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ORBITAL STABILITY VS. SCATTERING IN THE

CUBIC-QUINTIC SCHRÖDINGER EQUATION

RÉMI CARLES AND CHRISTOF SPARBER

Abstract. We consider the cubic-quintic nonlinear Schrödinger equation in
space dimension up to three. The cubic nonlinearity is thereby focusing while
the quintic one is defocusing, ensuring global well-posedness of the Cauchy
problem in the energy space. The main goal of this paper is paint a more or
less complete picture of dispersion and orbital (in-)stability of solitary waves,
emanating from nonlinear ground states. In space dimension one, it is already
known that solitons are orbitally stable. Here, we establish the analogous
result in dimension two. In addition, we show that if the initial data have at
most the mass of the ground state for the cubic two-dimensional Schrödinger
equation, then the solution is dispersive and asymptotically linear. Finally, in
dimension three, relying on some previous results from other authors, we show
that solitons may or may not be orbitally stable.

1. Introduction and main results

1.1. Basic setting. We consider the nonlinear Schrödinger equation (NLS) with
competing cubic-quintic nonlinearities,

(1.1) i∂tu+
1

2
∆u = −|u|2u+ |u|4u, x ∈ R

d,

in space dimension d ≤ 3. The quintic nonlinearity was introduced in several
physical situations: typically in optics (see e.g. [27]), or in Bose-Einstein conden-
sation (e.g. [1, 16, 32]). We refer to the review [30] for more precise references.
In particular, the incorporation of the defocusing quintic term is motivated by the
stabilization of two- and three-dimensional vortex solitons.

Recall some of basic features of this nonlinearity in terms of criticality for the
Cauchy problem. Depending on the space dimension, the NLS is seen to be:

• d = 1: focusing L2-subcritical plus defocusing L2-critical (and H1-subcritical).
• d = 2: focusing L2-critical plus defocusing L2-supercritical (andH1-subcritical).
• d = 3: focusing L2-supercritical plus defocusing H1-critical.

It is already known from the case of more general, gauge-invariant nonlinearities
(see e.g. [6]), that equation (1.1) formally enjoys three basic conservation laws,
namely:

• Mass: M(u) = ‖u(t, ·)‖2L2(Rd),

• Angular momentum: J(u) = Im

∫

Rd

ū(t, x)∇u(t, x)dx,

• Energy: E(u) =
1

2
‖∇u(t, ·)‖2L2(Rd) −

1

2
‖u(t, ·)‖4L4(Rd) +

1

3
‖u(t, ·)‖6L6(Rd).

In dimensions 2 and 3, an effect of the quintic term is to prevent finite time blow-
up which may occur in the purely cubic case (cf. [6]). Indeed, the conservation of
the energy, combined with Hölder’s inequality,

(1.2) ‖u‖4L4(Rd) ≤ ‖u‖L2(Rd)‖u‖3L6(Rd),
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2 R. CARLES AND C. SPARBER

shows that the cubic focusing part cannot be an obstruction to global well-posedness,
at least in H1. For d ≤ 2, global well-posedness then follows from classical results
(see e.g. [6]). For d = 3, we refer to [45], as the quintic term is energy-critical.

Proposition 1.1 (Global well-posedness). Let d ≤ 3. For any u0 ∈ H1(Rd), (1.1)
has a unique global solution u ∈ C(R;H1(Rd)) such that u|t=0 = u0. The solution
obeys the conservation of mass, energy, and momentum.

Numerically, one observes a kind of oscillatory behavior within the solution u,
which is due to the competition of focusing and defocusing effects within (1.1), cf.
[38] for more details.

Remark 1.2. Recall that in dimension d = 2 or 3, the quintic term is L2-supercritical,
so we cannot hope to solve the Cauchy problem at this regularity level. Moreover,
since the cubic-quintic nonlinearity stems from physics, it is sensible to work in H1,
where the energy is well-defined.

Complementing the case of prescribed initial data, we may also want to prescribe
asymptotic states (or scattering states) and an asymptotically linear behavior, pro-
vided that d ≥ 2. We thereby recall that in the case d = 1, the cubic nonlinearity
causes long-range effects, and no non-trivial solution to (1.1) can be asymptotically
linear, cf. [2]. However, in dimensions d = 2, 3 one can rely on classical techniques
(see e.g. [6]) or the results of [45], respectively, to obtain:

Proposition 1.3 (Scattering). Let d = 2 or 3. For any u− ∈ H1(Rd), (1.1) has a
unique global solution u ∈ C(R;H1(Rd)) such that

∥
∥
∥u(t, ·)− ei

t
2
∆u−

∥
∥
∥
H1(R2)

−→
t→−∞

0.

In particular,

M(u) = ‖u−‖2L2 , E(u) =
1

2
‖∇u−‖2L2 , ∀t ∈ R.

As in the case with purely cubic nonlinearity, not every finite-energy solution of
(1.1) is necessarily asymptotically linear. Finite time blow-up is of course ruled out
in our case, but time-periodic solitary wave solutions also exist.

Definition 1.4. A standing wave or soliton of (1.1) is a solution of the form
eiωtφ(x), with ω ∈ R and φ satisfying

(1.3) − 1

2
∆φ+ ωφ− |φ|2φ+ |φ|4φ = 0, φ ∈ H1(Rd) \ {0}.

The associated action is given by

S(φ) =
1

2
‖∇φ‖2L2 + ω‖φ‖2L2 − 1

2
‖φ‖4L4 +

1

3
‖φ‖6L6.

A solution φ is a ground state if S(φ) ≤ S(ϕ) for any solution ϕ of (1.3)

As we will see in Section 3, if d ≤ 3, (1.3) admits a solution if and only if

0 < ω < 3
16 .

It turns out that for d = 1, explicit solitary wave solutions are available for this
range of ω, see below. In the present paper, we are mostly interested in the stability
of solitary waves, a question which is closely related to dispersive effects in (1.1).

Definition 1.5. Let φ be a solution of (1.3). The standing wave eiωtφ(x) is called
orbitally stable in H1(Rd), if for all ε > 0, there exists δ > 0 such that if u0 ∈
H1(Rd) satisfies

‖u0 − φ‖H1 ≤ δ,
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then the solution to (1.1) with u|t=0 = u0 satisfies

sup
t∈R

inf
θ∈R

y∈Rd

∥
∥u(t, ·)− eiθφ(· − y)

∥
∥
H1(Rd)

≤ ε.

Otherwise, the standing wave is said to be unstable.

In this paper, we will try to give a more or less complete description of the long
time behavior of solutions to (1.1) in terms of scattering versus orbital (in-)stability
of solitary waves, depending on the spatial dimension d ≤ 3.

1.2. One-dimensional case. In the case d = 1, the overall picture is very neat.
Firstly, for 0 < ω < 3

16 , solutions to (1.3) are given by ([11, 34])

(1.4) φ(x) = 2

√
√
√
√

ω

1 +
√

1− 16ω
3 cosh

(
2x

√
2ω

) .

Note that in view of [4], this real-valued solution is unique, up to translation and
change of sign. The orbital stability of these nonlinear ground states was established
in [33, Theorem 3, case (1)].

Proposition 1.6 (Orbital stability in 1D). Let d = 1, and 0 < ω < 3
16 . The

solitary wave eiωtφ(x), where φ is given by (1.4), is orbitally stable.

The proof of this result combines the the well-known Grillakis-Shatah-Strauss
criterion [18] with the analysis of [20] and an explicit formula for second order
ODEs without first order derivatives, a strategy which seems to be restricted to the
1D case and not suited for solutions to (1.3) in d ≥ 2.

1.3. Two-dimensional case. We now turn to the case d = 2 and recall that
the results of [39] show that for ‖u0‖L2 sufficiently small, the solution to (1.1) is
asymptotically linear. It turns out that since the cubic term is L2-critical in 2D,
we can in fact be more precise.

To this end, let Q be the cubic nonlinear ground state, i.e., the unique positive
radial solution to

(1.5) − 1

2
∆Q+Q−Q3 = 0, x ∈ R

2.

In view of [42], and noting that we have an extra factor 1
2 in front of the Laplacian

in (1.5) compared to [42], the sharp Gagliardo-Nirenberg inequality reads

(1.6) ‖u‖4L4(R2) ≤
( ‖u‖L2(R2)

‖Q‖L2(R2)

)2

‖∇u‖2L2(R2), ∀u ∈ H1(R2).

In the focusing cubic case, i.e., without the quintic term, we know from [13] that if
‖u0‖L2 < ‖Q‖L2, global existence and scattering hold (see also [26] for the case of
radial data u0). In our first main result below, we shall show that the effect of the
additional quintic term is not only to guarantee global well-posedness, but also to
extend this dispersive result to the L2-sphere {‖u0‖L2 = ‖Q‖L2}.
Theorem 1.7 (Mass (sub-)critical scattering in 2D). Let d = 2. If u0 ∈ H1(R2)
is such that

‖u0‖L2 ≤ ‖Q‖L2,

then the solution u ∈ C(R;H1(R2)) to (1.1) such that u|t=0 = u0 is asymptotically

linear, i.e. there exist u± ∈ H1(R2) such that

‖u(t, ·)− ei
t
2
∆u±‖H1(R2) −→

t→±∞
0.
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On a heuristic level, we may argue in the same fashion as in [19], and recall that
the standard virial computation for (1.1) yields,

d2

dt2

∫

R2

|x|2|u(t, x)|2dx = 2E(u) +
4

3
‖u(t)‖6L6(R2) ≥ 2E(u0),

where E(u) = E(u0) is the conserved energy. In view of the sharp Gagliardo-
Nirenberg inequality, we have, under the assumptions of Theorem 1.7, and if in
addition | · |u0 ∈ L2,

d2

dt2

∫

R2

|x|2|u(t, x)|2dx ≥ 2

3
‖u0‖6L6(R2).

The time-derivative of the virial of u is therefore increasing, a first hint that the
solution is dispersive. In order to make this statement rigorous, especially in the
limiting case ‖u0‖L2 = ‖Q‖L2, we will deploy a profile decomposition technique
(see Lemma 2.4 below).

Our second main result concerns the stability of solitary waves:

Theorem 1.8 (Nonlinear ground states in 2D). Let d = 2. Then, for all ω ∈]0, 3
16 [,

there exists a solitary wave solution u(t, x) = eiωtφ(x) to (1.1). In addition, we
have:

(1) For any M > ‖Q‖2L2, there exists a ground state such that ‖φ‖2L2 =M .
(2) The ground state solution is unique, up to translation and multiplication by

eiθ, for constant θ ∈ R.
(3) If φ is a (real-valued) ground state solution to

(1.7) − 1

2
∆φ− φ3 + φ5 + ωφ = 0,

then the associated solitary wave is orbitally stable.

We emphasize the fact that for any mass strictly larger than that of the cubic
ground state Q, we can find a soliton of the cubic-quintic NLS, while for a mass
less or equal to that of Q, all solutions to (1.1) are asymptotically linear. This is
in sharp contrast with the analogous situation in the case of a single pure power
nonlinearity, where the critical sphere (in L2 or other homogeneous Sobolev spaces)
always contains non-dispersive elements, see e.g. [14, 22, 24, 40].

1.4. Three-dimensional case. In d = 3, equation (1.1) has already been studied
in [25]. However, no statement concerning the (in-)stability of solitary waves is
given in there. Here, we shall state the following proposition, the proof of which
relies on elements already present in [25]:

Proposition 1.9 (Soliton (in-)stability in 3D). Let d = 3. For all ω ∈]0, 3
16 [, there

exists a ground state solution which is unique, up to translation and multiplication
by eiθ, for constant θ ∈ R. Moreover:

• There exists 0 < ω0 < 3
16 such that for all 0 < ω < ω0, the associated

soliton is orbitally stable.
• There exists ω0 ≤ ω1 <

3
16 such that for all ω1 < ω < 3

16 , the associated
soliton is unstable.

One expects the equality ω0 = ω1 to hold. More precisely, Conjecture 2.3 from
[25], which is supported by numerics, states:

Conjecture ([25]). There exists 0 < ω∗ <
3
16 so that ω 7→ M(φ) is strictly de-

creasing for ω < ω∗, and strictly increasing for ω > ω∗.

If this indeed holds true, one can take ω0 = ω1 = ω∗ in Proposition 1.9, in view
of Grillakis-Shatah-Strauss theory [18] (see also [12]).
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Somewhat independently from this question, one may wonder about the precise
nature of instability. Recall, that in the case of a single power nonlinearity, instabil-
ity is always due to the possibility of finite-time blow-up (see e.g. [6] and references
therein). Very recently, Fukuya and Hayashi [15] have established instability results
for NLS with a double power nonlinearity, but in their work the focusing term dom-
inates the defocusing one (thereby extending the results of [8]). They rely on the
possibility of blow-up or invoke the Grillakis-Shatah-Strauss theory, in which case
the nature of the instability still remains unclear. For nonlinearly coupled systems
of NLS, Correia, Oliveira and Silva [10] have shown that instability may correspond
to a transfer of mass from one equation to the other. None of these former results,
however, apply to our situation. For the latter, one may expect that the stable
manifolds analyzed in [28, 35] become open neighborhoods, in the sense that in a
full neighborhood of the unstable ground state (not only in a manifold with limited
co-dimension), the solution u bifurcates from the solitary wave eiωtφ(x), yielding a
behavior of the form

u(t, x) =W (t, x) + ei
t
2
∆u+(x) + oL2(1) as t→ ∞,

for some u+ ∈ L2(R3), and where W is a (possibly different) ground state, modu-
lated by a moving set of parameters (see [28, 35] for details).

The rest of this paper is now organized as follows: In Section 2, we prove Theo-
rem 1.7. In Section 3, we analyze some general results on solitary waves for (1.1),
with emphasis on some special properties in the 2D case. Theorem 1.8 is proven in
Section 4, and we present the main arguments for Proposition 1.9 in an appendix.

2. Dispersive behavior in 2D

2.1. Space-time norms. In this section, our main goal is to prove Theorem 1.7.
Recall that for two-dimensional Schrödinger equation, a Strichartz-pair (q, r) is
admissible if

2

q
+

2

r
= 1, 2 < q ≤ ∞.

We denote by

‖u‖S(I) = sup
(q,r) admissible

‖u‖Lq(I;Lr(R2)).

In view of [39, Theorem 1.3], it suffices to prove that for any u0 ∈ H1(R2) with
‖u0‖L2 ≤ ‖Q‖L2, the global solution u provided by Proposition 1.1 satisfies

(2.1) ‖u‖S(R) + ‖∇u‖S(R) <∞.

Remark 2.1. Note that Theorem 1.8 contains the particular information that one
can find u0 ∈ H1(R2) with ‖u0‖L2 − ‖Q‖L2 > 0 arbitrarily small, such that
‖u‖S(R) = ∞.

As a first, basic step, we show that (2.1) can be reduced to the following:

Lemma 2.2 (Reduction step). Let d = 2 and u0 ∈ H1(R2). If the global solution
provided by Proposition 1.1 satisfies ‖u‖S(R) <∞, then we also have

‖∇u‖S(R) <∞,

and so u is asymptotically linear,

∃u± ∈ H1(R2),
∥
∥
∥u(t)− ei

t
2
∆u±

∥
∥
∥
H1(R2)

−→
t→±∞

0.

Proof. From [39], we only have to check that ‖u‖S(R) <∞ implies ‖∇u‖S(R) <∞.
Let I = [t0, t1] be some time interval, with t1 ≥ t0 ≥ 0 to simplify notations.
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Considering the Duhamel’s formula associated to (1.1), taking the gradient and
applying Strichartz estimates, we find

‖∇u‖S(I) . ‖∇u(t0)‖L2 +
∥
∥u2∇u

∥
∥
L4/3(I×R2)

+
∥
∥u4∇u

∥
∥
L3/2(I;L6/5)

,

where we have considered the specific admissible pairs (4, 4) and (3, 6) for the
cubic and quintic nonlinearities, respectively. Recall that we already know that
u ∈ L∞(R;H1(R2)), so the first term on the right hand side is bounded uniformly
in time. Write

3

4
=

2

4
+

1

4
,

2

3
=

4

12
+

1

3
,

5

6
=

4

6
+

1

6
,

in which case, Hölder’s inequality yields

‖∇u‖S(I) . 1 + ‖u‖2L4(I×R2) ‖∇u‖L4(I×R2) + ‖u‖4L12(I;L6) ‖∇u‖L3(I;L6)

. 1 + ‖u‖2L4(I×R2) ‖∇u‖S(I) + ‖u‖4L12(I;L6) ‖∇u‖S(I) .

Recalling again that u ∈ L∞(R;H1(R2)),

‖u‖4L12(I;L6) ≤ ‖u‖3L∞(I;L6)‖u‖L3(I;L6) . ‖u‖3L∞(I;H1)‖u‖S(I) ≤ C‖u‖S(I).

Now since ‖u‖S(R) < ∞, we can split Rt into finitely many intervals on which the
nonlinear terms in the above estimate can be absorbed by the left hand side, so we
conclude ‖∇u‖S(R) <∞. �

Next, in order to prove ‖u‖S(R) < ∞ and thus (2.1), we shall in the following
distinguish between the case of subcritical mass, i.e. ‖u0‖L2 < ‖Q‖L2, and the
critical case, where ‖u0‖L2 = ‖Q‖L2.

2.2. Mass subcritical case. In this subsection, we suppose

(2.2) ‖u0‖2L2 = (1− η)‖Q‖2L2 , for some 0 < η < 1.

Step 1. Consider first the case where not only u0 ∈ H1(R2), but we also have
finite variance, i.e. | · |u0 ∈ L2(R2). Then, we can rely on the pseudo-conformal
conservation law (derived initially in [17], see also [6]):

(2.3)
d

dt

(
1

2
‖(x+ it∇)u‖2L2 − t2

2
‖u‖4L4 +

t2

3
‖u‖6L6

)

= −2t

3
‖u‖6L6.

In view of the standard factorization

(2.4) (x+ it∇)u = it ei|x|
2/(2t)∇

(

ue−i|x|2/(2t)
)

,

we can rewrite

‖(x+ it∇)u‖2L2 = t2‖∇
(

ue−i|x|2/(2t)
)

‖2L2 ≡ t2‖v‖2L2.

The sharp Gagliardo–Nirenberg inequality (1.6) applied to v, together with (2.2),
then yields

‖(x+ it∇)u‖2L2 − t2‖u‖4L4 ≥‖(x+ it∇)u‖2L2 − (1− η)‖(x+ it∇)u‖2L2

= η‖(x+ it∇)u‖2L2.

Hence, the pseudo-conformal conservation law implies

(x+ it∇)u ∈ L∞(Rt;L
2(R2)).

Invoking (2.4) and general Gagliardo–Nirenberg inequalities, for 2 ≤ r <∞,

‖u(t)‖Lr(R2) . ‖u(t)‖1−θ
L2(R2)

(
1

t
‖(x+ it∇)u‖L2

)θ

, θ = 1− 2

r
,

we infer u ∈ Lq(R;Lr(R2)) for all admissible pairs, i.e. ‖u‖S(R) <∞.
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Step 2. For general u0 ∈ H1(R2) with ‖u0‖L2 < ‖Q‖L2, we decompose

u0 = χεu0
︸ ︷︷ ︸

=:v0

+(1− χε)u0
︸ ︷︷ ︸

=:w0

,

for χ ∈ C∞(R2; [0, 1]) some smooth cut-off function equal to 1 on a large ball
centered at the origin, so that

‖w0‖H1(R2) ≤ ε.

By assumption (2.2), we have

‖v0‖2L2 ≤ (1− η)‖Q‖2L2 ,

an estimate which is obviously uniform in ε. Define v as the solution to (1.1), with
initial datum v0. Then, Step 1 above yields, for any 2 ≤ r <∞,

(2.5) ‖v(t)‖Lr(R2) ≤
C(r)

|t|1−2/r
, ∀|t| ≥ 1,

where C(r) is independent of t and ε. Writing u = v + w, the remainder w solves
an equation of the form

i∂tw +
1

2
∆w = F (v, w), w|t=0 = w0,

where, by using Young’s inequality, F satisfies pointwise estimates of the form

|F (v, w)| . |w|3 + |w|5 + |v|2|w|+ |v|4|w|.

We shall now briefly recall an argument from [40], which uses the same estimates
as the proof of Lemma 2.2: Let I = [t0, t1] be some time interval, with t1 ≥ t0 ≥ 0.
Strichartz estimates and Hölder’s inequality yield

‖w‖S(I) . ‖w(t0)‖L2 + ‖w‖3L4(I×R2) + ‖w‖4L12(I;L6)‖w‖L3(I;L6)

+ ‖v‖2L4(I×R2)‖w‖L4(I×R2) + ‖v‖4L12(I;L6)‖w‖L3(I;L6)

. ‖w(t0)‖L2 + ‖w‖3S(I) + ‖w‖4L12(I;L6)‖w‖S(I)

+ ‖v‖2L4(I×R2)‖w‖S(I) + ‖v‖4L12(I;L6)‖w‖S(I).

Recall that u, v ∈ L∞(R;H1(R2)), hence w ∈ L∞(R;H1(R2)), and we have

‖w‖4L12(I;L6) ≤ ‖w‖3L∞(I;L6)‖w‖L3(I;L6) . ‖w‖3L∞(I;H1)‖w‖S(I) ≤ C‖w‖S(I),

for some C independent of I and ε. Thus, we come up with

‖w‖S(I) . ‖w(t0)‖L2+‖w‖3S(I)+‖w‖2S(I)+‖v‖2L4(I×R2)‖w‖S(I)+‖v‖4L12(I;L6)‖w‖S(I).

In view of (2.5), v ∈ L4(R×R
2) ∩L12(R;L6(R2)) and we can split Rt into finitely

many intervals (this number of intervals being independent of ε) on which the last
two terms in the above estimates can be absorbed by the left hand side, so that

‖w‖S(0,t) . ‖w(t0)‖L2 + ‖w‖3S(0,t) + ‖w‖2S(0,t) . ε+ ‖w‖3S(0,t) + ‖w‖2S(0,t) ∀t ≥ 0.

For ε sufficiently small, a bootstrap argument then yields ‖w‖S(0,∞) . ε, and so

‖u‖S(0,∞) <∞.

The case of negative times is obviously similar, which establishes (2.1) in the case
of subcritical mass.
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2.3. Mass critical case. Let now u0 ∈ H1(R2) with ‖u0‖L2 = ‖Q‖L2. If we
suppose, like in the previous subsection, that additionally | · |u0 ∈ L2(R2), then the
pseudo-conformal conservation law yields only

‖u(t)‖6L6 .
1

1 + t2
,

∫ ∞

0

t‖u(t)‖6L6dt <∞,

which does not rule out a behavior of the form

‖u(t)‖6L6 ≈ 1

t2(log t)2
as t→ ∞,

in which case u 6∈ L3
tL

6
x (recall that (3, 6) is an admissible pair). In other words,

a direct use of the pseudo-conformal conservation law seems hopeless in the mass
critical case, since we cannot access a convenient bound on ‖(x+ it∇)u‖L2 (we do
not even have a moderate growth of this quantity, like O(tγ) for some γ < 1, as
was exploited in [41]). Moreover, if we try to proceed like in Step 2, we lose the
uniformity in ε for v, which will cause the bootstrap argument to break down.

Remark 2.3. Note that if the defocusing nonlinearity was weaker, for instance quar-
tic,

i∂tu+
1

2
∆u = −|u|2u+ |u|3u, x ∈ R

2,

then the same approach as above would yield

‖u(t)‖5L5 .
1

1 + t2
,

and so u ∈ L
10/3
t L5

x, an admissible pair. We could then proceed as in the subcritical
mass case.

To overcome these issues, we use a strategy based on profile decompositions,
which has by now become a classical tool for critical problems. More precisely, we
shall adapt and partially repeat parts of the strategy from [14, 19], treating the 3D

cubic nonlinear Schrödinger equation (which is Ḣ1/2-critical). To begin with, we
have a profile decomposition without scales, as in [14] (scales are not relevant in
our context, since (1.1) is not scale-invariant).

Lemma 2.4 (Profile decomposition). Let (φn)n∈N ⊂ H1(R2) be uniformly bounded.
For each M ∈ N, there exists a subsequence, also denoted φn, and

(1) for each 1 ≤ j ≤M , there exists a fixed profile ψj(x) in H1(R2),
(2) for each 1 ≤ j ≤M , there exists a sequence (in n) of time shifts tjn ∈ R,
(3) for each 1 ≤ j ≤M , there exists a sequence (in n) of space shifts xjn ∈ R

2,
(4) there exists a sequence (in n) of remainders WM

n ∈ H1(R2), such that

φn(x) =

M∑

j=1

e−i
t
j
n
2
∆ψj(x− xjn) +WM

n (x).

The time and space shifts have a pairwise divergence property: for 1 ≤ j 6= k ≤M ,

(2.6) lim
n→∞

(
|tjn − tkn|+ |xjn − xkn|

)
= ∞.

The remainder sequence has the following asymptotic smallness property,

lim
M→∞

(

lim
n→∞

∥
∥WM

n

∥
∥
L2(R2)

)

= 0.

For fixed M , we have the asymptotic Pythagorean expansion

‖φn‖2Ḣs =
M∑

j=1

‖ψj‖2
Ḣs + ‖WM

n ‖2
Ḣs + on(1), 0 ≤ s ≤ 1.
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The only difference with the statement of [14, Lemma 2.1] is that the asymptotic

smallness of the free evolution of WM
n is stated for Ḣ1/2-admissible pairs there,

while we consider L2-admissible pairs. In turn, we simply replace L∞
t L

3
x-norms

in the proof of [14, Lemma 2.1] (corresponding to an Ḣ1/2-admissible pair) with
L∞
t L

2
x-norms, which is obviously L2-admissible, in a similar fashion as in the linear

profile decomposition of [5] (up to the fact that the present problem is not scale
invariant, as pointed out above).

We then argue as in the proof of [19, Proposition 5.5]: Let tn → ∞, and set
φn(x) ≡ u(tn, x), solution to (1.1). This sequence is bounded in H1(R2), in view of
Proposition 1.1, so we may apply Lemma 2.4. Now, consider φn to be a sequence
of initial data to equation (1.1). We then want to show that for n ∈ N sufficiently
large

‖u‖S(tn,∞) <∞.

To this end, we distinguish two cases: more than one profile ψj is non-zero, or at
most one is, since in the case where all profiles are zero, we have nothing left to
prove.

First case: more than one profile is non-zero. In this case, the asymptotic
Pythagorean expansion with s = 0 shows that each ψj has a mass strictly smaller
than that of Q. Up to passing to a subsequence in n, we have three cases:

tjn → −∞, tjn → +∞, or tjn → T finite.

In each case, invoking Propositions 1.1 and 1.3 (where we can of course replace the
limit t → −∞ with t → +∞), the subcritical mass case presented in the previous

subsection implies that we have a profile ψ̃j in H1 such that
∥
∥
∥
∥
NLS(−tjn)ψ̃j − e−i

t
j
n
2
∆ψj

∥
∥
∥
∥
H1

−→
n→∞

0,

where NLS(t)f stands for the solution at time t to (1.1) with initial data f . We
infer

φn(x) =

M∑

j=1

NLS(−tjn)ψ̃j(x− xjn) + W̃M
n ,

where

lim
M→∞

(

lim
n→∞

∥
∥
∥W̃M

n

∥
∥
∥
L2(R2)

)

= 0.

Now, let

vj(t) = NLS(t)ψ̃j , un(t) = NLS(t)φn, ũn(t) =
M∑

j=1

vj
(
t− tjn, x− xjn

)
.

The subcritical mass case implies that for each j,

‖vj‖S(R) <∞.

By construction, ũn solves (1.1) up to an asymptotically small source term,

i∂tũn +
1

2
∆ũn = −|ũn|2ũn + |ũn|4ũn + en + fn,

where

en(t, x) = |ũn(t, x)|2ũn(t, x)−
M∑

j=1

∣
∣vj

(
t− tjn, x− xjn

)∣
∣
2
vj

(
t− tjn, x− xjn

)

fn(t, x) = −|ũn(t, x)|4ũn(t, x) +
M∑

j=1

∣
∣vj

(
t− tjn, x− xjn

)∣
∣
4
vj

(
t− tjn, x− xjn

)
.
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Let ε > 0. For M1(ε) sufficiently large, M ≤ M1, and n1 = n1(M) sufficiently
large, we have,

∥
∥
∥ei

t
2
∆ (un(0, ·)− ũn(0, ·))

∥
∥
∥
S(R)

=
∥
∥
∥ei

t
2
∆WM

n

∥
∥
∥
S(R)

≤ ε, ∀n ≥ n1.

Using orthogonality properties based on (2.6) (as established initially in [23, 31]),
we find that given M and ε > 0, for n ≥ n2 sufficiently large,

‖en‖L4/3(R×R2) + ‖fn‖L3/2(R;L6/5) ≤ ε,

where we have used the same (dual) admissible pairs as in the proof of Lemma 2.2.
Recall that from the mass-subcritical case, we know that

‖ũn‖S(R) <∞.

Then using a long-time perturbation argument, as in the second step of the mass-
subcritical case (based on bootstrap), we infer

‖un‖S(R) <∞.

Second case: only one profile is non-zero, say ψ1 6= 0 and ψj = 0 for j ≥ 2,
and so

(2.7) φn(x) = e−i
t1n
2
∆ψj(x − x1n) +Wn(x), lim

n→∞

∥
∥
∥ei

t
2
∆Wn

∥
∥
∥
S(R)

= 0.

Like above, up to passing to a subsequence in n, we have three cases: t1n → −∞,
t1n → ∞, or t1n → T finite. It turns out that only the first case is possible.

• Suppose t1n → −∞, and fix ε > 0, (q, r) an admissible pair with r > 2 (or
equivalently q <∞). For n sufficiently large.

‖ei t
2
∆φn‖Lq(0,∞;Lr) ≤ ‖ei t

2
∆ψ1‖Lq(−t1n,∞;Lr) +

∥
∥
∥ei

t
2
∆Wn

∥
∥
∥
S(R)

≤ ε,

where the first term on the right hand side goes to zero as n→ ∞ since ei
t
2
∆ψ1 ∈

Lq(R;Lr) thanks to Strichartz estimates. On the other hand, we know that u ∈
L∞H1, so using the same estimates as in the proof of Lemma 2.2, we find, for n
sufficiently large and t ≥ tn,

‖u‖Ẋ0(tn,t)
:= ‖u‖L4((tn,t)×R2) + ‖u‖L3(tn,t;L6) ≤ ε+ C‖u‖2

Ẋ0(tn,t)
+ C‖u‖3

Ẋ0(tn,t)
,

where C depends only on the L∞H1 norm of u. Here, and in the following we
resume the same notation as in [40]

Ẋ0(I) = L4(I × R
2) ∩ L3(I;L6(R2)).

A bootstrap argument then implies than for ε sufficiently small (n sufficiently large),
‖u‖Ẋ0(tn,∞) <∞, hence ‖u‖S(tn,∞) <∞ by using Strichartz inequalities again.

• Suppose t1n → +∞. We then use the same idea as in the first case, but going
backwards in time. For t > 0, Duhamel’s formula for u reads, in view of (2.7),

u(tn − t, x) = e−i
t+t1n

2
∆ψ1(x− x1n) + e−i t

2
∆Wn(x)

︸ ︷︷ ︸

=:ulin
n (t,x)

− i

∫ −t

0

e−i t+s
2

∆
(
−|u|2u+ |u|4u

)
(s)ds.

We have

‖ulinn ‖Ẋ0(0,∞) −→
n→∞

0,

so by the same bootstrap argument as in the first case,

‖u‖Ẋ0(−∞,tn)
−→
n→∞

0,
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which is in contradiction with the fact that we consider a non-zero initial data
u0 ∈ H1.

• Suppose t1n → T ∈ R. Then by the same estimates as above,

u(tn, x) = e−iT
2
∆ψ1(x− x1n) + on(1) in L

2(R2),

hence, since u ∈ L∞(R;H1),

u(tn, x) = e−iT
2
∆ψ1(x − x1n) + on(1) in H

s(R2), ∀ 0 ≤ s < 1.

In particular, unless ψ1 ≡ 0 (a case which has been ruled out at the beginning of
the discussion),

(2.8) lim inf
n→∞

‖u(tn)‖L6(R2) > 0.

Recall that in the case ‖u0‖L2 ≤ ‖Q‖L2, where additionally | · |u0 ∈ L2(R2), the
pseudo-conformal conservation law implies

‖u(t)‖6L6 .
1

t2
, ∀t ≥ 1,

uniformly in ‖Q‖L2 − ‖u0‖L2 ≥ 0, hence a contradiction to (2.8) in the case where
u0 has finite variance. For general u0 ∈ H1(R2) and ε > 0, let v be as in the Step
2 of the subcritical mass case: we have

‖v0‖L2 ≤ ‖Q‖L2, ‖u0 − v0‖H1 ≤ ε, ‖v(t)‖6L6 ≤ C

t2
, ∀t ≥ 1,

where C does not depend on ε. Strichartz estimates yield

‖u− v‖Ẋ0(0,t) . ε+ ‖u− v‖3
Ẋ0(0,t)

+
(

‖u‖4L12(0,t;L6) + ‖v‖4L12(0,t;L6)

)

‖u− v‖Ẋ0(0,t)

+
(

‖u‖2L4((0,t)×R2) + ‖v‖2L4((0,t)×R2)

)

‖u− v‖Ẋ0(0,t).

Using the property u, v ∈ L∞
t H

1
x (with bounds independent of ε), and Sobolev

embedding, yields

‖u− v‖Ẋ0(0,t) . ε+max
(

t1/2, t1/3
)

‖u− v‖Ẋ0(0,t).

Repeating this argument on different time intervals, we have the uniform bound

‖u− v‖Ẋ0(0,t) ≤ Cεect
α

,

for some α > 0 whose optimal value is irrelevant. The important aspect is that the
constants α, c and C are independent of ε, thus showing, up to a suitable choice of
εn in terms of tn,

lim inf
n→∞

‖u(tn)‖L6(R2) = 0,

hence a contradiction to (2.8).

3. Existence of solitons and first properties

3.1. A priori estimates. Suppose we have a solution u(t, x) = eiωtφ(x), with φ
sufficiently smooth and localized. Then (1.1) becomes

(3.1) − 1

2
∆φ− |φ|2φ+ |φ|4φ+ ωφ = 0.

Proposition 3.1 (A priori estimates for solitary waves). Let 1 ≤ d ≤ 3. If φ ∈
H1(Rd) solves (3.1), then we have:
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(1) Pohozaev identities:

(3.2)
1

2

∫

Rd

|∇φ|2 dx−
∫

Rd

|φ|4 dx+

∫

Rd

|φ|6 dx+ ω

∫

Rd

|φ|2 dx = 0,

(3.3)
d− 2

2

∫

Rd

|∇φ|2 dx− d

2

∫

Rd

|φ|4 dx+
d

3

∫

Rd

|φ|6 dx+ ωd

∫

Rd

|φ|2 dx = 0.

(2) If φ 6≡ 0, then 0 < ω < 3
16 .

(3) If d = 2 and φ 6= 0, then ‖φ‖L2 > ‖Q‖L2, where Q is cubic ground state
solution to (1.5).

(4) If in addition φ ∈ L∞ ∩C2 is real-valued, then

(3.4) ‖φ‖L∞(Rd) ≤

√

1 +
√
1− 4ω

2
.

Proof. For item (1), we quickly recall the method to derive Pohozaev identities
formally, and refer to [4] for a rigorous justification via density type arguments.
Firstly, multiplying (3.1) by φ̄ and integrating yields (3.2). In particular, we infer
ω ∈ R. Secondly, by multiplying (3.1) with x · ∇φ̄ and integrating by parts we
obtain (3.3). For d = 2, subtracting (3.3) from (3.2) yields

1

2

∫

R2

|∇φ|2 dx +
1

3

∫

R2

|φ|6 dx = ω

∫

R2

|φ|2 dx,

hence ω > 0 unless φ ≡ 0. In the case d = 3, we obtain similarly

1

2

∫

R3

|φ|4 dx = 2ω

∫

R3

|φ|2 dx,

and thus we arrive at the same conclusion.
(2) From now on, we shall denote

F (s) =
1

4
s4 − 1

6
s6

and set

ω∗ = sup
{

ω > 0;
ω

2
s2 − F (s) < 0 for some s > 0

}

.

A computation then shows ω∗ = 3
16 . In particular, if ω ≥ 3

16 , we have the pointwise
relation

−1

2
|φ|4 + 1

3
|φ|6 + ω|φ|2 ≥ 0, ∀x ∈ R

d,

which, in view (3.3), implies φ ≡ 0 for d ≥ 2. In the case d = 1, the conclusion
follows from ODE arguments, and more precisely [4, Theorem 5].

(3) We suppose d = 2 and introduce

γ =
‖φ‖4L4

‖∇φ‖2L2

,

which allows us to rewrite (3.2) as
(
1

2
− γ

)∫

R2

|∇φ|2 +
∫

R2

φ6 + ω

∫

R2

φ2 = 0,

Similarly, we can rewrite (3.3) for d = 2, by using γ, in the following form

γ

2

∫

R2

|∇φ|2 − 1

3

∫

R2

|φ|6 − ω

∫

R2

|φ|2 = 0.

Combining these identities, we infer
∫

R2

|φ|6 =
3(γ − 1)

4

∫

R2

|∇φ|2,
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and in particular γ > 1, i.e. ‖φ‖4L4 > ‖∇φ‖2L2 . In view of the sharp Gagliardo-
Nirenberg inequality (1.6), this consequently implies that the mass of the cubic-
quintic ground states satisfies ‖φ‖L2 > ‖Q‖L2.

(4) Let φ ∈ C2 be a real-valued bounded solution to (3.1). Suppose that φ
reaches its maximum at x0 ∈ R

d. Then ∆φ(x0) ≤ 0, and hence

(−φ3 + φ5 + ωφ)|x=x0
≤ 0.

Writing

ωφ− φ3 + φ5 = φ

(

φ2 − 1−
√
1− 4ω

2

)(

φ2 − 1 +
√
1− 4ω

2

)

,

we see that

φ(x0) ≤

√

1 +
√
1− 4ω

2
.

Reasoning similarly for a minimum of φ, we infer (3.4). �

3.2. Existence and uniqueness. Denote f(s) = s3 − s5 and

F (s) =

∫ s

0

f(τ) dτ =
1

4
s4 − 1

6
s6,

as before. We have already seen that

sup
{

ω > 0;
ω

2
s2 − F (s) < 0 for some s > 0

}

=
3

16
.

Then according to [4] (treating the case d = 1 or d = 3) and [3] (treating the case
d = 2), for all ω ∈]0, ω∗[, there exists a solution φω of (3.1). Uniqueness of φω in
d = 1 is proven in [4], while in d = 3 uniqueness follows from [36], as pointed out
in [25]. Finally, for d = 2, we infer uniqueness from the results of [21], where we
emphasize that the assumptions made there correspond more closely to those made
to prove existence.

We summarize all of these results in the proposition below, we recall that the
action, defined in the introduction, is given by

S(φ) =
1

2
‖∇φ‖2L2 + ω‖φ‖2L2 − 2V (φ), where V (φ) =

∫

Rd

F (φ(x)) dx,

and satisfies

(3.5) S(φ) = E(φ) + ω‖φ‖2L2.

Proposition 3.2 (Uniqueness of radial ground states). Let 1 ≤ d ≤ 3. Suppose
that

0 < ω <
3

16
.

Then (3.1) has a unique solution φω such that

(1) φω > 0 on R
d.

(2) φω is radially symmetric, φω(x) = φ(r), where r = |x|, and φ is a non-
increasing function of r.

(3) φω ∈ C2(Rd).
(4) The derivatives of order at most two of φω decay exponentially:

∃δ > 0, |∂αφω(x)| . e−δ|x|, |α| ≤ 2.

(5) For every solution ϕ to (3.1),

0 < S(φω) ≤ S(ϕ).
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3.3. Further properties. We collect here some further, asymptotic properties of
cubic-quintic ground states. These have been established in [25, Theorem 2.2] in
the case d = 3, but can easily be adapted to the case d = 2. We therefore assume
d = 2 or 3 and note that the map ω 7→ φω given by Proposition 3.2 is real analytic.

First, we want to better understand the limit ω → 0 in (3.1) which, unfortunately,
is singular. To turn it into a regular limit, we change the unknown function φω into

ψω(x) =
1√
ω
φω

(
x√
ω

)

.

Then (3.1) is equivalent to

−1

2
∆ψω + ψω − ψ3

ω + ωψ5
ω = 0,

and it can be shown that ψω → Q in H1(Rd) as ω → 0, where Q is the unique
non-negative, radially symmetric ground state solution to

−1

2
∆Q+Q−Q3 = 0, x ∈ R

d.

In particular, in the case d = 2, we infer

‖φω‖L2(R2) = ‖ψω‖L2(R2) −→
ω→0

‖Q‖L2(R2),

thus showing that ground states for the cubic-quintic NLS in 2D have mass strictly
larger but arbitrarily close to that of the cubic ground state Q.

Second, one may wonder about the limit as ω → 3
16 . In this case, we shall see

that the mass of φω grows to infinity. For d = 3, this is established in Theorem 2.2,
(v), in [25], where the authors also prove that

(
3
16 − ω

)−3
.M(φω) .

(
3
16 − ω

)−3
,

Here, we propose a simpler argument in the case d = 2, which however only shows
divergence of the mass in the limit (but no asymptotic behavior).

Let d = 2, and suppose that ‖φω‖L2 is bounded as ω → 3
16 . Then, using Hölder’s

inequality (1.2) in the Pohozaev identity (3.3) we infer
∫

R2

|φω |6 ≤
(

3− 2ω

3

)

‖φω‖2L2 .

This implies that also ‖φω‖L6 remains bounded as ω → 3
16 . Using Hölder’s inequal-

ity once more, we conclude that ‖φω‖L4 remains bounded as well, which, together
with (3.2), yields the boundedness of φω in H1(R2). Since φω is radial, the sequence
(φω)ω is compact in L2 ∩ L6(R2), in view of Strauss’ lemma [37]. Therefore, up to
the choice of a suitable subsequence,

φω −→
ω→3/16

Φ strongly in L2 ∩ L6(R2).

Passing to the limit in (3.3) (recall that d = 2 here), we get
∫

R2

(

−1

4
Φ4 +

1

6
Φ6 +

ω

2
Φ2

)
∣
∣
ω=3/16

= 0.

But ω = 3
16 was obtained as

3

16
= sup

{

ω > 0;
ω

2
s2 − s4

4
+
s6

6
< 0 for some s > 0

}

,

so we infer Φ ≡ 0, which contradicts the property

‖φω‖L2 > ‖Q‖L2, ∀ω ∈
]
0, 3

16

[
.
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Therefore, possibly along some subsequence, ‖φω‖L2 → ∞ as ω → 3
16 , so the range

of the map ω 7→ ‖φω‖L2 is exactly ]‖Q‖L2,∞[, as ω varies in ]0, 3
16 [.

Remark 3.3. It turns out that this map is non-decreasing, as a consequence of the
orbital stability established in the next section, and the Grillakis-Shatah-Strauss
theory (the spectral assumptions needed to apply this theory can be obtained by
adapting the argument of [25] from the 3D to the 2D case, see the appendix).

4. Orbital stability of ground states in 2D

To prove orbital stability in the context of nonlinear Schrödinger equations,
there are two main strategies: the first one, historically, is due to Cazenave and
Lions [7] and based on concentration-compactness arguments. The second one,
known as Grillakis-Shatah-Strauss theory, was introduced in [18] (see also [12]),
and generalized the ideas developed by M. Weinstein in [43, 44]. Here, we shall
follow the former strategy.

Proposition 4.1 (Energy minimization). Let d = 2 and ω ∈]0, 3
16 [. For ρ >

‖Q‖2L2(R2), consider

Γ =

{

u ∈ H1(R2),

∫

R2

|u|2 = ρ

}

,

and denote

−ν = inf
{
E(u) ; u ∈ H1(R2), M(u) = ρ

}
.

Then the following properties hold:

(1) The minimization problem

(4.1) u ∈ Γ, E(u) = min{E(v), v ∈ Γ}
has a solution.

(2) If (un)n∈N ⊂ Γ satisfies M(un) → ρ and E(un) → −ν, then there exist a
subsequence, still denoted by un, and a sequence yn ∈ R

2 such that un(·−yn)
has a strong limit u in H1(R2). In particular, u satisfies (4.1).

Proof. First step. We show that

inf
{
E(u) ; u ∈ H1(R2), M(u) = ρ

}
= −ν,

for some finite ν > 0. To prove that the infimum is finite, we use Hölder’s inequality
(1.2), to infer

E(u) ≥ 1

2
‖∇u(t)‖2L2(Rd) −

√
ρ

2
‖u(t)‖3L6(Rd) +

1

3
‖u(t)‖6L6(Rd),

and thus E(u) is bounded from below. To see that the infimum is negative, consider
the L2-invariant scaling, for λ > 0,

uλ(x) = λd/2u(λx),

which, for d = 2, implies

E(uλ) =
λ2

2

(

‖∇u‖2L2 − ‖u‖4L4 +
2

3
λ2‖u‖6L6

)

.

In view of the sharp Gagliardo-Nirenberg inequality, and since ‖u‖2L2 > ‖Q‖2L2,
we may choose a profile u ∈ H1 so that the terms independent of λ inside the
parentheses become negative, e.g., take

u =

(
ρ

M(Q)

)1/2

Q, with λ > 0 sufficiently small.
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Second step. Any minimizing sequence is bounded away from zero in L4. Let
(un)n≥0 be a minimizing sequence: for n sufficiently large, E(un) ≤ −ν/2, hence

‖un‖4L4 ≥ ν > 0.

Third step. In view of [29] (see also [6, Proposition 1.7.6]), we have the standard
trichotomy of concentration compactness. From the second step, vanishing is ruled
out, so we have to rule out dichotomy to infer compactness. Arguing by contradic-
tion, suppose that, after extraction of suitable subsequences, there exist (vk)k≥0,
(wk)k≥0 in H1(R2), such that

supp vk ∩ suppwk = ∅, |vk|+ |wk| ≤ |unk
|, ‖vk‖H1 + ‖wk‖H1 ≤ C‖unk

‖H1 ,

satisfying

‖vk‖2L2 −→
k→∞

θρ, ‖wk‖2L2 −→
k→∞

(1− θ)ρ, for some θ ∈]0, 1[,

and

lim inf
k→∞

(∫

|∇unk
|2 −

∫

|∇vk|2 −
∫

|∇wk|2
)

≥ 0,

∣
∣
∣
∣

∫

|unk
|p −

∫

|vk|p −
∫

|wk|p
∣
∣
∣
∣
−→
k→∞

0,

for all 2 ≤ p <∞. We infer

lim inf
k→∞

(E (unk
)− E(vk)− E(wk)) ≥ 0,

hence

(4.2) lim sup
k→∞

(E(vk) + E(wk)) ≤ −ν.

Following an idea from [9], we then use a scaling argument rather than a multi-
plicative one as in [7]. Let

ṽk(x) = vk

(

λ
−1/2
k x

)

, λk =
ρ

‖vk‖2L2

w̃k(x) = wk

(

µ
−1/2
k x

)

, µk =
ρ

‖wk‖2L2

.

Since ṽk and w̃k have mass ρ,

E(ṽk), E(w̃k) ≥ −ν.
On the other hand, we compute

E(ṽk) = λk

(
1

2λk

∫

|∇vk|2 −
1

2

∫

|vk|4 +
1

3

∫

|vk|6
)

,

and so

E(vk) =
1

λk
E(ṽk) +

1− λ−1
k

2

∫

|∇vk|2 ≥ −ν
λk

+
1− λ−1

k

2

∫

|∇vk|2.

Doing the same for E(wk), we find

E(vk) + E(wk) ≥ −ν
(

1

λk
+

1

µk

)

+
1− λ−1

k

2

∫

|∇vk|2 +
1− µ−1

k

2

∫

|∇wk|2

≥ −ν
(

1

λk
+

1

µk

)

+
1− λ−1

k

2‖vk‖2L2

‖vk‖4L4 +
1− µ−1

k

2‖wk‖2L2

‖wk‖4L4,

where in the second step, we have used the Gagliardo-Nirenberg inequality. Passing
to the limit, yields

lim inf
k→∞

(E(vk) + E(wk)) ≥ −ν + 1

2
min

(
1− θ

θρ
,

θ

(1− θ)ρ

)

lim inf
k→∞

‖unk
‖4L4 ,



CUBIC-QUINTIC SCHRÖDINGER EQUATION 17

and hence a contradiction to (4.2), in view of the second step and θ ∈]0, 1[. �

Recall the formula S(φ) = E(φ) + ω‖φ‖2L2. Hence, for fixed mass, minimizing
the action is equivalent to minimizing the energy. We then have the analogue of [6,
Corollary 8.3.8], to which we also refer for the details of the proof:

Lemma 4.2 (Equivalence of minimizers). Let d = 2 and 0 < ω < 3
16 . Then

φ ∈ H1(R2) is a ground state of (3.1) if and only if φ solves the minimization
problem

(4.3) φ ∈ Γ, S(φ) = min{S(ϕ), ϕ ∈ Γ}.
In addition, the problems (4.1) and (4.3) are equivalent.

Conclusion. At this stage, we have all the arguments to conclude in the classical
way. Assume, by contradiction, that there exist a sequence (u0,n)n∈N ⊂ H1(R2),
such that

(4.4) ‖u0,n − φ‖H1 −→
n→∞

0,

and a sequence (tn)n∈N ⊂ R, such that the sequence of solutions un to (1.1) asso-
ciated to the initial data u0,n satisfies

(4.5) inf
θ∈R

y∈R2

∥
∥un(tn, ·)− eiθφ(· − y)

∥
∥
H1(R2)

> ε,

for some ε > 0. Introducing vn = un(tn, ·), the above inequality also reads

inf
ϕ∈G

‖vn − ϕ‖H1(R2) > ε,

where G is the set of all possible ground states, as given in Definition 1.4. In view
of (4.4) and Lemma 4.2,

∫

R2

|u0,n|2 −→
n→∞

∫

R2

|φ|2, S (u0,n) −→
n→∞

S(φ) = inf{S(v), v ∈ Γ}.

The conservation laws for mass and energy imply
∫

R2

|vn|2 −→
n→∞

∫

R2

|φ|2, S (vn) −→
n→∞

S(φ),

so (vn)n is a minimizing sequence for the problem (4.3), and hence also for the
problem (4.1). From Proposition 4.1, there exists yn in R

2 and a solution u to (4.1)
such that

‖vn − u(· − yn)‖H1 −→
n→∞

0.

However, in view of Lemma 4.2, u is a ground state and so is u(· − yn), hence a
contradiction.

Appendix A. Stability and instability of three-dimensional ground
states

A.1. Grillakis-Shatah-Strauss theory. The proof of Proposition 1.9 relies on
the application of the theory developed in [18], and all the ingredients necessary
to do so are already present in [25]. In view of the existence results given in
Proposition 1.1 and Proposition 3.2, we only have to check the spectral Assumption
3 imposed in [18] and analyze the monotonicity of the map ω 7→ M(φω). To state
the spectral assumption, we write the second order derivative of the action as

〈S′′(φω)w,w〉 =
1

2
〈L1u, u〉+

1

2
〈L2v, v〉 ,
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where w = u+ iv. In our case, we have

L1 = −1

2
∆+ ω − 3φ2ω + 5φ4ω,

L2 = −1

2
∆+ ω − φ2ω + φ4ω.

We then need to check:

Assumption A.1. For each ω ∈]0, 3
16 [, the Hessian S′′(φω) has exactly one nega-

tive eigenvalue; its kernel is spanned by iφω and ∇φω , and the rest of its spectrum
is positive and bounded away from zero.

If this holds true, then:

(a) If d
dωM(φω) > 0, then the standing wave eiωtφω(x) is orbitally stable.

(b) If d
dωM(φω) < 0, then the standing wave eiωtφω(x) is unstable.

Indeed, the authors of [25] proved that Assumption A.1. holds true for the
cubic-quintic NLS:

Proposition A.2 (Proposition 2.4 from [25]). Fix ℓ = 0, 1, 2, . . . , and consider the
restriction of L1 to functions of the form f(|x|)Y (x/|x|), where Y is a spherical
harmonic of degree ℓ.

(1) When ℓ = 0, the operator has exactly one negative eigenvalue; it is simple.
(2) When ℓ = 1, there are no negative eigenvalues. Zero is an eigenvalue and

its eigenspace is spanned by the three components of ∇φω.
(3) When ℓ ≥ 2, the operator is positive definite.

The proof of this result relies on Sturm Oscillation Theorem, since the analysis
boils down to second order ODEs for the radial function f . Note that the proof
from [25] can be readily adapted to the 2D case, by replacing spherical harmonics
with functions of the form eiℓθ in radial coordinates. The above proposition is
complemented by the following one:

Proposition A.3 (Proposition 2.5 from [25]). Let δ = δ(r) be the solution to

−1

2
δ′′ − 1

r
δ′ +

(
5φ4ω − 3φ2ω + ω

)
δ = 0

obeying δ(0) = 1. Then δ(r) → −∞ as r → ∞. Correspondingly, zero is not an
eigenvalue of L1 restricted to radial functions.

With this in hand, we can now proceed to prove (in-)stability of ground states,
depending on the frequency ω ∈]0, 3

16 [.

A.2. Instability for small ω. Citing [25, Theorem 2.2], we have

d

dω
M(φω) <

3β(ω)− 1

2ω
M(φω),

where

β(ω) =
‖φω‖6L6

‖∇φω‖2L2

.

Therefore, we are in the unstable case (b) provided β < 1
3 . In particular, this is

guaranteed for ω ∈]0, ω0[ where ω0 ≪ 1, since β(ω) = O(ω) as ω → 0, see [25,
Theorem 2.2, (iv)].
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A.3. Stability for large ω. We know from [25, Theorem 2.2, (v)] that there are
constants c1, c2 > 0 such that

c1
(

3
16 − ω

)−3 ≤M(φω) ≤ c2
(

3
16 − ω

)−3
,

On the other hand, for ω sufficiently close to 3
16 , we can quote [25, Theorem 4.1,

(iv)], which ensures that for M(φω) = m sufficiently large

inf
{
E(u); u ∈ H1(R3), M(u) = m

}
= [Emin(m),∞[,

with Emin(m) < 0. It is then possible to resume the argument presented in Sec-
tion 4, and conclude to orbital stability via the Cazenave-Lions argument.

The analysis of [25] yields more precise information regarding the set of ω’s for
which orbital stability holds, comforting Conjecture 2.3 from [25], whose statement
was recalled in the introduction.
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