounting for fractures acting as drains. In this
work, we review the Vertex Approximate Gradient (VAG) discretization introduced in
[12, 13] for continuous pressure models and in [15, 24] for discontinuous pressure mod-
els. The VAG scheme is based on nodal d.o.f. like CVFE methods but it also includes
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the cell d.o.f. which are eliminated at the linear algebra level at each Newton iteration
without any fill-in. These cell d.o.f. provide an additional flexibility in the design of the
discretization allowing to cope with traditional issues raised at mf interfaces by nodal
discretizations of the transport equation. On practical meshes, for which the cell sizes at
mf interfaces are much larger than the fracture width, these issues are induced by the use
of dual control volumes combined with heterogeneous petrophysical and hydrodynamical
properties defined on the primal mesh.

The outline of the remaining of this article is as follows. Section 2 describes the
DFM continuous and discontinuous pressure two-phase Darcy flow models as introduced
in [12, 15]. Section 3 presents the VAG discretizations of DFM continuous pressure two-
phase Darcy flow models. Several techniques to cope with the issues raised by nodal
discretizations at mf interfaces are discussed, including the adaptation of the control
volumes at mf interfaces, a new Multi-Point upwind approximation of the mobilities in
subsection 3.3, and taking into account the saturation jump for general capillary pressure
curves in subsection 3.5. Section 4 reviews the VAG discretizations of the three types of
DFM discontinuous pressure two-phase Darcy flow models as presented in [15, 24]. For
each type of model and its VAG discretization, numerical experiments are exhibited on
2D and 3D DFM models including comparisons of the VAG discretizations to a face based
scheme, as well as the comparison between the hybrid-dimensional DFM models and the
reference equi-dimensional model.

2 Two-phase DFM discontinuous and continuous pres-

sure models

Let Ω be a bounded domain of Rd, d = 2, 3 assumed to be polyhedral for d = 3 and
polygonal for d = 2. To fix ideas, the dimension will be fixed to d = 3 when it needs
to be specified, for instance in the naming of the geometrical objects or for the space
discretization. The adaptations to the case d = 2 are straightforward. Let Γ =

⋃
i∈I Γi

denotes the network of fractures Γi ⊂ Ω, i ∈ I, such that each Γi is a planar polygonal
simply connected open domain included in some plane of Rd (see Figure 1).

Figure 1: Example of a 2D DFM with the matrix domain Ω and 3 intersecting fractures
Γi, i = 1, 2, 3.

In the matrix domain Ω, we denote by φm(x) the porosity and by Λm(x) the permeabil-
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ity tensor. Along the fracture network x ∈ Γ, we denote by φf (x) the porosity averaged
on the fracture width and by df (x) the fracture aperture. The permeability tensor is
assumed constant along the width of the fracture and the normal vector to the fracture
is assumed to be a principal direction. It results that we can define along the fracture
network x ∈ Γ, the tangential permeability tensor Λf (x) and the normal permeability
λn,f (x).

It is assumed, for the sake of simplicity, that the matrix (resp. the fracture network)
has a single rock type. Hence, for each phase α ∈ {nw,w} (where nw stands for the non-
wetting phase and w for the wetting phase) we denote by Mα

m(sα) (resp. Mα
f (sα)), the

matrix (resp. fracture network) phase mobility, and by Pc,m(snw) (resp. Pc,f (s
nw)), the

matrix (resp. fracture network) capillary pressure function. The inverse of the monotone
graph extension of the matrix (resp. fracture network) capillary pressure is denoted by
Snwm (p) (resp. Snwf (p)). We will also denote by ρα the phase density which for the sake of
simplicity is assumed constant for both phases α ∈ {nw,w}.

Let α ∈ {nw,w}, we denote by uαm (resp. uαf ) the phase pressure and by sαm (resp.
sαf ) the phase saturation in the matrix (resp. the fracture network) domain. The Darcy
velocity of phase α ∈ {nw,w} in the matrix domain is defined by

qαm = −Mα
m(sαm)Λm(∇uαm − ραg),

where g = −g∇z stands for the gravity vector with g the gravitational acceleration
constant. The flow in the matrix domain is described by the volume balance equation

φm∂ts
α
m + div(qαm) = 0, (1)

for α ∈ {nw,w}, and the closure laws defined by the macroscopic capillary pressure law
together with the sum to one of the phase saturations

snwm = Snwm (pc,m), pc,m = unwm − uwm, swm = 1− snwm . (2)

On the fracture network Γ, we denote by ∇τ the tangential gradient and by divτ the
tangential divergence. In addition, we can define the two sides ± of the fracture network
Γ in Ω \ Γ and the corresponding unit normal vectors n± at Γ inward to the sides ±. Let
γn± (resp. γ±) formally denote the normal trace (resp. trace) operators at both sides of
the fracture network Γ for vector fields in Hdiv(Ω \ Γ) (resp. scalar fields in H1(Ω \ Γ).
The Darcy tangential velocity of phase α ∈ {nw,w} in the fracture network Γ integrated
over the width of the fracture is defined by

qαf = −dfMα
f (sαf )Λf (∇τu

α
f − ραgτ ),

with gτ = g− (g ·n+)n+. The flow in the fracture network Γ is described, for each phase
α ∈ {nw,w}, by the volume balance equation

dfφf∂ts
α
f + divτ (q

α
f ) + γn+qαm + γn−qαm = 0, (3)

and by the closure laws

snwf = Snwf (pc,f ), pc,f = unwf − uwf , swf = 1− snwf . (4)
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2.1 Two-phase DFM discontinuous pressure model

We consider the transmission conditions introduced in [15]. They are based on a two-
point approximation of each phase normal flux within the fracture combined with a phase
potential upwinding of the phase mobility taking into account the phase saturation jump
at the mf interface. Let us first define, for both phases α ∈ {nw,w}, the “single” phase
normal flux in the fracture network

V α,±
f,n = λf,n

(
γ±uαm − uαf

df/2
− ραg · n±

)
, (5)

which does not include the phase mobility. For any a ∈ R, let us set a+ = max{0, a} and
a− = min{0, a}. The conditions coupling the matrix and fracture unknowns then read,
for α ∈ {nw,w} (see the right Figure 2):

γn±qαm = qαf,n± , qαf,n± = Mα
f (Sαf (γ±pc,m))(V α,±

f,n )+ +Mα
f (sαf )(V α,±

f,n )−. (6)

The hybrid dimensional two-phase flow discontinuous pressure model looks for uαm, u
α
f , s

α
m, s

α
f ,

α ∈ {nw,w}, satisfying (1)-(2) and (3)-(4) together with the transmission conditions (6).

Figure 2: (Left): example of a 2D DFM discontinuous pressure model with the normal
vectors n± at both sides of a fracture, the matrix phase pressure and saturation uαm, sαm,
the fracture phase pressure and saturation uαf , sαf , the matrix Darcy phase velocity qαm
and the fracture network tangential Darcy phase velocity qαf . (Right): illustration of
the coupling condition qαf,n+ = γn+qαm for the hybrid-dimensional discontinuous pressure
model.

2.2 Two-phase DFM continuous pressure model

In the case of pervious fractures, for which the ratio of the transversal permeability of the
fracture to the width of the fracture is large compared with the ratio of the permeability
of the matrix to the size of the domain, it is classical to assume that the phase pressures
are continuous at the interfaces between the fractures and the matrix domain. Let us
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also mention that in the context of two-phase flows the continuous pressure DFM models
have to be used with caution. It has been shown in [15] and [1] that even highly pervious
fractures may still act as barriers. This is due to the potential degeneracy of the mobilities
in the transmission condition (6) and to the saturation jumps resulting from the high
contrast of the capillary pressure curves across mf interface. Typically a fracture filled
with the non-wetting phase would act as a barrier for the wetting phase, and therefore
would induce a discontinuity of the wetting phase’s pressure. We refer to [15] and [1] for
a detailed comparison of continuous and discontinuous pressure models in case of very
pervious fractures.

The continuous pressure model replaces the transmission condition (6) by the following
phase pressure continuity conditions at mf interfaces:

γ+uαm = γ−uαm = uαf on Γ, α ∈ {nw,w}. (7)

It results that we can denote by uα the matrix pressure of phase α ∈ {nw,w} and by
γuα the fracture pressure of phase α ∈ {nw,w}, where γ is the trace operator on Γ for
functions in H1(Ω).

The hybrid dimensional two-phase flow continuous pressure model looks for sαm, sαf ,
and uα, α = nw,w satisfying (1)-(2) and (3)-(4).

Figure 3: Example of a 2D DFM continuous pressure model with the normal vectors n±

at both sides of a fracture, the phase pressure uα and its trace γuα on the fracture network
Γ, the matrix phase saturation sαm, the fracture phase saturation sαf , the matrix Darcy
phase velocity qαm and the fracture network tangential Darcy phase velocity qαf .

For both continuous and discontinuous pressure models, a no-flux boundary conditions
is prescribed at the tips of the immersed fractures, that is to say on ∂Γ\∂Ω, and the volume
conservation and pressure continuity conditions are imposed at the fracture intersections.
We refer to [12] and [15] for more details on those conditions.

Finally, one should provide some appropriate initial and boundary data. To fix ideas,
we consider in a non homogeneous Dirichlet boundary conditions on the matrix boundary
∂ΩDir ⊂ ∂Ω and on the fracture boundary ΣDir ⊂ ∂Γ ∩ ∂Ω. Homogeneous Neumann
boundary conditions are set on ∂ΩN = ∂Ω \ ∂ΩDir and on ΣN = (∂Γ ∩ ∂Ω) \ ΣDir.
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3 Vertex Approximate Gradient (VAG) discretiza-

tion of two-phase DFM continuous pressure models

The VAG discretization of hybrid dimensional two-phase Darcy flows introduced in [12]
considers generalised polyhedral meshes of Ω in the spirit of [28]. Let us briefly recall
some notations related to the space discretization. We denote by M the set of disjoint
open polyhedral cells, by F the set of faces and by V the set of nodes of the mesh. For
each cell K ∈M we denote by FK ⊂ F the set of its faces and by VK the set of its nodes.
Similarly, we will denote by Vσ the set of nodes of σ ∈ F . The set Mσ denotes the two
cells sharing an interior face σ or the single cell to which the boundary face σ belongs.
The set Ms (resp. Fs) is the subset of cells (resp. faces) sharing the node s ∈ V .

Let Eσ denote the set of edges of the face σ ∈ F . It is then assumed that for each
face σ ∈ F , there exists a so-called “centre” of the face xσ ∈ σ \ ⋃e∈Eσ e such that
xσ =

∑
s∈Vσ βσ,s xs, with

∑
s∈Vσ βσ,s = 1, and βσ,s ≥ 0 for all s ∈ Vσ. The face σ is not

necessarily planar, hence the term generalised polyhedral mesh. More precisely, each face
σ is assumed to be defined by the union of the triangles Tσ,e defined by the face centre xσ
and each edge e ∈ Eσ.

The mesh is supposed to be conforming w.r.t. the fracture network Γ in the sense that
there exists a subset FΓ of F such that Γ =

⋃
σ∈FΓ

σ. We set

VΓ =
⋃
σ∈FΓ

Vσ,

and, for s ∈ VΓ, we define FΓ,s = Fs ∩FΓ as the subset of faces in FΓ sharing the node s.
The VAG discretization proposed in [12] is based upon the following set of degrees of

freedom (d.o.f.)
D =M∪V ∪ FΓ

and the corresponding vector space:

XD = {vν ∈ R, ν ∈ D}.

The d.o.f. are exhibited in Figure 4 for a given cell K with one fracture face σ in bold.
Let us denote by

VDir = {s ∈ V |xs ∈ ∂ΩDir ∪ ΣDir},
the subset of Dirichlet nodes.

A finite element discretization is built from the vector space of d.o.f. XD using a
tetrahedral sub-mesh of M and a second order interpolation at the face centres xσ, σ ∈
F \ FΓ defined by the operator Iσ : XD → R such that

Iσ(v) =
∑
s∈Vσ

βσ,svs.

The tetrahedral sub-mesh is defined by

T = {TK,σ,e, e ∈ Eσ, σ ∈ FK , K ∈M}, (8)
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where TK,σ,e is the tetrahedron joining the cell centre xK to the triangle Tσ,e. For a given
vD ∈ XD, we define the function πT vD as the continuous piecewise affine function on
each tetrahedron of T such that πT vD(xK) = vK , πT vD(xs) = vs, πT vD(xσ) = vσ, and
πT vD(xσ′) = Iσ′(v) for all K ∈ M, s ∈ V , σ ∈ FΓ, and σ′ ∈ F \ FΓ. The nodal basis
of this finite element discretization will be denoted by ηK , ηs, ησ, for K ∈ M, s ∈ V ,
σ ∈ FΓ.

The VAG scheme is a control volume scheme in the sense that it results, for each d.o.f.
not located at the Dirichlet boundary and each phase, in a volume balance equation. The
two main ingredients are therefore the conservative fluxes and the porous volumes. The
VAG matrix and fracture fluxes are exhibited in Figure 4. They are derived from the
variational formulation on the finite element subspace. For uD ∈ XD, the matrix fluxes
FK,ν(uD) connect the cell K ∈M to all the d.o.f. located at the boundary of K, namely
ν ∈ ΞK = VK ∪ (FK ∩ FΓ). They are defined by

FK,ν(uD) =

∫
K

−Λm(x)∇πT uD(x) · ∇ην(x)dx =
∑
ν′∈ΞK

Tν,ν
′

K (uK − uν′),

with

Tν,ν
′

K =

∫
K

Λm(x)∇ην′(x) · ∇ην(x)dx.

The fracture fluxes Fσ,s(uD) connect each fracture face σ ∈ FΓ to its nodes s ∈ Vσ and
are defined by

Fσ,s(uD) =

∫
σ

−dfΛf∇τγπT uD(x) · ∇τγηs(x)dσ(x) =
∑
s′∈Vσ

Ts,s′

σ (uσ − us′),

with

Ts,s′

σ =

∫
σ

df (x)Λf (x)∇τγηs′(x) · ∇τγηs(x)dσ(x),

where dσ(x) denotes the Lebesgue d− 1 dimensional measure on Γ.

Figure 4: For a cell K and a fracture face σ (in bold), examples of VAG d.o.f. uK , us, uσ,
us′ and VAG fluxes FK,σ, FK,s, FK,s′ , Fσ,s.
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The porous volumes are obtained by distributing the porous volumes of each cell
K ∈M and fracture face σ ∈ FΓ to the d.o.f. located on their respective boundaries. For
each K ∈ M we define a set of non-negative volume fractions (αK,ν)ν∈ΞK\VDir

satisfying∑
ν∈ΞK\VDir

αK,ν ≤ 1, and we set

φK,ν = αK,ν

∫
K

φm(x)dx.

Similarly, for all σ ∈ FΓ we set

φσ,s = ασ,s

∫
σ

φf (x)df (x)dσ(x),

with the non-negative volume fractions (ασ,s)s∈Vσ\VDir
satisfying

∑
s∈Vσ\VDir

ασ,s ≤ 1. Then,

we set for all K ∈M and σ ∈ FΓ:

φK =

∫
K

φm(x)dx−
∑

ν∈ΞK\VDir

φK,ν ,

φσ =

∫
σ

φf (x)df (x)dσ(x)−
∑

s∈Vσ\VDir

φσ,s.

On practical meshes with cell sizes at mf interfaces much larger than the fracture
width, the flexibility in the choice of the weights αK,s and ασ,s is shown in [12] to be a
crucial asset compared with usual CVFE approaches, allowing to improve significantly the
accuracy of the scheme. As exhibited in Figure 5, and in contrast with the usual CVFE
approaches, the fracture porous volumes can be defined with no contribution of the matrix
porous volume, thus avoiding to enlarge artificially the flow path in the fractures and to
slow down the front speed. This is achieved by choosing the volume fractions such that

αK,σ = 0 for all σ ∈ FΓ, K ∈Mσ,
αK,s = 0 for all s ∈ VΓ, K ∈Ms.

Figure 5: Example of control volumes at cells, fracture face, and nodes, in the case of two
cells K and L splitted by one fracture face σ (the width of the fracture has been enlarged in
this figure). (left): VAG choice of the porous volumes avoiding mixing between fracture
and matrix porous volumes. (right): CVFE like choice of the porous volumes mixing
fracture and matrix porous volumes leading to a considerable enlargement of the fracture
drain on practical meshes.
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3.1 VAG phase potential Two-Point (TP) upwind formulation

We consider in the following of section 3, the usual approach (termed f-upwind model)
for which a single rock type is assigned to each d.o.f. Quite naturally, the fracture rock
type is associated with d.o.f. located on Γ, while the matrix rock type is associated to
the remaining d.o.f., that is we set

Pc,ν(s) =

{
Pc,m(s) if ν 6∈ (VΓ ∪ FΓ),
Pc,f (s) if ν ∈ (VΓ ∪ FΓ),

and

Mα
ν (s) =

{
Mα

m(s) if ν 6∈ (VΓ ∪ FΓ),
Mα

f (s) if ν ∈ (VΓ ∪ FΓ),
α ∈ {nw,w}.

The set of discrete unknowns is defined by the set of phase pressure uαD ∈ XD and phase
saturation sαD ∈ XD for each phase α ∈ {nw,w}.

The “single” phase VAG Darcy fluxes, not including the phase mobility, are defined,
for each phase α ∈ {nw,w}, by

Fα
K,ν(u

α
D) = FK,ν(u

α
D) + ραgFK,ν(zD),

Fα
σ,s(u

α
D) = Fσ,s(u

α
D) + ραgFσ,s(zD),

with zD = (xν)ν∈D, and for K ∈ M, σ ∈ FΓ, ν ∈ ΞK , s ∈ Vσ. They are combined
with the usual Two-Point (TP) phase potential upwinding of the mobilities, leading to
the following two-phase Darcy VAG fluxes

qαK,ν = Mα
K(sαK)(Fα

K,ν(u
α
D))+ +Mα

ν (sαν )(Fα
K,ν(u

α
D))−,

qασ,s = Mα
σ (sασ)(Fα

σ,s(u
α
D))+ +Mα

s (sαs )(Fα
σ,s(u

α
D))−.

Let us define the accumulation terms by
AαK = φKs

α
K , K ∈M,

Aασ =
(
φσ +

∑
K∈Mσ

φK,σ
)
sασ , σ ∈ FΓ,

Aαs =
( ∑
K∈Ms

φK,s +
∑
σ∈FΓ,s

φσ,s
)
sαs , s ∈ V \ VDir.

Note that neither the accumulation terms Aασ and Aαs nor the mf fluxes take into account
the discontinuity of the saturations across mf interface. In other terms, the discrete prob-
lem does not involve quantities such as Pc,m(sf ). An alternative approach is described in
section 3.5.

For N ∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · <
tN = T of the time interval [0, T ]. We denote the time steps by ∆tn = tn − tn−1 for
all n = 1, · · · , N . The superscript n will be used to denote the unknowns at time tn.
To reduce the amount of notation, only the previous time step superscript n − 1 will be
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specified in the following, while the superscript n will not be specified by default.

The set of discrete equations couples the volume balance equations at each d.o.f.
excluding the Dirichlet nodes

AαK −Aα,n−1
K

∆tn
+
∑
ν∈ΞK

qαK,ν = 0, K ∈M, α = nw,w,

Aασ −Aα,n−1
σ

∆tn
+
∑
s∈Vσ

qασ,s −
∑

K∈Mσ

qαK,σ = 0, σ ∈ FΓ, α = nw,w,

Aαs −Aα,n−1
s

∆tn
+
∑
K∈Ms

−qαK,s +
∑
σ∈FΓ,s

−qασ,s = 0, s ∈ V \ VDir, α = nw,w,

(9)

combined with the closure laws
snwν + swν = 1, ν ∈ D,

unwν − uwν = Pc,ν(s
nw
ν ), ν ∈ D,

(10)

and the Dirichlet boundary conditions

snws = snwDir,s unws = unwDir,s, s ∈ VDir, (11)

for given snwDir,s ∈ [0, 1], unwDir,s, s ∈ VDir.

To solve the discrete nonlinear system (9), one first uses the closure equations (10)
to eliminate the unknowns swν and uwν for ν ∈ D reducing the system to the primary
unknowns unwν , snwν , ν ∈ D coupled by the set of equations (9) and the Dirichlet boundary
conditions (11). A Newton’s method is used to solve this nonlinear system at each time
step of the simulation. At each Newton step, the Jacobian matrix is assembled and the
cell unknowns unwK , snwK , K ∈ M are eliminated without any fill-in using the linearized
cell volume balance equations reducing the system to the node and fracture face primary
unknowns only. This elimination results in a huge gain in terms of system size in partic-
ular for tetrahedral meshes. The reduced linear system is solved using a Krylov subspace
solver preconditioned by a CPR-AMG preconditioner. This preconditioner combines mul-
tiplicatively an AMG preconditioner on a pressure block (elliptic part of the system) with
a zero fill-in incomplete factorization of the full system. Let us refer to [41, 45] for its
detailed decription. In the following numerical experiments, the pressure block is simply
obtain as the sum over both phases of the volume balance equations on each fracture face
and non Dirichlet node.

3.2 What is wrong with Two-Point upwinding at mf interfaces

In this section, we discuss one particular difficulty that the nodal discretizations have
in regard of the discrete fluxes reconstruction. As shown below, due to the dual control
volumes at mf interfaces, nodal schemes may result in fluxes having an opposite sign com-
pared to the fluxes computed at the physical mf interfaces. Using Two-Point upwinding,
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this results in an artificial diffusion of the saturation toward an upstream direction. To
avoid this drawback we propose below an alternative Multi-Point upwinding technique.

For a given constant velocity q, let us choose uD ∈ XD such that uν = −Λ−1
m q · xν for

all ν ∈ D. From −Λm∇πT uD = q, we obtain

FK,s(uD) = q ·
∫
K

∇ηs(x)dx,

at a given fracture node s ∈ VΓ, and cell K ∈Ms.

Figure 6: Example of a 2D mesh with three isosceles triangular cells at the interface with
a fracture in bold. It is assumed that the unit normal vectors are such that n2 = −n,
n1 = −n3 and that n1 · n = 0. The cell centers are chosen as the isobarycenters of their
3 nodes.

For the sake of simplicity, let us assume the geometrical configuration illustrated in
Figure 6. It results that

FK,s(uD) = −1
2
|s2σ1|q · n1,

FJ,s(uD) = −1
2
|s3σ2|q · n3 = −FK,s(uD),

FI,s(uD) = +1
2
|s2s3|q · n,

FK,σ1(uD) = +1
2
|ss1|q · n,

FJ,σ2(uD) = +1
2
|ss4|q · n = FI,σ1(uD).

We remark that, whatever the velocity q, either the flux FK,s(uD) or the flux FJ,s(uD)
have the opposite sign as the one of q ·n. Assuming, to fix ideas that q ·n > 0, it results
from the Two-Point upwinding used for the transport scheme of a given phase with Darcy
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velocity q, that the phase propagates from the fracture either to the upstream cell K or
the upstream cell J .

On the other hand, let us remark that the ill-orientated discrete fluxes cancel out when
summing over the cells connected to the node s and located on the same side with respect
to the planar fracture, that is we have

FK,s(uD) + FI,s(uD) + FJ,s(uD) =
1

2
|σ1σ2|q · n. (12)

This property actually holds for an arbitrary number of polygonal cells sharing the node
s and whatever the choice of the cell centers. In the three-dimensional case, this property
also holds for tetrahedral meshes.

In the following subsection, this property on the sum of the fluxes is exploited to avoid
the artificial diffusion of the phase toward an upstream direction.

3.3 Multi-Point (MP) upwind fluxes at mf interfaces

We first define an equivalence relation on each subset Ms of cells, for any fixed node
s ∈ V , by

K ≡Ms L ⇐⇒ there exists n ∈ N and a sequence (σi)i=1,...,n in Fs\FΓ,
such that K ∈Mσ1 , L ∈Mσn and Mσi+1

∩Mσi 6= ∅
for i = 1, . . . , n− 1.

Let us then denote by Ms the set of all classes of equivalence of Ms and by Ks the
element of Ms containing K ∈ M. Obviously Ms might have more than one element
only if s ∈ VΓ. Note that Ks is both considered as a subset of cells of Ms as well as an
additional d.o.f. located at the same point than the node s i.e. we set xKs

= xs.

Figure 7: (left) 2D mesh with 3 fracture faces in bold and the 3 d.o.f. inMs at the node
s ∈ VΓ, (right) Darcy fluxes joining each cell L ∈ Ks to the new d.o.f. Ks, and joining
the new d.o.f. Ks to the node s (the node s and Ks are located at the same point s but
they have been separated for the sake of clarity of the Figure).

Let us define the phase mobilities
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Mα
Ks
, s ∈ VΓ, Ks ∈Ms, α ∈ {nw,w}, (13)

as matrix fracture additional unknowns. Then, using phase potential upwinding of the
mobilities, let us define for all L ∈ Ks the half Darcy fluxes between L and Ks by

qα
L,Ks

= Mα
L (sαL)(Fα

L,s(u
α
D))+ +Mα

Ks
(Fα

L,s(u
α
D))−,

as well as the half Darcy flux between Ks and s by

qα
Ks,s

= Mα
s (sαs )(Fα

Ks,s
)− +Mα

Ks
(Fα

Ks,s
)+,

where we set by flux conservation

Fα
Ks,s

=
∑
L∈Ks

Fα
L,s(u

α
D).

The flux continuity equation

qα
Ks,s

=
∑
L∈Ks

qα
L,Ks

, (14)

is used to eliminate the mobility unknown Mα
Ks

leading to the following convex linear

combination of the cells L ∈ Ks and node s mobilities:

Mα
Ks

=

∑
L∈Ks

(Fα
L,s(u

α
D))+Mα

L (sαL)−Mα
s (sαs )(

∑
L∈Ks

Fα
L,s(u

α
D))−

∑
L∈Ks

(Fα
L,s(u

α
D))+ − (

∑
L∈Ks

Fα
L,s(u

α
D))−

. (15)

We deduce the definition of the new Multi-Point upwind flux

qαK,s = qα
K,Ks

= Mα
K(sαK)(Fα

K,s(u
α
D))+ +Mα

Ks
(Fα

K,s(u
α
D))−,

denoted by VAG MP in the following and to be used in the conservation equations (9).
Compared with the Two-Point upwind flux

qαK,s = Mα
K(sαK)(Fα

K,s(u
α
D))+ +Mα

s (sαs )(Fα
K,s(u

α
D))−,

denoted by VAG TP, the VAG MP flux uses the fracture node saturation sαs only if∑
L∈Ks

Fα
L,s(u

α
D) < 0, which, in view of (12), ensures that the phase will not go out from

the fracture on the wrong side in the case of a linear phase pressure field.
Note also that, if Ks contains only one cell, both the VAG TP and VAG MP fluxes

match, this is why the fluxes qαK,σ, σ ∈ FK ∩ FΓ do not need to be modified.

The matrix fracture mobility unknowns (13) and flux continuity equations (14) can
be kept in the nonlinear system and solve simultaneously with the other unknowns and
equations. Let us recall that the CPR-AMG preconditioner combines multiplicatively an
AMG preconditioner on a pressure block (elliptic part of the system) with a zero fill-in
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incomplete factorization of the full system. The matrix fracture mobility unknowns Mα
Ks

and the flux continuity equations (14), s ∈ VΓ, Ks ∈Ms, are not included in the definition
of the pressure block due to their hyperbolic nature. It results that the pressure block
has the same number of unknowns and sparsity pattern as the one of the usual VAG TP
scheme. Since the AMG step is the most expensive part of the CPR-AMG two stage
preconditioner, this explains why keeping the matrix fracture mobility unknowns is quite
efficient.

On the other hand, the elimination of the matrix fracture mobility unknowns together
with the flux continuity equations in (15) leads to a rather large fill-in of the Jacobian
(depending on the density of the fracture network) and also prevents the elimination of the
cell unknowns connected to the fractures. The following numerical experiments confirm
that it is much more efficient in terms of CPU time to keep the matrix fracture mobility
unknowns in the linear system.

3.4 Numerical experiments

The Objectives of this subsection is to compare the solutions obtained with the following
schemes:

• the CVFE like VAG scheme with rock type mixture and Two-Point upwinding of
the mobilities at mf interfaces (VAG CVFE),

• the VAG scheme with no rock type mixture and Two-Point upwinding of the mo-
bilities at mf interfaces (VAG TP),

• the VAG scheme with no rock type mixture and Multi-Point upwinding of the
mobilities at mf interfaces (VAG MP),

• the Hybrid Finite Volume (HFV) scheme with cell, face and fracture edge unknowns
as described in [36] (HFV).

3.4.1 Tracer DFM model with a single fracture

Let us denote by (x, y) the Cartesian coordinates of x and let us set Ω = (0, 1 m)2,
x1 = (0, 1

4
), x2 = (1, 0.875). We consider a single fracture defined by Γ = (x1,x2) with

tangential permeability Λf = 200 m2 and width df = 10−3 m. The matrix permeability is
isotropic and set to Λm = 1 m2. The matrix and fracture porosities are set to φm = φf = 1.
Let us set

t =

(
1

0.625

)
, q =

(
1
1
3

)
.

We consider the hybrid-dimensional tracer model obtained from the two-phase DFM
model by setting Mα

m(s) = Mα
f (s) = s for α ∈ {nw,w}, Pc,m(s) = Pc,f (s) = 0, g = 0. The

pressure analytical solution is defined for α ∈ {nw,w} by

uα(x, t) = 1− Λ−1
m x · q,
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leading to the matrix Darcy velocity

qαm = q,

and the tangential fracture velocity integrated over the width

qαf = dfΛf
(t · Λ−1

m q)

|t|2 t,

This pressure solution is exactly solved by the VAG scheme using Dirichlet condition at
the boundary of the domain. An input Dirichlet boundary condition is imposed for the
non-wetting phase saturation (tracer) with zero value at the matrix boundary and a value
of 1 at the fracture boundary x1. The initial condition is defined by a zero non-wetting
phase saturation both in the fracture and matrix domains. Figure 8 illustrates that the
tracer VAG TP solution goes out on the wrong side of the fracture on a few layers of
cells, while it is not the case for the HFV and VAG MP solutions as expected. The VAG
CVFE stationary tracer solution is not plotted since it is the same than the VAG TP
stationary tracer solution. Figure 9 exhibits the stationary solutions along the fracture
showing that the HFV and VAG MP solutions match on both meshes while the VAG
TP solution is not fully converged even on the fine mesh. Figure 10 exhibits the tracer
volume in the fracture as a function of time; Again, the HFV and VAG MP solutions
match on both meshes, while the tracer front in the fracture is clearly slown down for the
VAG TP solution on both meshes. This is much worse for the VAG CVFE solution due
to the fracture enlargement resulting from the rock type mixture at mf interfaces.

Figure 8: Stationary solution for the non-wetting phase saturation (tracer) in the matrix
and in the fracture obtained by, from left to right, the HVF, VAG MP and VAG TP
schemes, and, from top to bottom, on the 16× 16 and 128× 128 topologically Cartesian
meshes.
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Figure 9: Stationary non-wetting phase saturation along the fracture as a function of
x obtained by the HVF, VAG MP, VAG TP schemes on the 16 × 16 and 128 × 128
topologically Cartesian meshes.

Figure 10: Volume of the non-wetting phase in the fracture as a function of time for the
HVF, VAG MP, VAG TP, VAG CVFE scheme solutions on the 16 × 16 and 128 × 128
topologically Cartesian meshes.

3.4.2 Large 2D DFM model

This test case considers the DFM model with the matrix domain Ω = (0, 100 m) ×
(0, 186.5 m) and a fracture network including 581 connected components both exhibited
in Figure 11. The fracture width is df = 1 cm and the fracture network is homogeneous
and isotropic with Λf = 10−11 m2, φf = 0.2. The matrix is homogeneous and isotropic
with Λm = 10−14 m2, φm = 0.4.

The relative permeabilities are given by kαr,f (s
α) = sα and kαr,m(sα) = (sα)2, α ∈

{nw,w} and the capillary pressure is fixed to Pc,m(snw) = −104 ln(1 − snw) Pa in the
matrix and to Pc,f (s

nw) = 0 Pa in the fracture network. The fluid properties are defined
by their dynamic viscosities µnw = 5. 10−3, µw = 10−3 Pa.s and their mass densities
ρw = 1000 and ρnw = 700 Kg.m−3.

The reservoir is initially saturated with the wetting phase. Dirichlet boundary con-
ditions are imposed at the top boundary with a wetting phase pressure of 1 MPa and
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swm = 1, as well as at the bottom boundary with snwm = 0.9 and uw = 4 MPa. The remain-
ing boundaries are assumed impervious and the final simulation time is fixed to tf = 1800
days. The time stepping is defined by ∆t1 = ∆tinit = 10 days, and for all n ≥ 1 by

∆tn+1 = max(∆tmax, 1.2∆tn) with ∆tmax = 10days, (16)

in case of a successful time step ∆tn, and ∆tn+1 = ∆tn

2
, in case of non convergence of the

Newton algorithm in Newtonmax = 30 iterations.

The non-wetting phase saturation is exhibited at final simulation time in Figure 12
in the matrix and in the fracture network, and the volume of the non-wetting phase as
a function of time is presented in Figure 13. We clearly see in Figures 12 and 13 that
the VAG CVFE discretization considerably slows down the non-wetting phase front in
the fracture network due to the drain enlargment induced by the mixing of matrix and
fracture porous volumes at mf interfaces. The VAG TP discretization does a better job
but still underestimates the front speed in the fracture network. As clearly exhibited by
Figure 12, this is due to the fact that the VAG TP scheme propagates the non-wetting
phase on the wrong side of the fractures as explained in subsection 3.2. From Figure 13,
the VAG TP solution gets very close to the VAG MP solution after two level of refinement
of the coarse mesh, while the VAG CVFE solution has not yet converged on the finest
mesh. The comparison between the VAG MP and HFV solutions shows that they are in
good agreement for all meshes. It appears in Figure 13 that the HFV scheme converges
more slowly then the VAG MP scheme.

The numerical behavior of the four schemes is reported in Table 1 with CPU time is
in seconds on Intel E5-2670 2.6 GHz. For this large 2D network, the VAG MP imple-
mentation with elimination of the matrix fracture mobilities leads to a twice large CPU
time than the VAG MP implementation with no elimination. Regarding the comparison
between VAG MP and VAG TP, we notice a twice larger CPU time, which is a rather
good result for such a large network. The comparison between HFV and VAG MP shows
for this 2D test case that HFV is competitive on the coarse mesh due to the additional
matrix fracture unknowns for VAG MP, but becomes more expensive on the two refined
meshes. We will see in the next test case that the situation is much more in favor of the
VAG schemes on tetrahedral 3D meshes.
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Figure 11: Triangular mesh of the DFM model with 32340 (32k) cells and 5344 fracture
faces (Courtesy of M. Karimi-Fard, Stanford, and A. Lapène, Total). This mesh is refined
uniformly to obtain the 129k and 517k cells meshes.
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Figure 12: Non-wetting phase saturation in the matrix and fracture network at time
tf = 1800 days for the HVF, VAG MP, VAG TP, VAG CVFE schemes from left to right,
and the 32k, 129k, 517k cells meshes from top to bottom.
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Figure 13: Non-wetting phase volume in the fracture network as a function of time for
the VAG MP, HFV, VAG TP and VAG CFVE schemes on the 3 meshes of sizes 32k, 129k
and 517k cells.
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Scheme mesh N∆t Nchop NNewton NGMRes CPU (s)

HFV 32k 180 0 5.9 16.0 465
VAG CVFE 32k 180 0 3.0 8.1 165

VAG TP 32k 180 0 3.7 14.3 224
VAG MP 32k 188 4 5.2 19.5 794

VAG MP no elim. 32k 180 0 4.8 20.4 491

HFV 129k 180 0 8.5 56 7747
VAG CVFE 129k 180 0 4.8 26 1301

VAG TP 129k 180 0 6.7 55 2995
VAG MP 129k 261 37 9.3 54 11880

VAG MP no elim. 129k 182 1 8.0 64 5417

HFV 517k 182 1 12.6 104 145704
VAG CVFE 517k 180 0 9.7 59 25403

VAG TP 517k 180 0 10.9 103 50472
VAG MP no elim 517k 199 12 12.8 122 98390

Table 1: Numerical behavior of the simulation for the 2D DFM test case on the 3 meshes
and for the HFV, VAG CVFE, VAG TP and VAG MP schemes. The VAG MP scheme
is implemented either with elimination (VAG MP) or without elimination (VAG MP no
elim) of the mf interface mobility unknowns.

3.4.3 3D DFM model

The DFM model of matrix domain Ω = (0, 100 m)3 and its coarsest tetrahedral mesh
conforming to the fracture network are illustrated in Figure 14. The fracture network is
assumed to be of constant aperture df = 1 cm. The matrix and fracture porosities, per-
meabilities, relative permeabilities and capillary pressures are the same as in the previous
test case. The fluid properties are also the same than in the previous test case.

Figure 14: Geometry of the domain Ω = 100m×100m×100 m with the fracture network
in red (left), coarsest tetrahedral mesh with 47670 cells (right).

At initial time, the reservoir is fully saturated with the wetting phase. Then, non-
wetting phase is injected from below, which is managed by imposing Dirichlet conditions
at the bottom and at the top of the reservoir. We impose at the bottom boundary either
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an overpressure ∆p = 2 MPa or no overpressure ∆p = 0 MPa w.r.t. the hydrostatic
distribution of the water pressure. The remaining boundaries are assumed impervious
and the final simulation time is fixed to tf = 360 days for ∆p = 2 MPa and to tf = 3600
days for ∆p = 0 MPa. The time stepping is defined as in (16) using ∆tinit = 0.1 days,
Newtonmax = 30, and either ∆tmax = 10 days for ∆p = 2 MPa or ∆tmax = 100 days for
∆p = 0 MPa.

From Figures 15 and 16, we observe that the VAG TP and VAG CVFE schemes are far
from convergence even on the finest mesh with 450k cells while the solution provided by the
VAG MP scheme is quite close to the one of the HFV scheme. The discrepancy between,
on the one hand, the VAG TP and VAG CVFE, and, on the other hand, the VAG MP
and HFV schemes is even more striking on the coarse mesh for the no-overpressure gravity
dominant test case exhibited in Figures 17 and 18. In terms of CPU time, as exhibited
in Table 2, the VAG MP scheme implemented with no elimination of the matrix fracture
mobility unknowns is competitive compared with the VAG TP scheme. It is also much
cheeper than the HFV scheme which leads to a much larger number of d.o.f. and requires
both more Newton and GMRes iterations than the VAG schemes. Note that the HFV
scheme cannot be run in a reasonable CPU time for the finest mesh of size 1600k cells.

Figure 15: Non-wetting phase saturation solutions obtained with the HVF, VAG MP,
VAG TP, VAG CVFE schemes from left to right, at time tf = 360 days (top), and at
time t = 100 days (bottom),with overpressure ∆p = 2 MPa, and the mesh of size 450k
cells. The threshold in the matrix is Snwm > 0.1 (bottom).
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Figure 16: Non-wetting phase volume in the fracture network as a function of time for
the 3D DFM test case with the overpressure ∆p = 2 MPa using the VAG MP, HFV, VAG
TP and VAG CFVE schemes on the 2 meshes of sizes 47k and 450k cells.

Scheme mesh N∆t Nchop NNewton NGMRes CPU (s)

HFV 47k 57 0 4.0 28.5 862
VAG CVFE 47k 57 0 2.91 9.0 97

VAG TP 47k 57 0 2.92 10.6 104
VAG MP 47k 57 0 3.07 13.8 254

VAG MP no elim. 47k 57 0 3.03 13.5 137

HFV 450k 57 0 8.0 99 57900
VAG CVFE 450k 57 0 3.63 14.4 1601

VAG TP 450k 57 0 3.82 19.3 1750
VAG MP 450k 57 0 3.86 24.2 3320

VAG MP no elim. 450k 57 0 3.86 24.8 2306

HFV 1600k x x x x too long
VAG CVFE 1600k 57 0 3.95 20.4 6994

VAG TP 1600k 57 0 4.42 26.7 8230
VAG MP no elim. 1600k 57 0 4.35 34 10270

Table 2: Numerical behavior of the simulation for the 3D DFM test case with the over-
pressure ∆p = 2 MPa on the three meshes of sizes 47k, 450k and 1600k cells. The VAG
MP scheme is implemented either with elimination (VAG MP) or without elimination
(VAG MP no elim) of the mf interface mobility unknowns.
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Figure 17: Non-wetting phase saturation solutions obtained with the HVF, VAG MP, VAG
TP, VAG CVFE schemes from left to right, at time tf = 3600 days with no overpressure
∆p = 0 MPa, and the mesh of size 47k cells. The threshold in the matrix is Snwm > 0.1
(bottom).

Figure 18: Non-wetting phase volume in the fracture network as a function of time for
the 3D DFM test case with no overpressure ∆p = 0 MPa using the VAG MP, HFV, VAG
TP and VAG CFVE schemes on the 47k cells mesh.

3.5 Capturing the Saturation jumps at mf interfaces

Given cellwise and fracture facewise constant rock types, the idea introduced in [19, 43, 42]
for CVFE methods and in [30, 16, 13] for the VAG scheme is to define as many saturations
as rock types shared at a given node or fracture face. This allows to capture the saturation
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jumps at rock type interfaces resulting from the continuity of the capillary pressure in the
graphical sense [26, 27, 20, 21, 17].

The choice of the primary unknowns may greatly affect the convergence of Newton’s
method used to solve the nonlinear system at each time step of the simulation. For the
cells and the nodal d.o.f. associated with a single rock the choice of the primary unknowns
does not change compared to Section 3.1. That is we use the non-wetting phase’s pressure
and saturation as pair of primary unknowns. In contrast the d.o.f. located at rock type
interfaces require a special treatment. For such d.o.f. ν ∈ VΓ∪FΓ we set again the pressure
of the non-wetting phase as the first primary unknown, while the second primary unknown
is chosen based on the variable switching strategy introduced in [13]. For a given rock type

rt ∈ RT = {m, f} let P̃c,rt denote the monotone graph extension of Pc,rt as introduced in
[20, 21]. For each subset χ ∈ {{m}, {m, f}} of RT , non-decreasing continuous functions{

Pc,χ(τ),
Snwχ,rt(τ), for all rt ∈ χ, (17)

are built such that

Pc,χ(τ) ∈ P̃c,rt(Snwχ,rt(τ)), for all τ and rt ∈ χ,

and such that Pc,χ(τ) +
∑

rt∈χ S
nw
χ,rt(τ) is strictly increasing. Then, we set

Swχ,rt(τ) = 1− Snwχ,rt(τ).

The variable τ is going to be used as the second primary unknown.
The main advantage of this framework, which applies to an arbitrary number of rock

types, is to incorporate in the construction of the functions (17) the saturation jump
condition at different rock type interfaces and to apply to general capillary pressure func-
tions. In practice, we use τ = snw for χ = {m} and the parametrization defined in [13]
for χ = {m, f}. This parametrization is based on a generalization of variable swicth
approaches (see also [42]) between snwf , snwm , pc and applies to general, including non in-
vertible, capillary functions (see numerical section for an example).

Let us set{
rtK = m, K ∈M,
rtσ = f, σ ∈ FΓ,

{
χν = {m}, ν ∈M∪ (V \ VΓ),
χν = {m, f}, ν ∈ VΓ ∪ FΓ.

Using the above framework, given the primary unknowns unwD = (unwν )ν∈D and τD =
(τν)ν∈D, we set uwD = (uwν )ν∈D with uwν = unwν − Pc,χν (τν) for all d.o.f. ν ∈ D, and we
define the discrete values of the saturation as follows. For all cells K ∈M and the nodes
s ∈ V \ VΓ associated with the single matrix rock type, we set

sαK = SαχK ,rtK (τK) = Sα{m},m(τK) = τK
sαK,s = Sαχs,rtK

(τs) = Sα{m},m(τs) = τs, K ∈Ms.

For the fracture faces σ ∈ FΓ, we set

sασ = Sαχσ ,rtσ(τσ) = Sα{m,f},f (τσ)

sαK,σ = Sαχσ ,rtK (τσ) = Sα{m,f},m(τσ), K ∈Mσ.
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For the nodes s ∈ VΓ, located at the mf interface, we set{
sαK,s = Sαχs,rtK

(τs) = Sα{m,f},m(τs),

sασ,s = Sαχs,rtσ(τs) = Sα{m,f},f (τs), σ ∈ FΓ,s.

As exhibited in Figure 19, the above definition of the saturations at the mf interfaces
takes into account the jump of the saturations induced by the different rock types.

Figure 19: Saturations inside the cells K and L, the fracture face σ and at the mf interfaces
taking into account the saturation jumps induced by the different rock types.

Let us remark that, in our specific example, since the matrix domain is homoge-
neous in terms of capillary pressure-saturation relation, the variables sαK,s, K ∈Ms (resp.
sαK,σ, K ∈Mσ) refer to the same nodal (resp. facial) saturation values. Similarly, the
values sασ,s, σ ∈ FΓ,s are identical. This is however not true for general heterogeneous
matrix and fracture domains.

We define the accumulation terms by
AαK = φKs

α
K , K ∈M,

Aασ = φσs
α
σ +

∑
K∈Mσ

φK,σs
α
K,σ, σ ∈ FΓ,

Aαs =
∑
K∈Ms

φK,ss
α
K,s +

∑
σ∈FΓ,s

φσ,ss
α
σ,s, s ∈ V \ VDir,

and the VAG fluxes with TP phase potential upwinding of the mobilities by

qαK,ν = Mα
rtK

(sαK)(Fα
K,ν(u

α
D))+ +Mα

rtK
(sαK,ν)(F

α
K,ν(u

α
D))−,

qασ,s = Mα
rtσ(sασ)(Fα

σ,s(u
α
D))+ +Mα

rtσ(sασ,s)(F
α
σ,s(u

α
D))−,

for all α ∈ {nw,w} and K ∈M, σ ∈ FΓ, ν ∈ ΞK , s ∈ Vσ.
The VAG TP discretization capturing the saturation jumps at rock type interfaces

looks for unwD and τD satisfying the conservation equations (9) together with the Dirichlet
boundary conditions

τs = τDir,s unws = unwDir,s, s ∈ VDir. (18)

It will be termed VAG TP m-upwind discretization in the following. The VAG MP m-
upwind discretization can also be defined as previously using the MP upwind flux

qαK,s = qα
K,Ks

= Mα
rtK

(sαK)(Fα
K,s(u

α
D))+ +Mα

Ks
(Fα

K,s(u
α
D))−,
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for s ∈ VΓ with the interface mobility

Mα
Ks

=

∑
L∈Ks

(Fα
L,s(u

α
D))+Mα

rtL
(sαL)−Mα

rtK
(sαK,s)(

∑
L∈Ks

Fα
L,s(u

α
D))−

∑
L∈Ks

(Fα
L,s(u

α
D))+ − (

∑
L∈Ks

Fα
L,s(u

α
D))−

,

assuming that rtL = rtK for all L ∈ Ks. This assumption can always be verified by setting
new interface face(s) between the different rock types in Ks. This discretization will be
termed VAG MP m-upwind discretization in the following.

A comparison of the f-upwind and m-upwind models with reference equi-dimensional
solutions can be found in [15] and [1]. Basically, it concludes that, thanks to the saturation
jump capturing at mf interfaces, the m-upwind model provides a better approximation
than the f-upwind model as long as the fractures are not fully filled with the non-wetting
phase. When the fractures are filled, the m-upwind model overestimates the fracture
capillary pressure and underestimates the capillary barrier effect. In that case the f-
upwind model provides a better approximation.
In the following numerical section, the VAG TP and MP m-upwind discretizations are
compared both in terms of solutions and CPU times.

3.5.1 Numerical experiments

This test case considers the large DFM model exhibited in Figure 21 with domain Ω =
(0, 85)× (0, 60)× (0, 140) m kindly provided by the authors of the Benchmark [11].

The fracture width is df = 1 cm and the fracture network is homogeneous and isotropic
with Λf = 10−11 m2, φf = 0.2. The matrix is homogeneous and isotropic with Λm = 10−14

m2, φm = 0.4.
The relative permeabilities are given by kαr,f (s

α
f ) = sαf and kαr,m(sαm) = (sαm)2, α ∈

{nw,w} and the capillary pressure is fixed to Pc,m(snwm ) = −bm ln(1−snwm ) Pa in the matrix
and to Pc,f (s

nw
f ) = −bf ln(1 − snwf ) Pa in the fracture network, with bf = 103 Pa, and

bm = 104 Pa. The fluid properties are defined by their dynamic viscosities µnw = 5. 10−3,
µw = 10−3 Pa.s and their mass densities ρw = 1000 and ρnw = 700 Kg.m−3.

The parametrization τ at mf interfaces introduced in [13] is recalled below and illus-
trated in Figure 20 for the conveniency of the reader.

Snw{m,f},f (τ) =

{
τ, τ ∈ [0, τ1),

1− (τ1 + (1− τ1)
bf
bm − τ)

bm
bf , τ ∈ [τ1, τ2),

(19)

Snw{m,f},m(τ) =

{
1− (1− τ)

bf
bm , τ ∈ [0, τ1),

τ − τ1 + 1− (1− τ1)
bf
bm , τ ∈ [τ1, τ2),

(20)

and

Pc,{m,f}(τ) =

{ −bf ln(1− τ), τ ∈ [0, τ1),

−bm ln
(
τ1 + (1− τ1)

bf
bm − τ

)
, τ ∈ [τ1, τ2),

(21)
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where τ1 = 1− (
bf
bm

)
bm

bm−bf and τ2 = τ1 + (1− τ1)
bf
bm .

Figure 20: (Top): capillary pressure as a function of the non-wetting phase saturation
for both the fracture (f) and matrix (m) rock types with bm = 104 and bf = 103 Pa.
(Bottom): capillary pressure and fracture and matrix non-wetting phase saturations as
functions of the parameter τ ∈ [0, τ2).

The reservoir is initially saturated with the wetting phase. Output Dirichlet boundary
conditions are imposed at the boundary {0, 85}× (0, 20)× (110, 140) with a wetting phase
pressure of 1 MPa and swm = 1, and input Dirichlet boundary conditions are set at the
boundary {0}× (40, 60)× (0, 30)∪ (0, 30)× (40, 85)×{0} with snwm = 0.9 and uw = 4 MPa.
The remaining boundaries are assumed impervious and the final simulation time is fixed
to tf = 3600 days. The time stepping is defined as in (16) using ∆tinit = 0.01 days,
∆tmax = 100 days and Newtonmax = 25.
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Figure 21: Large DFM model with its mesh of size 495233 tetrahedral cells and 66908
fracture faces provided by the authors of the Benchmark [11].

Figure 22: Non-wetting phase saturation volumes in the matrix (left) and in the fracture
network (right) as a function of time obtained for the VAG TP and the VAG MP m-upwind
schemes.
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Figure 23: Non-wetting phase saturation in the matrix (top) and in the fracture network
(bottom) obtained for the VAG TP (left) and VAG MP (right) m-upwind schemes at time
t = 350 days.

Scheme mesh N∆t Nchop NNewton NGMRes CPU (s)

VAG TP 495k cells 80 4 6.8 28 8200
VAG MP 495k cells 79 3 8.2 30 14190

Table 3: Numerical behavior of the simulation Field test case for the VAG TP and MP
m-upwind schemes.

The same issue at mf interfaces as for the VAG TP f-upwind approximation can be
noticed in Figure 23 for the VAG TP m-upwind discretization in the sense that the
non-wetting phase can go out from the fractures on the wrong side for the VAG TP
approximation. Nevertheless, thanks to the rather large saturation jump captured by the
m-upwind model in this test case, it involves small amounts of the non-wetting phase and
does not have visible effects on overall quantities (see Figure 22) nor on the non-wetting
phase saturation front (see Figure 23). In terms of CPU time, a factor of roughly 1.7 is
observed in favor of the TP discretization due to the additional mf interface unknowns on
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this rather large fracture network and to the slighlty larger number of Newton iterations
for the MP scheme.

Let us refer to [12] for a numerical comparison beween the m-upwind VAG TP scheme
and the m-upwind VAG CVFE scheme (i.e. without adaptive distribution of the porous
volumes at mf interfaces). It shows that the m-upwind VAG CVFE scheme still slows
down the transport in the fractures in particular for a high matrix fracture permeability
ratio.

4 Vertex Approximate Gradient (VAG) discretiza-

tion of two-phase DFM discontinuous pressure mod-

els

Discontinuous pressure models are required to account for fractures acting as barriers.
Such barriers are usually induced by a low fracture normal permeability combined with a
capillary barrier effect. Note that even in the case of a high normal fracture permeability,
a barrier behavior can still be observed for a given phase due to the degeneracy of the
phase mobility when the fracture is filled by the other phase (see [1, 15]). Compared
to the single phase flow models the possibility of such capillary barriers constitutes an
additional motivation for the use of discontinuous pressure models.
VAG discrete unknowns: as exhibited in Figure 24, the discrete unknowns are defined
by the matrix d.o.f.

Dm =M∪ {Ks |Ks ∈Ms, s ∈ V \ VΓ} ∪ Dmf

and by the fracture d.o.f.
Df = FΓ ∪ VΓ,

where Dmf ⊂ Dm are the mf interface d.o.f.

Dmf =MΓ ∪ FΓ,

with
MΓ = {Ks |Ks ∈Ms, s ∈ VΓ}, FΓ = {Kσ |K ∈Mσ, σ ∈ FΓ}.

Let us set D = Dm ∪ Df and let us remark that for s ∈ V \ VΓ, Ms is reduced to the set
of cells around s and the d.o.f. Ks ∈Ms is considered to match with the node s.

For each cell K ∈ M, let us also define the following subset of d.o.f. located at the
boundary of the cell:

ΞK = {Ks, s ∈ VK , Kσ, σ ∈ FΓ ∩ FK}.

The subset of Dirichlet d.o.f. is denoted by DDir ⊂ D.

As in Section 3.5, the definition of the primary and secondary unknowns at the d.o.f.
located at the rock type interfaces is based on the parametrization of the capillary pressure
graphs (17). To fix ideas, we assume the presence of 3 rock types RT = {m, fd, fb} where
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fd is a fracture drain rock type and fb is a fracture barrier rock type while m denote again
the matrix rock type Let the fracture network Γ be partitioned into the networks Γd of
fractures acting as drains and the network Γb of fractures acting as barriers. In order to
simplify the presentation of the numerical scheme, we will assume that Γd∩Γb = ∅. Then,
the collection χ of rock types associated with any given d.o.f. take values in

{{m}, {fd}, {fb}, {m, fd}, {m, fb}}.

corresponding to assume no intersections between fractures acting as drain and barrier. In
practice, we use the parametrization τ = snw for χ = {m}, {fd}, {fb} and the parametriza-
tions defined in [13] for χ = {m, fd} or {m, fb}. More precisely, let us set for ? = b, d

{
rtK = m, K ∈M,
rtσ = f?, {σ ∈ FΓ |xσ ∈ Γ?},


χν = {m}, ν ∈ Dm \ Dmf ,
χν = {f?}, {ν ∈ Df |xν ∈ Γ?} := D?f ,
χν = {m, f?}, {ν ∈ Dmf |xν ∈ Γ?} := D?mf ,

Using the above framework, given the primary unknowns unwD = (unwν )ν∈D and τD =
(τν)ν∈D, we set uwD = (uwν )ν∈D with uwν = unwν −Pc,χν (τν) for all d.o.f. ν ∈ D, and we define
the discrete values of the saturation as follows. For all d.o.f. associated with a single rock
type, that is K ∈M and σ ∈ FΓ we set

sαK = SαχK ,rtK (τK) = τK , sασ = Sαχσ ,rtσ(τσ) = τK ,

for all ν ∈ ΞK ∩ Dm \ Dmf , K ∈M, we set

sαK,ν = Sαχν ,rtK (τν) = Sα{m},m(τν) = τν ,

for all s ∈ Vs, σ ∈ FΓ, we set
sασ,s = Sαχs,rtσ(τs) = τs,

while for all mf interface d.o.f. from Dmf , and with ? = b, d, we impose
sαK,ν = Sαχν ,rtK (τν) = Sα{m,f?},m(τν), ν ∈ ΞK ∩ D?mf , K ∈M,

sασ,Kσ = SαχKσ ,rtσ(τKσ) = Sα{m,f?},fd(τKσ), Kσ ∈ FΓ ∩ D?mf ,
sα
σ,Ks

= SαχKs,rtσ
(τKs

) = Sαχ{m,f?},fd
(τKs

), Ks ∈MΓ ∩ D?mf , σ ∈ FΓ,Ks
,

where FΓ,Ks
= FΓ,s ∩ (

⋃
K∈Ks

FK).

Discrete fluxes: the VAG fluxes connect each cell K (resp. each fracture face σ) to its
boundary d.o.f. ν ∈ ΞK (resp. s ∈ Vσ) using the same transmissibility coefficients as for
the continuous pressure model

FK,ν(uDm) =
∑
ν′∈ΞK

Tν,ν
′

K (uK − uν′), Fσ,s(uDf ) =
∑
s′∈Vσ

Ts,s′

σ (uσ − us′).

Additionally, two-point matrix fracture fluxes are defined by

FKs,s
(uKs

, us) = TKs,s
(uKs

− us), FKσ ,σ(uKσ , uσ) = TKσ ,σ(uKσ − uσ),
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Figure 24: Single phase VAG discretization of the discontinuous pressure hybrid-
dimensional model: example of discrete unknowns in 2D with 3 fracture faces intersecting
at node s (left), and VAG fluxes (matrix fluxes in red, fracture fluxes in black and matrix
fracture fluxes in dark red) in a 3D cell K with a fracture face σ in bold (right).

for s ∈ VΓ, Ks ∈Ms and σ ∈ FΓ, K ∈Mσ, with

TKs,s
=

1

3

∑
T∈∆ | s∈T

∫
T

2λf,n
df

dσ(x), TKσ ,σ =

∫
σ

2λf,n
df

dσ(x),

where ∆ is the triangular submesh of Γ defined as the trace on Γ of the tetrahedral
submesh T introduced in (8) (see [14]) for details).

Setting zDm = (zν)ν∈Dm and zDf = (zν)ν∈Df , the two-phase VAG fluxes combine the
VAG single phase Darcy fluxes including gravity

Fα
K,ν(u

α
Dm) = FK,ν(u

α
Dm) + ραgFK,ν(zDm), Fα

σ,s(u
α
Df ) = Fσ,s(u

α
Df ) + ραgFσ,s(zDf ),

Fα
Ks,s

(uα
Ks
, uαs ) = FKs,s

(uα
Ks
, uαs )− 1

3
ρα

∑
T∈∆ | s∈T

∫
T

λf,ng · nKs,T
dσ(x),

Fα
Kσ ,σ(uαKσ , u

α
σ) = FKσ ,σ(uαKσ , u

α
σ)− ρα

∫
σ

λf,ng · nK,σdσ(x),

with the usual Two-Point phase potential upwinding of the mobilities, leading to define

qαK,ν = Mα
rtK

(sαK)(Fα
K,ν(u

α
D))+ +Mα

rtK
(sαK,ν)(F

α
K,ν(u

α
D))−,

for all K ∈M, ν ∈ ΞK ,

qασ,s = Mα
rtσ(sασ)(Fα

σ,s(u
α
D))+ +Mα

rtσ(sασ,s)(F
α
σ,s(u

α
D))−,
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for all σ ∈ FΓ, s ∈ Vσ,

qα
Ks,s

=
1

Card(FΓ,Ks
)

∑
σ∈FΓ,Ks

(
Mα

rtσ(sα
σ,Ks

)(Fα
Ks,s

(uα
Ks
, uαs ))+

+Mα
rtσ(sασ,s)(F

α
Ks,s

(uα
Ks
, uαs ))−

)
for all s ∈ VΓ, Ks ∈Ms, and

qαKσ ,σ = Mα
rtσ(sασ,Kσ)(Fα

Kσ ,σ(uαKσ , u
α
σ))+ +Mα

rtσ(sασ)(Fα
Kσ ,σ(uαKσ , u

α
σ))−

for all σ ∈ FΓ, K ∈Mσ.

Control volumes and accumulation terms: as for the continuous pressure model,
porous volumes φK,ν , ν ∈ ΞK \DDir (resp. φσ,s, s ∈ Vσ \DDir) are obtained by distribution
of the the cell K ∈M (resp. fracture face σ ∈ FΓ) porous volume. A porous volume φσ,Ks

(resp. φσ,Kσ) is also distributed from the fracture face σ to the interface d.o.f. Ks (resp.
Kσ) for σ ∈ FΓ,Ks

, Ks ∈ MΓ (resp. for Kσ ∈ FΓ). These interface porous volumes are
required to avoid the singularity of the linear systems obtained after Newton linearization.
Their influence on the solution is small provided that they are chosen small enough (see
[24]). Then we set

φK =

∫
K

φm(x)dx−
∑

ν∈ΞK\DDir

φK,ν , K ∈M,

φσ =

∫
σ

df (x)φf (x)dx −
∑

s∈Vσ\DDir

φσ,s −
∑

K∈Mσ

φσ,Kσ

−
∑

Ks∈MΓ\DDir |σ∈FΓ,Ks

φσ,Ks
,

σ ∈ FΓ,

and we define the accumulations terms by

AαK = φKs
α
K , K ∈M,

Aα
Ks

=
∑
K∈Ms

φK,Ks
sα
K,Ks

, s ∈ V \ (DDir ∪ VΓ),

Aασ = φσs
α
σ , σ ∈ FΓ,

Aαs =
∑
σ∈FΓ,s

φσ,ss
α
σ,s, s ∈ VΓ \ DDir,

AαKσ = φσ,Kσs
α
σ,Kσ + φK,Kσs

α
K,Kσ , Kσ ∈ FΓ,

Aα
Ks

=
∑
K∈Ks

φK,Ks
sα
K,Ks

+
∑

σ∈FΓ,Ks

φσ,Ks
sα
σ,Ks

, Ks ∈MΓ \ DDir,

Conservation equations: the VAG discretization of the discontinuous pressure model
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solves for unwD and τD such that

AαK −Aα,n−1
K

∆tn
+
∑
ν∈ΞK

qαK,ν = 0, K ∈M,

Aα
Ks
−Aα,n−1

Ks

∆tn
−
∑
K∈Ms

qα
K,Ks

= 0, s ∈ V \ (VΓ ∪ DDir),

Aασ −Aα,n−1
σ

∆tn
+
∑
s∈Vσ

qασ,s −
∑

K∈Mσ

qαKσ ,σ = 0, σ ∈ FΓ,

Aαs −Aα,n−1
s

∆tn
−
∑
σ∈FΓ,s

qασ,s −
∑

Ks∈Ms

qα
Ks,s

= 0, s ∈ VΓ \ DDir,

AαKσ −A
α,n−1
Kσ

∆tn
− qαK,Kσ + qαKσ ,σ = 0, Kσ ∈ FΓ,

Aα
Ks
−Aα,n−1

Ks

∆tn
−
∑
K∈Ks

qα
K,Ks

+ qα
Ks,s

= 0, Ks ∈MΓ \ DDir,

τν = τDir,ν , unwν = unwDir,ν , ν ∈ DDir.

(22)

f and m-upwind discontinuous pressure models: the above discontinuous pressure
model, termed mf nonlinear model in the following, leads to difficulties to solve the non-
linear system (22) due to the combination of highly contrasted matrix and fracture rock
types and to the small pore volumes at mf interface d.o.f. One possibility to solve this
issue, still preserving the ability to take into account fractures acting as drains or bar-
riers, is to linearize the matrix fracture transmission conditions w.r.t. the mf interface
unknowns and to apply a f or m-upwind approximation of the mobilities. This idea, devel-
opped in [15] for the VAG discretization and in [1] for the TPFA discretization, replaces
the primary unknowns unwν , τν at matrix fracture d.o.f. ν ∈ Dmf by both phase pressures
unwν , uwν , ν ∈ Dmf , and the conservation equations at matrix fracture d.o.f. by

Fα
Ks,s

(uα
Ks
, uαs )−

∑
K∈Ks

Fα
K,Ks

(uαDm) = 0, Fα
Kσ ,σ(uαKσ , u

α
σ)− Fα

K,Kσ(uαDm) = 0,

for Ks ∈ MΓ and Kσ ∈ FΓ. Note that the pore volumes φσ,Ks
and φσ,Kσ are set to

zero. Since phase saturations are no longer defined at matrix fracture d.o.f., one need
to modify the upwind mobilities in the definition of the fluxes qα

K,Ks
, Ks ∈ MΓ now

connecting directly the cell K and the fracture d.o.f. s, and in the definition of qαK,Kσ ,

Kσ ∈ FΓ now connecting the cell K and the fracture d.o.f. σ. These new connectivities
modify the fracture conservations equations for σ ∈ FΓ and s ∈ VΓ \ DDir as follows:

Aασ −Aα,n−1
σ

∆tn
+
∑
s∈Vσ

qασ,s −
∑

K∈Mσ

qαK,Kσ = 0, σ ∈ FΓ,

Aαs −Aα,n−1
s

∆tn
−
∑
σ∈FΓ,s

qασ,s −
∑

Ks∈Ms

qα
K,Ks

= 0, s ∈ VΓ \ DDir,
(23)
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Figure 25: Coarse mesh over the domain under consideration, which contains two inter-
secting fractures with high permeability and low capillarity and one upper fracture with
low permeability and high capillarity. The size of the domain is 4m×8m and the fractures
have an aperture of 4 cm.

The modified fluxes are defined by
qα
K,Ks

= Mα
rtK

(sαK)(Fα
K,Ks

(uαD))+ +Mα
rtK

(SαχKs
,rtK

(τs))(F
α
K,Ks

(uαD))−,

qαK,Kσ = Mα
rtK

(sαK)(Fα
K,Kσ

(uαD))+ +Mα
rtK

(SαχKσ ,rtK (τσ))(Fα
K,Kσ

(uαD))−,

(24)

for the m-upwind discontinuous pressure model, and by
qα
K,Ks

= Mα
rtK

(sαK)(Fα
K,Ks

(uαD))+ +Mα
rts(Sχs,rts(τs))(F

α
K,Ks

(uαD))−,

qαK,Kσ = Mα
rtK

(sαK)(Fα
K,Kσ

(uαD))+ +Mα
rtσ(Sχσ ,rtσ(τσ))(Fα

K,Kσ
(uαD))−,

(25)

for the f-upwind discontinuous pressure model, where a fracture rock type rts has been
assigned to the node s. As for the continuous pressure model, a Multi-Point upwinding
can also be introduced for these fluxes using the additional mobility unknowns Mα

Ks
,

and Mα
Kσ

, α ∈ {nw,w}. Note that, for fracture acting as drains, these f and m-upwind
discontinuous pressure models provide basically the same solutions than respectively the
f and m-upwind continuous pressure models. As already mentioned, this is not the case
of the mf nonlinear discontinuous pressure model (22) due to the possible degeneracy of
the phase mobilities appearing in the matrix fracture transmission conditions.

4.1 Numerical experiments

We consider a fractured domain as defined in figure 4.1. The matrix permeability is
isotropic of 0.1 Darcy and matrix porosity is 0.2. The two lower fractures are drains
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(fd) of isotropic permeability 100.0 Darcy and porosity 0.4. In the upper fracture, acting
as a barrier (fb), the permeability is isotropic of 0.001 Darcy and the porosity is 0.2.
The capillary pressures are the same than in subsection 3.5.1 with the Corey parameters
bm = 1 bar in the matrix, bfb = 10 bar in the barrier fracture and bfd = 0.1 bar in the drain
fractures. Initially, the reservoir is saturated with water (density 1000 kg/m3, viscosity
0.001 Pa.s) and oil (density 700 kg/m3, viscosity 0.005 Pa.s) is injected in the bottom
fracture, which is managed by imposing non-homogeneous Neumann conditions at the
injection location. The oil then rises by gravity, thanks to it’s lower density compared
to water and by the overpressure induced by the imposed injection rate. Also, Dirichlet
boundary conditions are imposed at the upper boundary of the domain. Elsewhere, we
have homogeneous Neumann conditions.

The tests are driven on triangular meshes, extended to 3D prismatic meshes by adding
a second layer of nodes as a translation of the original nodes in normal direction to the
plane of the original 2D domain (cf. figure 4.1). The equi-dimensional mesh contains
two layers of cells in the fractures. The meshes are chosen to be fine (h ≈ df ), in order
to focus on modelling errors. The final simulation time is fixed to tf = 54 days. The
time stepping is defined as in (16) using ∆tinit = 0.01 days and ∆tmax = 0.1 days for the
equi-dimensional and hybrid dimensional mf nonlinear models, and ∆tinit = 0.002 days
and ∆tmax = 0.27 days for the hybrid-dimensional m-upwind and f-upwind models. The
maximum number of Newton iterations per time step is fixed as Newtonmax = 35. The
hybrid dimensional mf nonlinear and m-upwind models make use of the parametrization
(19)-(20)-(21) at the mf interfaces.

Figure 26: Comparison of the equi-dimensional model and of the mf nonlinear, m-upwind
and f-upwind discontinuous pressure DFM models (from left to right) numerical solutions
for non-wetting phase saturation at final time t = 54 days.
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Figure 27: Comparison of the equi-dimensional model and of the mf nonlinear, m-upwind
and f-upwind discontinuous pressure DFM models (from left to right) numerical solutions
for water overpressure at final time t = 54 days.
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Figure 28: Matrix and fracture volumes occupied by the non-wetting phase as a function
of time for the equi-dimensional model and for the mf nonlinear, m-upwind and f-upwind
discontinuous pressure DFM models.

Model N∆t NNewton NChop

equi dim. 589 2419 2
mf nonlinear 585 1984 1

m-upwind 255 1216 0
f-upwind 255 1161 0

Table 4: N∆t is the number of successful time steps; NNewton is the total number of Newton
iterations (for successful time steps); NChop is the number of time step chops.

In this test case, we study the presence of a fracture, which acts as a barrier, both by
its low permeability and by its high capillarity compared to the rock matrix. As a result of
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the higher capillarity, the sign of the matrix-fracture non-wetting phase saturation jump
Snwm (γ±pc,m)− Snwf (γ±pc,m) at the mf interfaces is non negative.

Figures 27 and 28 compare the above mf nonlinear, m-upwind and f-upwind discon-
tinuous pressure models to a reference equi-dimensional model. For the f-upwind and
m-upwind models, mass transfer of the non-wetting phase from the matrix to the barrier
is overestimated, since in this direction, saturation jumps are not accounted for. The as-
sumption of constant saturation accross the fracture for these models consequently leads
to an overestimation of the non-wetting phase leaving the barrier. This overestimation
is most severe for the m-upwind model, which takes into account saturation jumps for
fluxes directed from the fracture to the matrix. Again, the mf nonlinear model does not
suffer from the difficulties described above, since it provides mass transport that passes
by the mf interfaces and takes into account the saturation jumps.

5 Conclusions and Perspectives

This article reviews the nodal VAG discretization of DFM two-phase Darcy flow models.
For linear transmission conditions, the adaptation of the control volumes combined with
a Multi-Point upwind approximation of the mobilities for f-upwind models or taking into
account the saturation jump for m-upwind models, allows to obtain a similar accuracy as
face based discretizations with a much lower CPU time on tetrahedral meshes. Nonlinear
mf transmission conditions provide a more accurate DFM model than linear transmission
conditions. As discussed in [15, 1], they can account for a large range of physical processes
at mf interfaces which cannot be captured by linear mf transmission conditions even in
the case of fractures acting as drains. It is typically the case for fractures acting as
capillary barriers, or for highly permeable fractures filled with a given phase acting as a
barrier for the other phase. The VAG discretization of DFM models with nonlinear mf
transmission conditions still raises the issue of numerical efficiency regarding the nonlinear
convergence due to the combination of highly nonlinear transmission conditions with tiny
volumes at mf interfaces. Improving the numerical efficiency for this type of DFM models
is the object of ongoing researches in two directions. The first is to go back to face
based discretizations allowing the elimination of the mf interface unknowns with a local
nonlinear interface solver as in [1] using TPFA discretization on orthogonal meshes and in
[2] using an HFV discretization. The second perspective is to use the more robust Hybrid
Upwinding approximation of the mobilities to define the two-phase Darcy fluxes at mf
interfaces as proposed in [6] for TPFA schemes and in [18] for the VAG discretization.
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