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ORBITAL STABILITY VS. SCATTERING IN THE

CUBIC-QUINTIC SCHRÖDINGER EQUATION

RÉMI CARLES AND CHRISTOF SPARBER

Abstract. We consider the cubic-quintic nonlinear Schrödinger equation in
space dimension up to three. The cubic nonlinearity is thereby focusing while
the quintic one is defocusing, ensuring global well-posedness of the Cauchy
problem in the energy space. The main goal of this paper is to investigate
the interplay between dispersion and orbital (in-)stability of solitary waves.
In space dimension one, it is already known that all solitons are orbitally
stable. In dimension two, we show that if the initial data belong to the con-
formal space, and have at most the mass of the ground state of the cubic
two-dimensional Schrödinger equation, then the solution is asymptotically lin-
ear. For larger mass, solitary wave solutions exist, and we review several results
on their stability. Finally, in dimension three, relying on previous results from
other authors, we show that solitons may or may not be orbitally stable.

1. Introduction and main results

1.1. Basic setting. We consider the nonlinear Schrödinger equation (NLS) with
competing cubic-quintic nonlinearities,

(1.1) i∂tu+
1

2
∆u = −|u|2u+ |u|4u, x ∈ R

d,

in space dimension d ≤ 3. The quintic nonlinearity was introduced in [44], and
adopted in several physical situations: typically in optics (see e.g. [32]), or in
Bose-Einstein condensation (e.g. [1, 21, 40]). We refer to the review [37] for more
precise references. In particular, the incorporation of the defocusing quintic term
is motivated by the stabilization of two- and three-dimensional vortex solitons.

Recall some of basic features of this nonlinearity in terms of criticality for the
Cauchy problem. Depending on the space dimension, the NLS is seen to be:

• d = 1: focusing L2-subcritical plus defocusing L2-critical (and H1-subcritical).
• d = 2: focusing L2-critical plus defocusing L2-supercritical (andH1-subcritical).
• d = 3: focusing L2-supercritical plus defocusing H1-critical.

It is already known from the case of more general, gauge-invariant nonlinearities
(see e.g. [9]), that equation (1.1) formally enjoys three basic conservation laws,
namely:

• Mass: M(u) = ‖u(t, ·)‖2L2(Rd),

• Angular momentum: J(u) = Im

∫

Rd

ū(t, x)∇u(t, x)dx,

• Energy: E(u) =
1

2
‖∇u(t, ·)‖2L2(Rd) −

1

2
‖u(t, ·)‖4L4(Rd) +

1

3
‖u(t, ·)‖6L6(Rd).

In dimensions 2 and 3, an effect of the quintic term is to prevent finite time blow-

up which may occur in the purely cubic case (cf. [9]). Indeed, the conservation of
the energy, combined with Hölder’s inequality,

(1.2) ‖u‖4L4(Rd) ≤ ‖u‖L2(Rd)‖u‖3L6(Rd),
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2 R. CARLES AND C. SPARBER

shows that the cubic focusing part cannot be an obstruction to global well-posedness,
at least in H1. For d ≤ 2, global well-posedness then follows from classical results
(see e.g. [9]). For d = 3, we refer to [56], as the quintic term is energy-critical.

Proposition 1.1 (Global well-posedness). Let d ≤ 3. For any u0 ∈ H1(Rd), (1.1)
has a unique global solution u ∈ C(R;H1(Rd)) such that u|t=0 = u0. The solution

obeys the conservation of mass, energy, and momentum. If in addition

u0 ∈ Σ :=
{
f ∈ H1(Rd), x 7→ |x|f ∈ L2(Rd)

}
,

then u ∈ C(R; Σ).

Numerically, one observes a kind of oscillatory behavior within the solution u,
which is due to the competition of focusing and defocusing effects within (1.1), cf.
[49] for more details.

Remark 1.2. Recall that in dimension d = 2 or 3, the quintic term is L2-supercritical,
so we cannot hope to solve the Cauchy problem at this regularity level. Moreover,
since the cubic-quintic nonlinearity stems from physics, it is sensible to work in H1,
where the energy is well-defined.

Complementing the case of prescribed initial data, we may also want to prescribe
asymptotic states (or scattering states) and an asymptotically linear behavior, pro-
vided that d ≥ 2. We thereby recall that in the case d = 1, the cubic nonlinearity
causes long-range effects, and no non-trivial solution to (1.1) can be asymptotically
linear, cf. [4]. However, in dimensions d = 2, 3 one can rely on classical techniques
(see e.g. [9]) or the results of [56], respectively, to obtain:

Proposition 1.3 (Scattering). Let d = 2 or 3. For any u− ∈ H1(Rd), (1.1) has a

unique global solution u ∈ C(R;H1(Rd)) such that
∥
∥
∥u(t, ·)− ei

t
2
∆u−

∥
∥
∥
H1(Rd)

−→
t→−∞

0.

In particular,

M(u) = ‖u−‖2L2 , E(u) =
1

2
‖∇u−‖2L2 , ∀t ∈ R.

If in addition u− ∈ Σ, then u ∈ C(R; Σ) and
∥
∥
∥e−i t

2
∆u(t, ·)− u−

∥
∥
∥
Σ

−→
t→−∞

0.

We recall that ei
t
2
∆ is unitary on H1(Rd), but not on Σ (see e.g. [9]), hence the

final formula above.

As in the case with purely cubic nonlinearity, not every finite-energy solution of
(1.1) is necessarily asymptotically linear. Finite time blow-up is of course ruled out
in our case, but time-periodic solitary wave solutions also exist.

Definition 1.4. A standing wave or soliton of (1.1) is a solution of the form
eiωtφ(x), with ω ∈ R and φ satisfying

(1.3) − 1

2
∆φ+ ωφ− |φ|2φ+ |φ|4φ = 0, φ ∈ H1(Rd) \ {0}.

The associated action is given by

S(φ) =
1

2
‖∇φ‖2L2 + ω‖φ‖2L2 − 1

2
‖φ‖4L4 +

1

3
‖φ‖6L6.

A solution φ is a ground state if S(φ) ≤ S(ϕ) for any solution ϕ of (1.3).
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As we will see in Section 3, if d ≤ 3, (1.3) admits a solution if and only if

0 < ω < 3
16 .

It turns out that for d = 1, explicit solitary wave solutions are available for this
range of ω, see below. In the present paper, we will review (and expand on) several
results about the (in-)stability of solitary waves, a question which is closely related
to dispersive effects in (1.1). Due to the invariants of the equations (in our case,
translation in space and multiplication by eiθ for a constant θ), it is customary
to consider orbital stability, for which two approaches are available in the case of
nonlinear Schrödinger equations: the first one historically, due to Cazenave and
Lions [10], consists in showing that the set of energy minimizers, subject to a mass
constraint, is stable under the flow of the equation. In some cases (typically, when
the nonlinearity is homogeneous, as well as for the logarithmic nonlinearity [2, 8]),
one is able to describe this set in more detail. The other one, known as Grillakis-
Shatah-Strauss theory, was introduced in [23] (see also [17]), and generalized the
ideas developed by M. Weinstein in [54, 55]. This approach has proven particularly
useful in the case of homogeneous nonlinearities (or asymptotically homogeneous
ones, see [17] and references therein) and in space dimension one (e.g. [26]). We
will collect several results on both of these approaches (depending on d = 1, 2, 3),
and accordingly introduce the following two notions of orbital stability.

Definition 1.5. For ρ > 0, denote

Γ(ρ) =
{
u ∈ H1(Rd), M(u) = ρ

}
,

and assume that the minimization problem

(1.4) u ∈ Γ(ρ), E(u) = inf{E(v) ; v ∈ Γ(ρ)}
has a solution. Denote by E(ρ) the set of such solutions. We say that solitary waves
are E(ρ)-orbitally stable, if for all ε > 0, there exists δ > 0 such that if u0 ∈ H1(Rd)
satisfies

inf
φ∈E(ρ)

‖u0 − φ‖H1(Rd) ≤ δ,

then the solution to (1.1) with u|t=0 = u0 satisfies

sup
t∈R

inf
φ∈E(ρ)

‖u(t, ·)− φ‖H1(Rd) ≤ ε.

We note that if φ ∈ E(ρ), then
{eiθφ(· − y); θ ∈ R, y ∈ R

d} ⊂ E(ρ).
When the nonlinearity is homogeneous (and L2-subcritical), this inclusion becomes
an equality, see [10, 9]. In this case, the above notion meets the following one,
which is stronger, in general:

Definition 1.6. Let φ be a solution of (1.3). The standing wave eiωtφ(x) is or-
bitally stable in H1(Rd), if for all ε > 0, there exists δ > 0 such that if u0 ∈ H1(Rd)
satisfies

‖u0 − φ‖H1(Rd) ≤ δ,

then the solution to (1.1) with u|t=0 = u0 satisfies

sup
t∈R

inf
θ∈R

y∈Rd

∥
∥u(t, ·)− eiθφ(· − y)

∥
∥
H1(Rd)

≤ ε.

Otherwise, the standing wave is said to be unstable.

We emphasize that for “truly” non-homogeneous nonlinearities in dimensions
d ≥ 2 only E(ρ)-orbitally stability is known; see e.g. [14, 48]. Moreover, it is not
clear in general that ground states are members of E(ρ).
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1.2. One-dimensional case. In the case d = 1, the overall picture is very neat.
Firstly, for 0 < ω < 3

16 , solutions to (1.3) are given by ([44], see also [16])

(1.5) φ(x) = 2

√
√
√
√

ω

1 +
√

1− 16ω
3 cosh

(
2x

√
2ω

) .

Note that in view of [6], this real-valued solution is unique, up to translation and
change of sign. The orbital stability of these nonlinear ground states was established
in [42, Theorem 3, case (1)].

Proposition 1.7 (Orbital stability in 1D). Let d = 1, and 0 < ω < 3
16 . The

solitary wave eiωtφ(x), where φ is given by (1.5), is orbitally stable.

The proof of this result combines the well-known Grillakis-Shatah-Strauss crite-
rion [23] with the analysis of [26] and an explicit formula for second order ODEs
without first order derivatives, a strategy which seems to be restricted to the 1D
case and not suited for solutions to (1.3) in d ≥ 2.

We note that in [42], more general nonlinearities are considered, including the
following generalization of (1.1):

i∂tu+
1

2
∂2xu = −|u|p−1u+ |u|q−1u, q > p.

It is shown that if p ≤ 5, then all ground states are orbitally stable. On the other
hand, if p > 5, ground states with ω > 0 sufficiently small become unstable, while
if ω is sufficiently large (but not too large, since ground states have to exist), they
remain stable. We note that the value p = 5 corresponds to an L2-critical, focusing
nonlinearity. It is therefore natural to expect that in the case of the cubic-quintic
nonlinearity (1.1), all ground states are orbitally stable when d = 2, while in d = 3
some will be stable and others unstable. We will give several pieces of rigorous
evidence supporting this heuristics.

1.3. Two-dimensional case. We now turn to the case d = 2 and recall that
the results of [50] show that for ‖u0‖L2 sufficiently small, the solution to (1.1) is
asymptotically linear. It turns out that since the cubic term is L2-critical in 2D,
we can in fact be more precise.

To this end, let Q be the cubic nonlinear ground state, i.e., the unique positive
radial solution to

(1.6) − 1

2
∆Q+Q−Q3 = 0, x ∈ R

2.

In view of [53], and noting that we have an extra factor 1
2 in front of the Laplacian

in (1.6) compared to [53], the sharp Gagliardo-Nirenberg inequality reads

(1.7) ‖u‖4L4(R2) ≤
( ‖u‖L2(R2)

‖Q‖L2(R2)

)2

‖∇u‖2L2(R2), ∀u ∈ H1(R2).

In the focusing cubic case, i.e., without the quintic term, we know from [18] that
if u0 ∈ L2 and ‖u0‖L2 < ‖Q‖L2, global existence and scattering hold (see also [31]
for the case of radial data u0). In the presence of (1.1), it was proved in [11] that
for u0 ∈ H1 with ‖u0‖L2 < ‖Q‖L2, scattering holds as well, relying on the cubic
case from [18]. In our first main result below, we shall show that the effect of the
additional quintic term is not only to guarantee global well-posedness, but also to
extend this dispersive result to the L2-sphere {‖u0‖L2 = ‖Q‖L2}. We emphasize
that we assume u0 ∈ Σ, not simply u0 ∈ H1(R2), see Section 2 for a more precise
discussion of this aspect.
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Theorem 1.8 (Mass (sub-)critical scattering in 2D). Let d = 2. If u0 ∈ Σ with

‖u0‖L2 ≤ ‖Q‖L2,

then the solution u ∈ C(R; Σ) to (1.1) such that u|t=0 = u0 is asymptotically linear,

i.e. there exist u± ∈ Σ such that

‖e−i t
2
∆u(t, ·)− u±‖Σ −→

t→±∞
0.

On a heuristic level, we may argue in the same fashion as in [25], and recall that
the standard virial computation for (1.1) yields,

d2

dt2

∫

R2

|x|2|u(t, x)|2dx = 2E(u) +
2

3
‖u(t)‖6L6(R2) ≥ 2E(u0),

where E(u) = E(u0) is the conserved energy. In view of the sharp Gagliardo-
Nirenberg inequality, we have, under the assumptions of Theorem 1.8,

d2

dt2

∫

R2

|x|2|u(t, x)|2dx ≥ 2

3
‖u0‖6L6(R2).

The time-derivative of the virial of u is therefore increasing, a first hint that the
solution is dispersive. In order to make this statement rigorous, especially in the
limiting case ‖u0‖L2 = ‖Q‖L2, we rely on a conformal transform, and rigidity results
regarding the concentration phenomenon in nonlinear Schrödinger equations, see
Section 2.3 below.

Our second main result concerns the stability of solitary waves:

Theorem 1.9 (Nonlinear ground states in 2D). Let d = 2. Then, for all ω ∈]0, 3
16 [,

there exists a solitary wave solution u(t, x) = eiωtφω(x) to (1.1). In addition, we

have:

(1) For any ρ > ‖Q‖2L2, there exists a ground state such that ‖φω‖2L2 = ρ.
(2) The ground state solution is unique, up to translation and multiplication by

eiθ, for constant θ ∈ R.

(3) There exists 0 < ω0 ≤ ω1 ≤ 3
16 such that for ω ∈]0, ω0[∪]ω1,

3
16 [, φω is

orbitally stable.

(4) For any ρ > ‖Q‖2L2, the set E(ρ) is non-empty and solitary waves are E(ρ)-
orbitally stable.

We emphasize the fact that for any mass strictly larger than that of the cubic
ground state Q, we can find a soliton of the cubic-quintic NLS, while for a mass
less or equal to that of Q, all solutions to (1.1) are asymptotically linear. This is
in sharp contrast with the analogous situation in the case of a single pure power
nonlinearity, where the critical sphere (in L2 or other homogeneous Sobolev spaces)
always contains non-dispersive elements, see e.g. [19, 28, 29, 51].

In view of numerical experiments showing that ω 7→M(φω) is an increasing map,
and of the analogy with the one-dimensional case, it is natural to conjecture that
ω0 = 3

16 , that is, all ground states are orbitally stable, see also [34]. Moreover, we
expect that all ground states are energy minimizers.

1.4. Three-dimensional case. In d = 3, equation (1.1) has already been studied
in [30]. However, no statement concerning the (in-)stability of solitary waves is
given in there. Here, we shall state the following proposition, the proof of which
relies on elements already present in [30]:

Proposition 1.10 (Soliton (in-)stability in 3D). Let d = 3. For all ω ∈]0, 3
16 [,

there exists a ground state solution φω which is unique, up to translation and mul-

tiplication by eiθ, for constant θ ∈ R. Moreover:

(1) There exists ρ0 > 0 such that M(φω) ≥ ρ0 for all ω ∈]0, 3
16 [.
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(2) If u0 ∈ H1(R3) is such thatM(u0) < ρ0, then the solution u ∈ C(R;H1(R3))
to (1.1) with u|t=0 = u0 is asymptotically linear, i.e. there exists u± ∈
H1(R3) such that

‖e−i t
2
∆u(t, ·)− u±‖H1 = ‖u(t, ·)− ei

t
2
∆u±‖H1 −→

t→±∞
0.

(3) There exists 0 < ω0 <
3
16 such that for all 0 < ω < ω0, φω is unstable.

(4) There exists ω0 ≤ ω1 <
3
16 such that for all ω1 < ω < 3

16 , φω is orbitally

stable.

(5) There exists ρ1 > ρ0 such that for ρ ≥ ρ1, solitary waves are E(ρ)-orbitally
stable.

The minimal mass ρ0 is related to a specific ground state φ, which, unlike in the
2D case, cannot be directly described as the solution to some differential equation,
but rather as the optimizer of a suitable Weinstein functional. More precisely,
ρ0 =M(φ) where

φ = inf
u∈H1(R3)\{0}

‖u‖L2‖u‖3/2L6 ‖∇u‖3/2L2

‖u‖4L4

,

see [30] for more details (and, in particular, for the proof of items (1) and (2) in the
last proposition). One again expects the equality ω0 = ω1 to hold. More precisely,
Conjecture 2.3 from [30] (see also [34]), which is supported by numerics, states:

Conjecture. There exists 0 < ω∗ <
3
16 so that ω 7→ M(φ) is strictly decreasing

for ω < ω∗, and strictly increasing for ω > ω∗.

If this indeed holds true, one can take ω0 = ω1 = ω∗ in Proposition 1.10.

One may also wonder about the precise nature of instability. Recall, that in the
case of a single power nonlinearity, instability is always due to the possibility of
finite-time blow-up (see e.g. [9] and references therein). Very recently, Fukuya and
Hayashi [20] have established instability results for NLS with a double power nonlin-
earity, but in their work the focusing term dominates the defocusing one (thereby
extending the results of [12]). They rely on the possibility of blow-up or invoke
the Grillakis-Shatah-Strauss theory, in which case the nature of the instability still
remains unclear. For nonlinearly coupled systems of NLS, Correia, Oliveira and
Silva [15] have shown that instability may correspond to a transfer of mass from
one equation to the other. None of these former results, however, apply to our
situation.

In our case, one may expect that the stable manifolds analyzed in [33, 46] become
open neighborhoods, in the sense that in a full neighborhood of the unstable ground
state (not only in a manifold with limited co-dimension), the solution u bifurcates
from the solitary wave eiωtφ(x), yielding a behavior of the for

u(t, x) =W (t, x) + ei
t
2
∆u+(x) + oL2(1) as t→ ∞,

for some u+ ∈ L2(R3), and where W is a (possibly different) ground state, modu-
lated by a moving set of parameters (see [33, 46] for details). Typically, if W = 0,
the solution becomes fully dispersive, while if u+ = 0, u behaves like a solitary
wave.

The rest of this paper is now organized as follows: In Section 2, we prove Theo-
rem 1.8. In Section 3, we analyze some general results on solitary waves for (1.1). In
Section 4, we recall further properties of the ground states related to the Grillakis-
Shatah-Strauss theory. These will imply all the points in Theorem 1.9 except the
fourth one, as well as items (3) and (4) of Proposition 1.10. The proof of the re-
maining statements on E(ρ)-stability within Theorem 1.9 and Proposition 1.10 is
given in Section 5.
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2. Dispersive behavior in 2D

2.1. Space-time norms. In this section, our main goal is to prove Theorem 1.8.
Recall that for two-dimensional Schrödinger equation, a Strichartz-pair (q, r) is
admissible if

2

q
+

2

r
= 1, 2 ≤ r <∞.

We denote by

‖u‖S(I) = sup
(q,r) admissible

‖u‖Lq(I;Lr(R2)).

In view of [50, Theorem 1.3], to prove Theorem 1.8 with Σ replaced by the larger
space H1(R2), it suffices to prove that for any u0 ∈ H1(R2) with ‖u0‖L2 ≤ ‖Q‖L2,
the global solution u provided by Proposition 1.1 satisfies

(2.1) ‖u‖S(R) + ‖∇u‖S(R) <∞.

Remark 2.1. Note that Theorem 1.9 contains the particular information that one
can find u0 ∈ H1(R2) with ‖u0‖L2 − ‖Q‖L2 > 0 arbitrarily small, such that
‖u‖S(R) = ∞.

As a first, basic step, we show that (2.1) can be reduced to the following:

Lemma 2.2 (Reduction step). Let d = 2 and u0 ∈ H1(R2). If the global solution

provided by Proposition 1.1 satisfies ‖u‖S(R) <∞, then we also have

‖∇u‖S(R) <∞,

and so u is asymptotically linear,

∃u± ∈ H1(R2),
∥
∥
∥u(t)− ei

t
2
∆u±

∥
∥
∥
H1(R2)

−→
t→±∞

0.

If in addition u0 ∈ Σ, then u± ∈ Σ and
∥
∥
∥e−i t

2
∆u(t)− u±

∥
∥
∥
H1(R2)

−→
t→±∞

0.

Proof. From [50], we only have to check that ‖u‖S(R) <∞ implies ‖∇u‖S(R) <∞.
Let I = [t0, t1] be some time interval, with t1 ≥ t0 ≥ 0 to simplify notations.
Considering the Duhamel’s formula associated to (1.1), taking the gradient and
applying Strichartz estimates, we find

‖∇u‖S(I) . ‖∇u(t0)‖L2 +
∥
∥u2∇u

∥
∥
L4/3(I×R2)

+
∥
∥u4∇u

∥
∥
L3/2(I;L6/5)

,

where we have considered the specific admissible pairs (4, 4) and (3, 6) for the
cubic and quintic nonlinearities, respectively. Recall that we already know that
u ∈ L∞(R;H1(R2)), so the first term on the right hand side is bounded uniformly
in time. Write

3

4
=

2

4
+

1

4
,

2

3
=

4

12
+

1

3
,

5

6
=

4

6
+

1

6
,

in which case, Hölder’s inequality yields

‖∇u‖S(I) . 1 + ‖u‖2L4(I×R2) ‖∇u‖L4(I×R2) + ‖u‖4L12(I;L6) ‖∇u‖L3(I;L6)

. 1 + ‖u‖2L4(I×R2) ‖∇u‖S(I) + ‖u‖4L12(I;L6) ‖∇u‖S(I) .

Recalling again that u ∈ L∞(R;H1(R2)),

‖u‖4L12(I;L6) ≤ ‖u‖3L∞(I;L6)‖u‖L3(I;L6) . ‖u‖3L∞(I;H1)‖u‖S(I) ≤ C‖u‖S(I).
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Now since ‖u‖S(R) < ∞, we can split Rt into finitely many intervals on which the
nonlinear terms in the above estimate can be absorbed by the left hand side, so we
conclude ‖∇u‖S(R) <∞.

Now if u0 ∈ Σ, we introduce the Galilean operator

J(t) = x+ it∇,
which commutes with the free Schrödinger operator, i.e.

[
J, i∂t +

1
2∆

]
= 0.

Moreover,

(2.2) J(t)u = it ei|x|
2/(2t)∇

(

ue−i|x|2/(2t)
)

,

which implies that J(t)u can be estimated like ∇u above. Thus ‖Ju‖S(R) <∞ and

scattering in Σ follows along the same lines as scattering in H1 (see e.g. [9]). �

Next, in order to prove ‖u‖S(R) < ∞ and thus (2.1), we shall in the following
distinguish between the case of subcritical mass, i.e. ‖u0‖L2 < ‖Q‖L2, and the
critical case, where ‖u0‖L2 = ‖Q‖L2.

2.2. Mass subcritical case. In this subsection, we suppose

(2.3) ‖u0‖2L2 = (1− η)‖Q‖2L2 , for some 0 < η < 1.

Since u0 ∈ Σ, we can rely on the pseudo-conformal conservation law (derived ini-
tially in [22], see also [9]):

(2.4)
d

dt

(
1

2
‖J(t)u‖2L2 − t2

2
‖u‖4L4 +

t2

3
‖u‖6L6

)

= −2t

3
‖u‖6L6.

In view of (2.2), we can rewrite

‖J(t)u‖2L2 = t2
∥
∥
∥∇

(

ue−i|x|2/(2t)
)∥
∥
∥

2

L2

.

The sharp Gagliardo–Nirenberg inequality (1.7) when applied to u(t, x)e−i|x|2/(2t),
then yields, together with (2.3), that

‖J(t)u‖2L2 − t2‖u‖4L4 ≥‖J(t)u‖2L2 − (1− η)‖J(t)u‖2L2

= η‖J(t)u‖2L2 .

Hence, the pseudo-conformal conservation law implies

J(t)u ∈ L∞(Rt;L
2(R2)).

Invoking (2.2) and general Gagliardo–Nirenberg inequalities, for 2 ≤ r <∞,

(2.5) ‖u(t)‖Lr(R2) . ‖u(t)‖1−θ
L2(R2)

(
1

t
‖J(t)u‖L2

)θ

, θ = 1− 2

r
,

we infer u ∈ Lq(R;Lr(R2)) for all admissible pairs, i.e. ‖u‖S(R) <∞.

It was proved very recently in [11], that the assumption u0 ∈ Σ can be relaxed
to u0 ∈ H1(R2), by combining the Kenig–Merle roadmap ([28], see also [45]) with
a profile decomposition in L2. Such a decomposition arises naturally, even though
the nonlinearity is not homogeneous. Indeed, if the solution u is dispersive, with
fixed L2(R2) norm, we expect it to behave like

|u(t, x)| ∼
t→∞

1

λ(t)
U

(
x

λ(t)

)

,

with some fixed profile U and some scaling factor λ(t) → ∞ as t→ ∞. In the case
of scattering (i.e., asymptotically linear behavior), we have λ(t) ≈ t. Equivalence,
however, is difficult to establish. In general, for λ(t) → ∞, we can only infer that
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the quintic nonlinearity for large times t becomes negligible when compared to the
cubic one. The large time stability estimate in [11] relies precisely on the solution
to

(2.6) i∂tv +
1

2
∆v = −|v|2v,

considered as a reference solution. Since this equation is L2-critical, we can follow
[39] and expect a profile decomposition to arise at the L2-level (as opposed to Ḣs-
level for s > 0, see, e.g. [19, 25, 28]). The solution to (2.6) is guaranteed to be
global in time and asymptotically linear if ‖v‖L2 < ‖Q‖L2. We emphasize that this
property, conjectured for a long time, is actually hard to prove (see [18], and [43]
for the historical perspective), and, hence, moving from the assumption u0 ∈ Σ to
u0 ∈ H1(R2) requires lots of technicalities.

In the case ‖u0‖L2 = ‖Q‖L2, the solution to the focusing cubic Schrödinger equa-
tion may develop singularities, so the approach of [11] seems doomed. Supposing
that we know that u is dispersive, a critical aspect in our analysis below is to prove
that λ(t) ≈ t.

2.3. Mass critical case. Let now u0 ∈ Σ with ‖u0‖L2 = ‖Q‖L2. The pseudo-
conformal conservation law yields

(2.7)
1

2
‖J(t)u‖2L2 − t2

2
‖u‖4L4

︸ ︷︷ ︸

≥0 from (1.7) and (2.2)

+
t2

3
‖u‖6L6 =

1

2
‖xu0‖2L2 −

∫ t

0

2s

3
‖u(s, ·)‖6L6ds,

hence

(2.8) ‖u(t, ·)‖6L6 .
1

1 + t2
and

∫ ∞

0

t‖u(t, ·)‖6L6dt <∞.

This does not rule out a behavior of the form

‖u(t, ·)‖6L6 ≈ 1

t2(log t)2
as t→ ∞,

in which case u 6∈ L3
tL

6
x (recall that (3, 6) is an admissible pair). In other words,

a direct use of the pseudo-conformal conservation law seems hopeless in the mass
critical case, since we cannot access a convenient bound on ‖J(t)u‖L2. In fact, we
do not even have a moderate growth of this quantity, like O(tγ) for some γ < 1/2,
as was exploited in [52].

Remark 2.3. Note that if the defocusing nonlinearity was weaker, for instance quar-
tic,

i∂tu+
1

2
∆u = −|u|2u+ |u|3u, x ∈ R

2,

then the same approach as above would yield

‖u(t, ·)‖5L5 .
1

1 + t2
,

and so u ∈ L
10/3
t L5

x, an admissible pair. We could then proceed as in the subcritical
mass case.

We emphasize that in view of (2.5), it suffices to show Ju ∈ L∞(Rt;L
2(R2)),

which is actually a stronger property than ‖u‖S(R) < ∞. Suppose on the contrary
that

(2.9) ‖J(tn)u‖L2(R2) −→
n→∞

∞ for some tn → ∞.

Consider ψ given by

(2.10) ψ(t, x) =
1

t
u

(−1

t
,
x

t

)

ei|x|
2/(2t), t 6= 0.
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As is well-known, this transform exchanges the large time and finite time régimes.
In the case of the L2-critical nonlinear Schrödinger equation, u and ψ solve the
same equation. In the present case, ψ solves the non-autonomous equation

i∂tψ +
1

2
∆ψ = −|ψ|2ψ + t2|ψ|4ψ.

In view of (2.2) and (2.9),

(2.11) ‖∇ψ(τn, ·)‖L2(R2) =

∥
∥
∥
∥
J

(−1

τn

)

u

∥
∥
∥
∥
L2(R2)

−→
n→∞

∞, τn :=
−1

tn
−→
n→∞

0−.

We obviously have ‖ψ(t)‖L2 = ‖u0‖L2 = ‖Q‖L2. We use this property to rely
on fine rigidity results associated to the L2-critical nonlinear Schrödinger equation
(with critical mass), as first proved in [38], and revisited in [24]. More precisely, as
will be proven below, (2.9) implies

ρne
iθnψ(τn, ρnx+ xn) −→

n→∞
Q(x) in H1(R2),

for some ρn, θn ∈ R and xn ∈ R
2. The crucial aspect is that this convergence is

strong in H1(R2). We then show that |ρn| . |τn|. This behavior rules out the first
part of (2.8), and hence (2.9) cannot hold.

Step 1. A-priori estimates. The idea of this proof by contradiction is to rely
on fine properties established for mass-critical, blowing-up solutions in the case of
L2-critical nonlinear Schrödinger equations. We start with the fact that, in view of
(2.7),

0 ≤ ‖J(t)u‖2L2 − t2‖u(t)‖4L4 ≤ ‖xu0‖2L2.

Hence, in terms of ψ, defined via (2.10), we have

(2.12) 0 ≤ ‖∇ψ(t)‖2L2 − ‖ψ(t)‖4L4 ≤ ‖xu0‖2L2 .

Next, we recall standard estimates on the virial quantity: The identity

d

dt

∫

R2

|x|2|u(t, x)|2dx = 2 Im

∫

R2

ū(t, x)x · ∇u(t, x)dx,

together with Cauchy-Schwarz, and the boundedness u ∈ L∞(R;H1(R2)), yields
∫

R2

|x|2|u(t, x)|2dx . 1 + |t|, ∀t ∈ R.

In turn, (2.10) implies

(2.13)

∫

R2

|x|2|ψ(t, x)|2dx . 1, ∀t ∈ [−1, 0[.

Recall that the (conserved) energy associated to the focusing cubic Schrödinger
equation

i∂tv +
1

2
∆v = −|v|2v,

is

Ecub(v) = ‖∇v‖2L2 − ‖v‖4L4.

This will be used to prove a-priori estimates on truncated versions of the virial
quantity. Following [24], we introduce a nonnegative radial χ ∈ C∞

0 (R2), such that

χ(x) = |x|2 if |x| < 1, |∇χ(x)|2 . χ(x),

and for x ∈ R
2 and every p ∈ N

∗, we define

χp,x(x) := p2χ

(
x− x

p

)

, gp,x(t) :=

∫

R2

χp,x(x)|ψ(t, x)|2dx.
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The function gp,x is a truncated virial, centered at point x ∈ R
2. A computation

shows that

(2.14) ġp,x(t) = 2 Im

∫

R2

ψ̄(t, x)∇χp,x(x) · ∇ψ(t, x)dx.

We now invoke an argument introduced by Valeria Banica in [3]: The fact that
‖ψ‖L2 = ‖Q‖L2 and (1.7) imply that for every t ∈ [−1, 0[,

Ecub

(
eisχp,xψ(t)

)
≥ 0, ∀s ∈ R.

The above quantity is a polynomial of degree two in s,

Ecub

(
eisχp,xψ(t)

)
= Ecub (ψ(t))− 2s Im

∫

R2

ψ̄(t, x)∇χp,x(x) · ∇ψ(t, x)dx

+ s2
∫

R2

|∇χp,x(x)|2|ψ(t, x)|2dx,

so its discriminant is non-positive, i.e.
∣
∣
∣
∣
2 Im

∫

R2

ψ̄(t, x)∇χp,x(x) · ∇ψ(t, x)dx
∣
∣
∣
∣

2

≤ 4Ecub (ψ(t))

∫

R2

|∇χp,x(x)|2|ψ(t, x)|2dx

. ‖xu0‖2L2gp,x(t).

Here we have used (2.12) and the definition of χ. Together with (2.14) this yields
∣
∣ġp,x(t)

∣
∣ .

√

gp,x(t),

and, hence, by integration,

(2.15)
∣
∣
∣

√

gp,x(t)−
√

gp,x(τ)
∣
∣
∣ . |t− τ |, −1 ≤ t ≤ τ < 0.

Step 2. Blow-up profile along the sequence τn. Following [24], we set

(2.16) ρn =
‖∇Q‖L2

‖∇ψ(τn, ·)‖L2

, vn(x) := ρnψ (τn, ρnx) .

We have ‖vn‖L2 = ‖Q‖L2, ‖∇vn‖L2 = ‖∇Q‖L2 for all n ∈ N. In view of (2.11),

Ecub (vn) = ρ2nEcub (ψ(τn)) −→
n→∞

0,

since Ecub (ψ(t)) is bounded from (2.12). We have all the ingredients necessary
to invoke Theorem 2.3 from [24], along the sequence τn: there exist xn ∈ R

2 and
θn ∈ R such that

(2.17) ρne
iθnψ (τn, ρnx+ xn) −→

n→∞
Q, strongly in H1(R2).

Step 3. Lower bound on ‖∇ψ(τn, ·)‖L2. The convergence (2.17) implies that,
in the sense of measures,

|ψ(τn, x)|2dx−Q(x)δx=xn ⇀ 0.

This and the bound (2.13) imply that the sequence (xn)n∈N is bounded, hence we
can extract a subsequence (xn′ )n′∈N such that

xn′ → x, x ∈ R
2.

Using χp,x as a test function, the above convergence implies that gp,x(τn′ ) → 0, as
χp(0) = 0, and thus, (2.15) yields

∣
∣
∣

√

gp,x(t)
∣
∣
∣ . |t|, −1 ≤ t < 0.

Now letting p→ ∞, Fatou’s lemma implies
∫

R2

|x− x|2|ψ(t, x)|2dx . t2.
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Using of the classical uncertainty principle, i.e.

‖ψ(t, ·)‖2L2(R2) ≤
(∫

R2

|x− x|2|ψ(t, x)|2dx
)1/2

‖∇ψ(t, ·)‖L2(R2),

allows us to conclude

‖∇ψ(t, ·)‖L2(R2) &
1

t
.

In particular, along the sequence τn, we find

0 < ρn . τn.

Step 4. Conclusion. In view of (2.17), and since H1(R2) →֒ L6(R2),

‖ψ(τn, ·)‖6L6 ∼
n→∞

1

ρ4n
‖Q‖6L6 &

1

τ4n
.

Recalling that ψ and u are linked via (2.10), we find

‖u(tn, ·)‖6L6 =
1

t4n

∥
∥
∥
∥
ψ

(−1

tn
, ·
)∥
∥
∥
∥

6

L6

& 1,

which is incompatible with the first part of (2.8). Therefore, (2.9) cannot hold, i.e.
Ju ∈ L∞(Rt;L

2(R2)), and hence Theorem 1.8 follows from Lemma 2.2.

3. Existence of solitons and first properties

3.1. A priori estimates. Suppose we have a solution u(t, x) = eiωtφ(x), with φ
sufficiently smooth and localized. Then (1.1) becomes

(3.1) − 1

2
∆φ− |φ|2φ+ |φ|4φ+ ωφ = 0.

Proposition 3.1 (A priori estimates for solitary waves). Let 1 ≤ d ≤ 3. If φ ∈
H1(Rd) solves (3.1), then we have:

(1) Pohozaev identities:

(3.2)
1

2

∫

Rd

|∇φ|2 dx−
∫

Rd

|φ|4 dx+

∫

Rd

|φ|6 dx+ ω

∫

Rd

|φ|2 dx = 0,

(3.3)
d− 2

2

∫

Rd

|∇φ|2 dx− d

2

∫

Rd

|φ|4 dx+
d

3

∫

Rd

|φ|6 dx+ ωd

∫

Rd

|φ|2 dx = 0.

(2) If φ 6≡ 0, then 0 < ω < 3
16 .

(3) If d = 2 and φ 6= 0, then ‖φ‖L2 > ‖Q‖L2, where Q is cubic ground state

solution to (1.6).
(4) If in addition φ ∈ L∞ ∩C2 is real-valued, then

(3.4) ‖φ‖L∞(Rd) ≤

√

1 +
√
1− 4ω

2
.

Proof. For item (1), we quickly recall the method to derive Pohozaev identities
formally, and refer to [6] for a rigorous justification via density type arguments.
Firstly, multiplying (3.1) by φ̄ and integrating yields (3.2). In particular, we infer
ω ∈ R. Secondly, by multiplying (3.1) with x · ∇φ̄ and integrating by parts we
obtain (3.3). For d = 2, subtracting (3.3) from (3.2) yields

1

2

∫

R2

|∇φ(x)|2 dx +
1

3

∫

R2

|φ(x)|6 dx = ω

∫

R2

|φ(x)|2 dx,

hence ω > 0 unless φ ≡ 0. In the case d = 3, we obtain similarly

1

2

∫

R3

|φ(x)|4 dx = 2ω

∫

R3

|φ(x)|2 dx,
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and thus we arrive at the same conclusion.

(2) From now on, we shall denote

F (s) =
1

4
s4 − 1

6
s6

and set

ω∗ = sup
{

ω > 0;
ω

2
s2 − F (s) < 0 for some s > 0

}

.

A computation then shows ω∗ = 3
16 . In particular, if ω ≥ 3

16 , we have the pointwise
relation

−1

2
|φ(x)|4 + 1

3
|φ(x)|6 + ω|φ(x)|2 ≥ 0, ∀x ∈ R

d,

which, in view (3.3), implies φ ≡ 0 for d ≥ 2. In the case d = 1, the conclusion
follows from ODE arguments, and more precisely [6, Theorem 5].

(3) We suppose d = 2 and introduce

γ =
‖φ‖4L4

‖∇φ‖2L2

,

which allows us to rewrite (3.2) as

(
1

2
− γ

)∫

R2

|∇φ|2 +
∫

R2

φ6 + ω

∫

R2

φ2 = 0,

Similarly, we can rewrite (3.3) for d = 2, by using γ, in the following form

γ

2

∫

R2

|∇φ|2 − 1

3

∫

R2

|φ|6 − ω

∫

R2

|φ|2 = 0.

Combining these identities, we infer

∫

R2

|φ|6 =
3(γ − 1)

4

∫

R2

|∇φ|2,

and in particular γ > 1, i.e. ‖φ‖4L4 > ‖∇φ‖2L2 . In view of the sharp Gagliardo-
Nirenberg inequality (1.7), this consequently implies that the mass of the cubic-
quintic ground states satisfies ‖φ‖L2 > ‖Q‖L2.

(4) Let φ ∈ C2 be a real-valued bounded solution to (3.1). Suppose that φ
reaches its maximum at x0 ∈ R

d. Then ∆φ(x0) ≤ 0, and hence

(−φ3 + φ5 + ωφ)|x=x0
≤ 0.

Writing

ωφ− φ3 + φ5 = φ

(

φ2 − 1−
√
1− 4ω

2

)(

φ2 − 1 +
√
1− 4ω

2

)

,

we see that

φ(x0) ≤

√

1 +
√
1− 4ω

2
.

Reasoning similarly for a minimum of φ, we infer (3.4). �
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3.2. Existence and uniqueness. Denote f(s) = s3 − s5 and

F (s) =

∫ s

0

f(τ) dτ =
1

4
s4 − 1

6
s6,

as before. We have already seen that

sup
{

ω > 0;
ω

2
s2 − F (s) < 0 for some s > 0

}

=
3

16
.

Then according to [6] (treating the case d = 1 or d = 3) and [5] (treating the case
d = 2), for all ω ∈]0, ω∗[, there exists a solution φω of (3.1). Uniqueness of φω in
d = 1 is proven in [6], while in d = 3 uniqueness follows from [47], as pointed out
in [30]. Finally, for d = 2, we infer uniqueness from the results of [27], where we
emphasize that the assumptions made there correspond more closely to those made
to prove existence.

We recall that the action, defined in the introduction, is given by

S(φ) =
1

2
‖∇φ‖2L2 + ω‖φ‖2L2 − 2V (φ), where V (φ) =

∫

Rd

F (φ(x)) dx,

and satisfies

(3.5) S(φ) = E(φ) + ω‖φ‖2L2 = E(φ) + ωM(φ).

As established in [13, Lemma 2.3] (which requires the nonlinearity to be energy-
subcritical, i.e. d ≤ 2 in our case), every minimizer of the action is of the form

ϕ(x) = eiθφ(x),

for some constant θ ∈ R, and where φ is a positive least action solution of (3.1).
Then [7, Proposition 4] implies that

φ(x) = φω(x− x0),

for some x0 ∈ R
d, and we recall that φω is the unique radial, positive minimizer of

the action. The same is true for d = 3 (where the defocusing nonlinearity is energy-
critical), as explained in [41]. We summarize all of these results in the proposition
below.

Proposition 3.2 (Existence and uniqueness of ground states). Let 1 ≤ d ≤ 3.
Suppose that

0 < ω <
3

16
.

Then (3.1) has a unique radial, real-valued solution φω such that

(1) φω > 0 on R
d.

(2) φω is radially symmetric, φω(x) = φ(r), where r = |x|, and φ is a non-

increasing function of r.
(3) φω ∈ C2(Rd).
(4) The derivatives of order at most two of φω decay exponentially:

∃δ > 0, |∂αφω(x)| . e−δ|x|, |α| ≤ 2.

(5) For every solution ϕ to (3.1),

0 < S(φω) ≤ S(ϕ).

(6) Every minimizer ϕ of the action S(φ) is of the form

ϕ(x) = eiθφω(x− x0),

for some constants θ ∈ R, x0 ∈ R
d.
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4. Further properties of the ground states

4.1. Asymptotic régimes for limiting values of ω. The results below, regard-
ing the asymptotic régimes ω → 0 and ω → 3

16 , are included in [30] or [34].

Proposition 4.1 (Asymptotics of the ground state mass). Let d = 2 or 3 and Q
denote the cubic nonlinear ground state. The map ω 7→ φω given by Proposition 3.2

is real analytic and admits the following asymptotic behavior:

(1) In the limit ω → 0, we have:

(a) If d = 2,

M(φω) =M(Q) +
2ω

3
‖Q‖6L6 +O

(
ω2

)
,

(b) If d = 3,

M(φω) =
1√
ω
M(Q) +

√
ω

2
‖Q‖6L6 +O

(

ω3/2
)

.

(2) In the limit ω → 3
16 , it holds

M(φω) +
∂M(φω)

∂ω
−→

ω→
3
16

∞.

To turn the singular limit ω → 0 into a regular limit, one proceeds as in [41, 30]
and changes the unknown function φω into

ψω(x) =
1√
ω
φω

(
x√
ω

)

.

Then (3.1) is equivalent to

−1

2
∆ψω + ψω − ψ3

ω + ωψ5
ω = 0.

We thereby note that the rescaling φω 7→ φω is L2-unitary exactly for d = 2. As
before, we denote by Q the unique non-negative, radially symmetric ground state
solution to

−1

2
∆Q+Q−Q3 = 0, x ∈ R

d,

and consider the linearized operator

L : f 7→ −1

2
f − 3Q2f + f.

Then L : H1
rad → H−1

rad is an isomorphism, where H1
rad denotes the Sobolev space of

radial H1 functions. Invoking the implicit function theorem, as well as uniqueness
for (3.1), we have, in H1(Rd) and as ω → 0,

(4.1) ψω(x) = Q(x)− ω
(
L−1Q5

)
(x) +O(ω2),

In particular, in the case d = 2, we infer

‖φω‖L2(R2) = ‖ψω‖L2(R2) −→
ω→0

‖Q‖L2(R2),

thus showing that ground states for the cubic-quintic NLS in 2D have mass strictly
larger but arbitrarily close to that of the cubic ground state Q. Noting more
precisely the relation ([54, Proposition B.1])

L (Q+ x · ∇Q) = −2Q,
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and recalling (4.1), we infer,

M(ψω) =
〈
Q− ω

(
L−1Q5

)
, Q− ω

(
L−1Q5

)〉
+O(ω2)

=M(Q)− 2ω
〈
Q,L−1Q5

〉
+O(ω2)

=M(Q) + ω
〈
L (Q+ x · ∇Q) , L−1Q5

〉
+O(ω2)

=M(Q) + ω
〈
Q+ x · ∇Q,Q5

〉
+O(ω2)

=M(Q) + ω

(

1− d

6

)

‖Q‖6L6(Rd) +O(ω2).

Translating this in terms of φω yields the first part of the proposition.

The second part of the proposition is proven in [34]. We also note that for d = 3,
in [30, Theorem 2.2, (v)] the authors prove that

(
3
16 − ω

)−3
.M(φω) .

(
3
16 − ω

)−3
,

which, however, does not rule out possible oscillations of M(φω).
The information provided by Proposition 4.1 is interesting in view of Grillakis-

Shatah-Strauss theory: for d = 2, ω 7→ M(φω) is increasing near ω = 0 and
near ω = 3

16 , while for d = 3, this map is decreasing near ω = 0 and increasing

near ω = 3
16 . As mentioned in the introduction, we actually expect this map to be

increasing on the full interval ]0, 3
16 [ when d = 2, decreasing on ]0, ω0[ and increasing

on ]ω0,
3
16 [ when d = 3.

4.2. Spectral properties. To take advantage of the above properties, we have to
check the spectral Assumption 3 imposed in [23]. To state the spectral assumption,
we write the second order derivative of the action as

〈S′′(φω)w,w〉 =
1

2
〈L1u, u〉+

1

2
〈L2v, v〉 ,

where w = u+ iv. In our case, we have

L1 = −1

2
∆+ ω − 3φ2ω + 5φ4ω,

L2 = −1

2
∆+ ω − φ2ω + φ4ω.

We then need to check:

Assumption 4.2. For each ω ∈]0, 3
16 [, the Hessian S

′′(φω) has exactly one negative
eigenvalue; its kernel is spanned by iφω and ∇φω , and the rest of its spectrum is
positive and bounded away from zero.

If this holds true, then:

(a) If ∂
∂ωM(φω) > 0, then the standing wave eiωtφω(x) is orbitally stable.

(b) If ∂
∂ωM(φω) < 0, then the standing wave eiωtφω(x) is unstable.

Indeed, the authors of [30] proved that Assumption 4.2 holds true for the cubic-
quintic NLS in 3D. These properties are established in [34, 35] in a more general
setting, covering (1.1) for d = 2.

Proposition 4.3 (Proposition 2.4 from [30]). Fix ℓ = 0, 1, 2, . . . , and consider the

restriction of L1 to functions of the form f(|x|)Y (x/|x|), where Y is a spherical

harmonic of degree ℓ.

(1) When ℓ = 0, the operator has exactly one negative eigenvalue; it is simple.

(2) When ℓ = 1, there are no negative eigenvalues. Zero is an eigenvalue and

its eigenspace is spanned by the three components of ∇φω.
(3) When ℓ ≥ 2, the operator is positive definite.
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The proof of this result relies on Sturm Oscillation Theorem, since the analysis
boils down to second order ODEs for the radial function f . Note that the proof
from [30] can be readily adapted to the 2D case, by replacing spherical harmonics
with functions of the form eiℓθ in radial coordinates. The above proposition is
complemented by the following one:

Proposition 4.4 (Proposition 2.5 from [30], Lemma 3 from [35]). Let δ = δ(r) be

the solution to

−1

2
δ′′ − 1

r
δ′ +

(
5φ4ω − 3φ2ω + ω

)
δ = 0

obeying δ(0) = 1. Then δ(r) → −∞ as r → ∞. Correspondingly, zero is not an

eigenvalue of L1 restricted to radial functions.

Thus, all conditions necessary to invoke the Grillakis-Shatah-Strauss theory are
satisfied and one can infer (in-)stability of ground states from the properties of the
map ω 7→M(φω). At this stage, all items of Theorem 1.9 and Proposition 1.10 are
proved, except the ones concerning E(ρ)-stability of solitary waves.

5. Orbital stability of the set of energy minimizers

5.1. Two-dimensional case. We now prove the fourth point of Theorem 1.9.

First step. We show that for all ρ > M(Q),

inf {E(u) ; u ∈ Γ(ρ)} = −ν,
for some finite ν > 0. To prove that the infimum is finite, we use Hölder’s inequality
(1.2), to infer

E(u) ≥ 1

2
‖∇u(t)‖2L2(Rd) −

√
ρ

2
‖u(t)‖3L6(Rd) +

1

3
‖u(t)‖6L6(Rd),

and thus E(u) is bounded from below. To see that the infimum is negative, consider
the L2-invariant scaling, for λ > 0,

uλ(x) = λd/2u(λx),

which, for d = 2, implies

E(uλ) =
λ2

2

(

‖∇u‖2L2 − ‖u‖4L4 +
2

3
λ2‖u‖6L6

)

.

In view of the sharp Gagliardo-Nirenberg inequality, and since ‖u‖2L2 > ‖Q‖2L2,
we may choose a profile u ∈ H1 so that the terms independent of λ inside the
parentheses become negative, e.g., take

u =

√
ρ

M(Q)
Q, with λ > 0 sufficiently small.

Second step. Any minimizing sequence is bounded away from zero in L4. Let
(un)n≥0 be a minimizing sequence: for n sufficiently large, E(un) ≤ −ν/2, hence

‖un‖4L4 ≥ ν > 0.

Third step. In view of [36] (see also [9, Proposition 1.7.6]), we have the standard
trichotomy of concentration compactness. From the second step, vanishing is ruled
out, so we have to rule out dichotomy to infer compactness. Arguing by contradic-
tion, suppose that, after extraction of suitable subsequences, there exist (vk)k≥0,
(wk)k≥0 in H1(R2), such that

supp vk ∩ suppwk = ∅, |vk|+ |wk| ≤ |unk
|, ‖vk‖H1 + ‖wk‖H1 ≤ C‖unk

‖H1 ,
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satisfying

‖vk‖2L2 −→
k→∞

θρ, ‖wk‖2L2 −→
k→∞

(1− θ)ρ, for some θ ∈]0, 1[,

and

lim inf
k→∞

(∫

|∇unk
|2 −

∫

|∇vk|2 −
∫

|∇wk|2
)

≥ 0,

∣
∣
∣
∣

∫

|unk
|p −

∫

|vk|p −
∫

|wk|p
∣
∣
∣
∣
−→
k→∞

0,

for all 2 ≤ p <∞. We infer

lim inf
k→∞

(E (unk
)− E(vk)− E(wk)) ≥ 0,

hence

(5.1) lim sup
k→∞

(E(vk) + E(wk)) ≤ −ν.

Following an idea from [14], we then use a scaling argument rather than a multi-
plicative one as in [10]. Let

ṽk(x) = vk

(

λ
−1/2
k x

)

, λk =
ρ

‖vk‖2L2

w̃k(x) = wk

(

µ
−1/2
k x

)

, µk =
ρ

‖wk‖2L2

.

Since ṽk and w̃k have mass ρ,

E(ṽk), E(w̃k) ≥ −ν.
On the other hand, we compute

E(ṽk) = λk

(
1

2λk

∫

|∇vk|2 −
1

2

∫

|vk|4 +
1

3

∫

|vk|6
)

,

and so

E(vk) =
1

λk
E(ṽk) +

1− λ−1
k

2

∫

|∇vk|2 ≥ −ν
λk

+
1− λ−1

k

2

∫

|∇vk|2.

Doing the same for E(wk), we find

E(vk) + E(wk) ≥ −ν
(

1

λk
+

1

µk

)

+
1− λ−1

k

2

∫

|∇vk|2 +
1− µ−1

k

2

∫

|∇wk|2

≥ −ν
(

1

λk
+

1

µk

)

+
1− λ−1

k

2‖vk‖2L2

‖vk‖4L4 +
1− µ−1

k

2‖wk‖2L2

‖wk‖4L4,

where in the second step, we have used the Gagliardo-Nirenberg inequality. Passing
to the limit, yields

lim inf
k→∞

(E(vk) + E(wk)) ≥ −ν + 1

2
min

(
1− θ

θρ
,

θ

(1− θ)ρ

)

lim inf
k→∞

‖unk
‖4L4 ,

and hence a contradiction to (5.1), in view of the second step and θ ∈]0, 1[.
Conclusion. At this stage, we have all the arguments to conclude in the classical
way. Assume, by contradiction, that there exist a sequence (u0,n)n∈N ⊂ H1(R2),
such that

(5.2) ‖u0,n − φ‖H1 −→
n→∞

0,

and a sequence (tn)n∈N ⊂ R, such that the sequence of solutions un to (1.1) asso-
ciated to the initial data u0,n satisfies

(5.3) inf
ϕ∈E(ρ)

‖un(tn, ·)− ϕ‖H1(R2) > ε,
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for some ε > 0. Introducing vn = un(tn, ·), the above inequality also reads

inf
ϕ∈E(ρ)

‖vn − ϕ‖H1(R2) > ε.

In view of (5.2),
∫

R2

|u0,n|2 −→
n→∞

∫

R2

|φ|2, E (u0,n) −→
n→∞

E(φ) = inf
v∈Γ(ρ)

E(v).

The conservation laws for mass and energy imply
∫

R2

|vn|2 −→
n→∞

∫

R2

|φ|2, E (vn) −→
n→∞

E(φ),

so (vn)n is a minimizing sequence for the problem (1.4). From the previous steps,
there exist a subsequence, still denoted by un, and a sequence yn ∈ R

2 such that
vn(· − yn) has a strong limit u in H1(R2). In particular, u satisfies (1.4), hence a
contradiction.

5.2. Three-dimensional case. It remains to address item (5) of Proposition 1.10

To this end, Theorem 4.1, (iv) from [30] ensures that for ρ sufficiently large

inf {E(u); u ∈ Γ(ρ)} = [Emin(m),∞[,

with Emin(m) < 0. It is then possible to resume the arguments presented in Sec-
tion 5.1 above, and obtain E(ρ)-stability of three-dimensional solitary waves via the
Cazenave-Lions argument.
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