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ABSTRACT
One of the main problems in planet formation, hampering the growth of small dust to plan-
etesimals, is the so-called radial-drift barrier. Pebbles of cm to dm sizes are thought to drift
radially across protoplanetary discs faster than they can grow to larger sizes, and thus to be
lost to the star. To overcome this barrier, drift has to be slowed down or stopped, or growth
needs to be sped up. In this paper, we investigate the role of porosity on both drift and growth.
We have developed a model for porosity evolution during grain growth and applied it to nu-
merical simulations of protoplanetary discs. We find that growth is faster for porous grains,
enabling them to transition to the Stokes drag regime, decouple from the gas, and survive the
radial-drift barrier. Direct formation of small planetesimals from porous dust is possible over
large areas of the disc.

Key words: Protoplanetary discs - Hydrodynamics - Planets and satellites: formation - Meth-
ods: numerical

1 INTRODUCTION

In protoplanetary discs, planetesimals are thought to be the build-
ing blocks of planets (Safronov 1972). However, our understand-
ing of the collisional growth of sub-micron-sized monomers up to
kilometre-sized planetesimals is hindered by problems called ‘bar-
riers’ in the planet formation theory. Because of the gas pressure
gradient, a differential velocity exists between gas and dust, and
grains experience an aerodynamic drag force. Grains thus lose an-
gular momentum, making them settle down to the mid-plane and
drift inwards. The influence of the drag force can be measured by
the Stokes number St, i.e. the ratio between the grain stopping time
(the time for a grain to reach the gas velocity) to the Keplerian or-
bital time. Small grains, with St�1, and large grains, with St�1,
are respectively very coupled with the gas and weakly affected by
the gas drag and so, drift slowly. Grains with intermediate sizes,
i.e. St∼1, are subject to the fastest radial drift. Thus, initially small
grains growing to this intermediate regime can be accreted onto the
star faster than they can grow to reach planetesimal sizes (Adachi
et al. 1976; Weidenschilling 1977). To overcome this barrier, called
the “radial-drift barrier”, grain growth needs to be accelerated or
drift slowed down. So-called dust traps have been shown to be
a good way to slow down drift by accumulating grains in a gas
pressure maximum (Haghighipour 2005) such as, e.g., in vortices
(Barge & Sommeria 1995; Meheut et al. 2012; Zhu et al. 2014),
snow lines (Kretke & Lin 2007; Brauer et al. 2008; Dra̧żkowska
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& Alibert 2017) or planet gaps (Paardekooper & Mellema 2004;
Fouchet et al. 2007, 2010; Ayliffe et al. 2012; Pinilla et al. 2012;
Zhu et al. 2012, 2014). More recently, Gonzalez et al. (2017a,b)
showed that self-induced dust traps can form without an initially
present pressure maximum in the disc, where growing and frag-
menting grains can accumulate thanks to the combined effect of
the back-reaction of dust on gas and large-scale gradients.

In this work, we choose to investigate on the growth of porous
grains as a solution. Indeed, at a given mass, porous grains have
a larger collisional cross-section than compact dust, which can ac-
celerate growth. Until now, grains have been considered as com-
pact in most studies of grain growth (e.g. Brauer et al. 2008; Laibe
et al. 2008; Drążkowska et al. 2014; Gonzalez et al. 2015a), for
the sake of simplicity and because of a lack of knowledge on how
porosity evolves with collisions. However, some objects in the So-
lar system such as comets have appeared to be porous (Blum et al.
2006; A’Hearn 2011; Sierks et al. 2015). Experiments have also
shown that low-velocity collisions lead to the formation of porous
aggregates (Blum 2004). Furthermore, experimental and numeri-
cal works have studied faster collisions and found that collisional
energy is dissipated by internal restructuring and that compression
can occur (Dominik & Tielens 1997; Blum & Wurm 2000; Wada
et al. 2007, 2008, 2009; Suyama et al. 2008, 2012; Seizinger et al.
2012). The importance of porosity on the collisional evolution of
dust grains, and in particular its ability to assist growth, was first
evidenced in numerical simulations by Ormel et al. (2007). Based
on the numerical model of evolution of porosity during collisions
of Suyama et al. (2008), Okuzumi et al. (2012) then investigated the
formation of icy planetesimals from direct growth of porous aggre-
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Table 1. Parameters of our disc models. Values with subscript 0 are given
for R0 = 1 AU.

Model p q Rin Rout Resc Tg,0 Σg,0
(AU) (AU) (AU) (K) (kg.m−2)

CTTS 3/2 3/4 3 300 400 197 4537

Flat 0 1 4 120 160 619 11

gates and found that porosity can help grains overcome the radial-
drift barrier. However, in their study, planetesimals have a density
lower than 10−3 kg m−3, inconsistent with comet values. Kataoka
et al. (2013b) thus introduced the static compression process to
take into account restructuring due to gas or self-gravity compres-
sion. As it is difficult and impractical to treat at the same time the
evolution of porosity during collisions at small scales and the disc
physics at large scales, studies including porosity have mostly been
carried out in a local context, i.e. at a given distance from the star
(Ormel et al. 2007; Okuzumi et al. 2009; Kataoka et al. 2013b).
However, Okuzumi et al. (2012) and Krijt et al. (2016) computed
the radial evolution of grain mass and porosity in a 1D disc model.
In this paper, in order to link both the small and large scales, we
derive a model of porosity evolution to reproduce the effects of
collisions and include it in global 3D simulations of dust growth
and dynamics.

We detail our models for growth and porosity as well as our
numerical codes in Section 2. In Section 3, we present our results on
the influence of porosity on growth and drift and we discuss on how
porosity can be a solution to the radial-drift barrier in Section 4. We
summarise our work and conclude in Section 5.

2 METHODS

2.1 Disc models

We simulate a disc of mass Mdisc = 0.01 M� around a 1 M� star.
Initially, the dust-to-gas ratio by mass ε , defined as the ratio be-
tween dust and gas local volume densities ρd/ρg, is taken to be
0.01. We model the disc as power laws of the distance from the star
R. Thus, the gas surface density scales as Σg ∝ R−p and its temper-
ature as Tg ∝ R−q . In all simulations, we use a constant Shakura
& Sunyaev (1973) α parameter of 10−2. The disc extends from Rin
to Rout. We assume that dust moving outside of a distance Resc or
inside Rin is respectively escaped or accreted into the star.

We consider two disc models characterised by two different
disc geometries: a disc around a classical T-Tauri star (CTTS) (stud-
ied by, e.g., Barrière-Fouchet et al. 2005; Laibe et al. 2008) and a
“Flat” disc, a simple model with a constant surface density (used
in, e.g., Paardekooper & Mellema 2004; Fouchet et al. 2007; Gon-
zalez et al. 2015a). Both models correspond to different outcomes
regarding the radial-drift barrier for non-growing grains according
to Laibe et al. (2012): dust grains are expected to survive the barrier
in the CTTS disc but not in the Flat disc. We study both in this work
to examine whether porosity impacts this behaviour. The different
parameters of those disc are given in Table 1.

2.2 Drag regimes and drift

The differential velocity between gas and dust creates an aerody-
namic friction. Grains are in different drag regimes according to

how their size s compares to the mean free path of gas molecules
λ. Stepinski & Valageas (1996) give the expression of the gas dy-
namical viscosity as a function of λ as

µg =
1
2
ρg λ cg, (1)

where

cg =

√
kB Tg

mg
(2)

is the gas sound speed, with mg the mean gas molecule mass. This
yields

λ =
2µg

ρg cg
. (3)

The Chapman-Enskog theory provides a refined calculation of µg.
In the Sutherland model, which describes rigid elastic spheres with
weak mutual attraction, it can be approximated as

µg =
5
√
π mg cg

64σmol
(4)

(Chapman & Cowling 1970), where σmol = 2 × 10−19 m2 is the
cross-section of the H2 molecule, and we take mg = 2.32 mH =

3.883038752 × 10−27 kg. When s < 9λ/4, the grain is in the Ep-
stein drag regime (Epstein 1924) and when s > 9λ/4, it is in the
Stokes regime (Whipple 1972). In those regimes, the grain’s Stokes
number can be expressed as

St =




ρs φ s
ρg cg

ΩK , (Epstein)

2 ρs φ s2

9 µg
ΩK , (Stokes)

(5)

where ρs is the bulk density of the grain and ΩK is the Keplerian
angular velocity. φ is the grain filling factor and will be discussed
in Section 2.4. Note that some authors use the gas sound speed
while others use the mean thermal velocity of gas molecules in the
calculation of the drag force in the Epstein regime. We use the for-
mer. The resulting expressions for St differ by a factor

√
π/8, of

order unity. In the Stokes regime, even though the Stokes number
would depend on the Reynolds number Re (Whipple 1972), we de-
liberately do not use the Re dependency of the Stokes number for
large Re for the sake of simplicity as it would require iterations to
calculate it (Re depends on the differential velocity between gas
and dust, which in turn depends on the stopping time, which is a
function of Re). This amounts to limiting ourselves to the linear
Stokes drag. Similarly, Okuzumi et al. (2012) neglected the high-
Re domain of the Stokes regime (also known as the Newton drag
regime) for simplicity. They showed that this somewhat accelerates
dust growth but concluded that it has little effect of the ability of
porosity to help grains to survive the radial-drift barrier. Addition-
ally, the transition to the Newton regime would only occur in the
inner disc regions for bodies larger than ∼ 100 m, for which self-
gravity would start to be important and assist their growth. How-
ever, this is out of the scope of this paper (see Section 2.5.2).

This friction force makes the dust settle down to the mid-plane
and drift towards the star. Nakagawa et al. (1986) gave the dust
radial velocity as

vd,R = −
St

(1 + ε )2 + St2
η vK , (6)
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where vK is the Keplerian velocity and η the sub-Keplerian param-
eter defined as

η = −

(
Hg

R

)2 ∂ ln Pg

∂ ln R
, (7)

with Hg the gas scale height and Pg the gas pressure. From equa-
tion (6), we can find again that both small and large grains, with
small and large St values, drift slowly. We can also infer that dust
can be slowed down by increasing the dust-to-gas ratio ε .

2.3 Growth model

In this study, we only consider icy dust with ρs = 917 kg m−3.
Indeed, water ice can be found in large quantities exterior to the
snow line (van Dishoeck et al. 2014). Furthermore, in those regions,
water can condense on grains surface, change the sticking proper-
ties and promote growth over bouncing or fragmentation (Gundlach
et al. 2011; Gundlach & Blum 2015). Silicate grains have a frag-
mentation threshold ∼ 1 m s−1 while icy dust fragments for a rela-
tive velocity larger than several 10 m s−1 (Blum & Wurm 2008; Ya-
mamoto et al. 2014). While recent laboratory experiments (Gund-
lach et al. 2018; Musiolik & Wurm 2019) found lower surface en-
ergies for water ice than previously used at low temperatures, thus
suggesting that ice is not more resistant than silicates, they dis-
agree with the tensile strengths measured in numerical simulations
by Tatsuuma et al. (2019). Further investigation is thus needed be-
fore the issue can be settled. Thus, in this work we focus on pure
growth and neglect bouncing and fragmentation, similarly to Krijt
et al. (2016). This also allows to better understand the influence of
porosity on these physical processes separately. The actual value
of the fragmentation threshold of water ice therefore does not af-
fect the results presented here. Bouncing and fragmentation will be
taken into account in a followup paper.

We use a grain growth model with a locally mono-disperse
mass distribution, in which collisions are considered to occur be-
tween identical grains. Details on the model implementation and a
discussion on its assumptions can be found in Laibe et al. (2008).
As fragmentation is not taken into account in this study, every col-
lision leads to sticking. Stepinski & Valageas (1997) gave the ex-
pression of the variation of a grain’s mass with time as it doubles
in a mean collision time τcoll, i.e.

dm
dt
≈

m
τcoll

= 4πs2 vrel ρd = 4πs2 vrel ε ρg . (8)

Grains collide with a relative velocity vrel transmitted from gas tur-
bulent motion to the dust by aerodynamic drag. We use the Stepin-
ski & Valageas (1997) model, in which

vrel =
√

23/2 Ro α

√
Sc − 1
Sc

cg, (9)

where Ro is the Rossby number for turbulent motions, taken equal
to 3, and Sc the Schmidt number of the grains, whose expression is

Sc = (1 + St)

√
1 +
∆v2

v2
t
, (10)

where vt =
√

21/2 Ro α cg denotes the turbulent velocity. ∆v =
vd − vg is the differential velocity between dust and gas. In our
simulations, ∆v appeared to be negligible compared to vt (see also
Laibe et al. 2008) and vrel can be approximated as

vrel '
√

23/2 Ro α

√
St

1 + St
cg. (11)

The reader is referred to Laibe et al. (2008) for a discussion of the
difference between equation (10) and the expression of Youdin &
Lithwick (2007), and to Laibe (2014) for a more general discussion
on various models for relative velocities.

The collisional kinetic energy Ekin for identical grains is then
given by

Ekin =
1
2

m∗ v2
rel =

1
4

m v2
rel , (12)

where the reduced mass m∗ = m/2 for identical grains.

2.4 Model for porosity evolution during growth

We consider grains as aggregates of elementary monomers. Those
monomers are compact spheres, with a density ρs and a radius a0.
The volume filling factor φ is then used to characterise how porous
the grains are. It is defined as the ratio between the volume occu-
pied by matter Vmat to the total volume V of a grain:

φ =
Vmat

V
=

ρ

ρs
(13)

where ρ is the density of the grain. Compact grains have φ = 1
while φ ∼ 0 corresponds to very fluffy aggregates.

Real porous aggregates can have arbitrary shapes and mass
distributions. Parameters such as radius, cross-section or volume
are therefore ill-defined. The equations presented in Sections 2.2
and 2.3 were initially derived for compact spherical grains. In this
work, in order to be able to use them, as well as equation (13), we
assume that a porous aggregate can be represented by an equivalent
spherically-symmetric and non-fractal collection of monomers in
order to describe its spatial, size and porosity evolution.

2.4.1 Collisional evolution

Small grains, with low velocities (Weidenschilling & Cuzzi 1993)
meet slowly and stick, it is the “hit-and-stick” regime. Such colli-
sions make the grains more porous, or decrease their filling factor,
as their total volume grows faster than that occupied by matter (see
Okuzumi et al. 2012). When grains collide with a kinetic energy
larger than the rolling energy Eroll (see equation A4), i.e. the en-
ergy needed for one monomer to roll over 90◦ on the surface of
another monomer (Dominik & Tielens 1997), the formed aggre-
gate dissipates the extra energy by compressing. Thus, the grain
still becomes more porous, but less than in the hit-and-stick regime
(Okuzumi et al. 2012). Thanks to numerical simulations of colli-
sions, Suyama et al. (2008) have expressed the filling factor of the
grain after a collision φf in those two regimes as a function of pa-
rameters before the collision such as the kinetic energy Ekin or the
filling factor φi of colliding grains. However, this formula is recur-
sive and cannot be used in our simulations where a time step cor-
responds to any number (not necessarily an integer) of collisions.
Thus, to describe the evolution of the filling factor during colli-
sional growth φcol, we needed to modify the Suyama et al. (2008)
model to make it continuous and non-recursive. This amounts to
obtaining an expression for φf only as a function of grain mass m
and disc quantities. The details of our calculations and approxima-
tions are presented in Appendix A. Our resulting expressions for
φcol are:

(i) hit-and-stick

φh&s =

(
m
m0

)−0.58
, (14)

MNRAS 000, 1–13 (2020)
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where m0 =
4
3πa3

0 ρs is the monomer mass.
(ii) collisional compression: four cases need to be considered

depending on the drag regime, Epstein or Stokes, and whether St <
1 or St > 1

φEp−St<1 =
(
21/5 − βEp

)−3/8
β−5/8

Ep 21/8

× *
,

3
10

(3/5)5 23/2 Ro α m0 cg ρs a0ΩK

8 ρg b Eroll
+
-

3/8 (
m
m0

)−1/8
, (15)

φSt−St<1 =
(
21/5 − βSt

)−1/3
β−2/3

St

× *
,

3
10

(3/5)5 23/2 Ro α m0 c2
g ρs a2

0 ΩK

36 µg b Eroll
+
-

1/3

, (16)

φEp−St>1 = φEp−St<1(M4)
(

m
M4

)−1/5
, (17)

φSt−St>1 = φSt−St<1(M5)
(

m
M5

)−1/5
, (18)

where M4 and M5 are the masses for which St = 1, respectively in
the Epstein and Stokes regimes. They are given in equations (A16)
and (A17).

2.4.2 Static compression

Kataoka et al. (2013a) have shown that very fluffy grains can be
statically compressed by an applied compressive strength P. The
filling factor is then linked to P as

φ = *
,

a3
0

Eroll
P+

-

1/3

. (19)

Thus, the gas drag force Fdrag applies a compressive strength
Pdrag = Fdrag/(π s2) that can compact the grain up to a value φgas
depending on the drag regime:

(iii) gas drag compression

φgas =




(
m0 ∆v

π Eroll

ρg cg

ρs

)1/3
, (Epstein)

*
,

6 a2
0 ∆v µg

Eroll
+
-

3/8 (
m
m0

)−1/8
. (Stokes)

(20)

Finally, massive enough grains can be compressed by their self-
gravity up to a filling factor φgrav given by Kataoka et al. (2013b)
as:

(iv) self-gravity compression

φgrav = *
,

G m2
0

π a0 Eroll
+
-

3/5 (
m
m0

)2/5
. (21)

The filling factor of dust naturally evolves as φcol during col-
lisions until the grain is fluffy enough to be compressed by the gas
drag or its self-gravity and then its filling factor is equal to φgas or
φgrav respectively. Therefore, the maximum of φcol, φgas and φgrav
provides the smallest possible value of the filling factor. The dif-
ferent regimes encountered by growing grains at fixed locations are
summarised in Figure B1.

2.5 Numerical simulations

In order to model the evolution of porous dust grains in protoplan-
etary discs, we use two codes with different properties.

2.5.1 The PACED code

We have developed the PACED1 code, a 1D C++ code to model
the behaviour of a single grain at a time in a stationary gas disc de-
scribed with power laws with a constant dust-to-gas ratio of 10−2.
This code contains radial drift with equation (6), the growth model
described in Section 2.3 and porosity evolution with the model pre-
sented in Section 2.4.

2.5.2 3D SPH code

We also use the 3D, two-phase (gas+dust), SPH (Smoothed Particle
Hydrodynamics) code described in Barrière-Fouchet et al. (2005).
The code computes the dynamics of both phases, which interact
via aerodynamic drag in the Epstein regime, including the back-
reaction of dust on gas. (In contrast to PACED, this code does not
use equation (6) but calculates the forces on each SPH particle and
their ensuing motion.) It reproduces the properties of turbulence
(Arena & Gonzalez 2013). Grain growth was implemented in Laibe
et al. (2008) and fragmentation in Gonzalez et al. (2015a). Self-
gravity is not included. Detailed discussions of the code properties
can be found in Fouchet et al. (2007) and Gonzalez et al. (2017a).
In this work, we have added the implementation of the Stokes drag
regime to consider the evolution of the largest solids. We have also
included our model of porosity evolution.

We start the simulations presented here with 200,000 SPH gas
particles arranged to reproduce the power laws presented in Sec-
tion 2.1 and let the disc relax for 24 orbits at R = 100 AU for
the CTTS disc and R = 40 AU in the Flat disc. Then, the same
number of SPH dust particles is injected at the same locations and
velocities as the gas particles, to recreate an initial dust-to-gas ratio
ε = 10−2. Both sets of particles are then evolved together. Previ-
ous work with the same code (e.g. Barrière-Fouchet et al. 2005;
Fouchet et al. 2007; Pignatale et al. 2019) has shown that conver-
gence is reached at lower particle numbers. We also verify that the
resolution criterion from Laibe & Price (2012) is met. Each SPH
dust particle represents a collection of identical physical dust grains
(locally mono-disperse assumption, see Section 2.3) and carries in-
trinsic dust properties such as mass, filling factor and thus, size,
that are described according to the models presented in Sections 2.3
and 2.4. In particular, we chose a uniform initial size s0 = 10 µm
for all grains to shorten the computation times. Indeed, we have
previously shown that very small grains grow fast and quickly for-
get their initial size (Laibe et al. 2008). Their corresponding initial
filling factor and mass, which depend on their location, are pre-
calculated with the PACED code by evolving compact monomers
of size a0 without radial drift. The simulations are stopped when the
largest grains reach kilometre sizes, for which self-gravity becomes
important, because both our growth model and our SPH code do not
take it into account. Obtaining estimates of the fraction of dust that
would turn into planetesimals or of properties of the resulting plan-
etesimal population is therefore not feasible in the framework of
our study.

1 for Porous And Compact dust Evolution in Discs
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Table 2. Comparison between our PACED and 3D SPH codes.

Characteristics PACED 3D SPH

dynamics X X

growth X X

porosity X X

turbulence X

disc evolution X

collective effects X

2.5.3 Comparison

As summarised in Table 2 and contrary to the PACED code, our 3D
SPH code models the evolution of the gas disc and takes into ac-
count the collective effects. Indeed, dust drift can change the local
dust-to-gas ratio which has an impact on dust growth and dynam-
ics, while it is taken constant in the PACED code. However, the
3D SPH code requires long calculation times and is not practical to
study a large variety of cases. Thus, we use the PACED code to test
our model and estimate the dust behaviour on larger time scales.
Moreover, in the PACED code, disc quantities such as gas density
or differential velocity between gas and dust are obtained from an-
alytical prescriptions while in the 3D SPH code, they are computed
self-consistently (Barrière-Fouchet et al. 2005).

3 RESULTS

In Sections 3.1 and 3.2, we present how porosity evolves during
dust growth and how it impacts growth and dynamics in the CTTS
disc with monomer size a0 = 0.1 µm. In Section 3.3, we show the
influence of the monomer size a0 on porosity and thus, on growth
in the Flat disc.

3.1 Evolution of the filling factor

Figure 1 shows the evolution of the filling factor of grains of dif-
ferent initial positions as a function of their mass as they grow and
drift radially, computed with the PACED code. The curves have
similar shapes to those found by Kataoka et al. (2013b) for grains
at fixed distances from the star (see also our model at fixed dis-
tances in Fig. B1 for comparison): φ first decreases due to colli-
sions, then increases again with gas drag compression before self-
gravity is strong enough to compact the grains further. However,
inwards drifting grains experience different disc conditions, and in
particular larger gas densities, than static ones and are all the more
compacted by gas drag as they are close to the star. Their minimum
filling factor, ∼ 104, is somewhat larger and it is reached for smaller
masses.

The time evolution of the grain filling factor computed with
the 3D SPH code is displayed in Fig. 2. Initially, 10-µm sized grains
have a filling factor of ∼ 10−1 – 10−2, according to their initial
location in the disc. As dust grows, representative dots move to
the right. At first, grains are in the collisional compression regime.
This regime tends to make grains more and more porous until they
are fluffy enough to be compressed by gas drag. Note that the gas
drag compression regime has a different shape than that computed
with the PACED code (Fig. 1), illustrating the differences between

Figure 1. Filling factor as a function of mass in the CTTS disc for drifting
grains of different initial positions R0 with the PACED code. Arrows show
the different regimes encountered by the grains.

Figure 2. Time evolution of the filling factor as a function of mass for grains
in the CTTS disc with the 3D SPH code. Representative dots move to the
right as grains grow. The filling factor decreases thanks to the collisional
expansion regime (green arrow) then increases because of the compression
due to the gas drag (blue arrow).

both codes listed in Section 2.5.3. In the top left panel, some dots
move upwards with a quasi constant mass. Those dots correspond
to grains that are quickly compacted by gas drag as they are ac-
creted into the central star. The minimum value of φ, also ∼ 104,
is consistent with the numerical simulations of collisions of Kempf
et al. (1999).

Figure 3 shows the distribution of the filling factor through the
disc. A vertical sorting of the filling factor occurs: more compact
grains are located along the disc surface while grains are fluffier
and fluffier as they are closer to the mid-plane. Indeed, grains grow

MNRAS 000, 1–13 (2020)
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Figure 3. Time evolution of the dust distribution in the CTTS disc with the
3D SPH code. The colour bar represents the filling factor.

Figure 4. Grain size as a function of the distance from the star in the CTTS
disc for different initial positions R0 with the PACED code, for compact
(left) and porous (right) dust. The red dashed line marks the limit between
the Epstein and Stokes regimes. The symbols show the value of the size at
the same time steps as in Fig.5.

more rapidly in denser regions (equation 8) and thus reach lower
filling factors in the collisional regime. The same effect is seen
in the radial direction. However, grains in the disc innermost re-
gions are compacted because it is there that gas drag compression
is mostly effective, where the gas is dense enough.

3.2 Influence on grain size and dynamics

Figure 4 compares the radial evolution of the size of compact
and porous grains, computed with the PACED code. Compact and
porous grains both have a qualitatively similar behaviour: they first
grow at a quasi-constant distance from the star until they approach
an optimal size sSt=1, for which St = 1 and radial drift is the fastest.
They then drift rapidly inwards while continuing to grow before
slowing down close to the star, where they finally keep growing
while drifting very little. These three stages were described and ex-

Figure 5. Radial grain size distribution in the CTTS disc obtained with the
3D SPH code. Porous grains (right) can reach larger sizes than compact dust
(left). The colour bar represents the filling factor. The red dashed line in the
top left corner separates the Epstein (below the line) and Stokes (above
the line) drag regimes. Four snapshots at 100, 2490, 4880 and 8090 yr are
shown, from top to bottom.

plained by Laibe et al. (2008). During the second stage, compact
grains gain 1 to 3 orders of magnitude in size before reaching the
disc inner regions, depending on their initial location, while porous
grains can gain up to 4. Indeed, since sSt=1 is larger for porous
grains (see Fig. 9), they have a larger cross section and grow more
rapidly (equation 8): the slope in Fig. 4 is steepest. These results
are in agreement with those found by Okuzumi et al. (2012).

The time evolution of the radial grain size distribution of com-
pact and porous grains computed with the 3D SPH code is plotted
on Fig. 5. Here as well, porous grains experience a quicker growth
than compact grains. In 8090 yr, in the inner disc, the largest porous
grains have planetesimal sizes and are in the Stokes drag regime
while compact grains hardly reach one meter and stay in the Ep-
stein regime. Furthermore, growth is very slow for compact dust
beyond 100 au and grains cannot grow beyond 100 µm. On the
contrary, porous dust can reach centimetre sizes up to 300 au and
metre sizes interior to 100 au. The right column of Fig. 5 shows that
small grains are only slightly porous. As they grow, they become
fluffier and fluffier and are compressed in the inner regions of the
disc as seen in Fig. 3 as well.

Fig. 6 shows the time evolution of the dust spatial distribution
of compact and porous grains computed with the 3D SPH code.
In both cases, dust is vertically size-sorted. Larger solids can be
found close to the mid-plane while small grains are distributed over
a larger scale height. In the porous case, the mid-plane is filled with
∼ 100 m solids from the inner edge out to ∼ 50 au. Two differences
on dynamics can be also spotted out. After 8090 yr, the disc made
of compact dust is approximately 20 au less radially extended than
with porous grains. Moreover, this disc is also more settled com-
pared to the one with fluffy dust. Indeed, porous grains can stay
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Figure 6. Time evolution of the dust distribution in the CTTS disc obtained
with the 3D SPH code. The colour bar represents the grain size. Porous
grains (right) are less settled than compact dust (left). Four snapshots at
100, 2490, 4880 and 8090 yr are shown, from top to bottom.

coupled with the gas phase (St � 1) at larger sizes than compact
grains, they settle down and drift inward slightly less rapidly.

3.3 Influence of monomer size

Figure 7 compares the time evolution of the filling factor during
growth for grains made of monomers of different sizes a0 = 0.1
and 1 µm in the Flat disc. The behaviours are similar to the CTTS
disc (Fig. 2). Initially, grains are in the collisional expansion regime
then are compacted because of the gas drag. Grains reach similar
masses in both cases, large enough to be compressed by their self-
gravity as indicated by the red arrow. All these regimes depend
on the monomer size and the filling factor increases when a0 in-
creases, see equations (14)–(21). Thus, 10-µm sized grains com-
posed of 1-µm monomers are more massive than those made of
0.1-µm monomers. One can observe that gas drag compression is
almost as efficient in both cases, i.e. it compresses grains to similar
filling factors. However, since grains made of large monomers are
already more compact, their change in filling factor is smaller dur-
ing that phase. In the same way, self-gravity starts to compact the
dust at a larger mass.

The radial size distribution is compared in Fig. 8. At first, the
difference in filling factor does not affect much the radial extension
of the disc, i.e. the radial drift is not influenced by the monomer
size. The main impact of the porosity change is on growth. Since
grains composed of large monomers are less porous, they grow
less efficiently and produce less large grains. Dust made of 0.1-
µm monomers can produce planetesimals in the innermost 100 au
of the disc while it is only the case over a few au with of 1-µm
monomers.

Figure 7. Time evolution of the filling factor as a function of mass for
grains in the Flat disc obtained with the 3D SPH code. Porous grains that
are made of 0.1 µm monomers (left) can become more porous than grains
formed with 1 µm monomers (right). However, the filling factor has a sim-
ilar behaviour in both cases: it decreases thanks to the collisional expansion
regime (green arrow) then increases because of the compression due to the
gas drag (blue arrow) and finally, grains reach the self-gravity compression
regime (red arrow). Four snapshots at 44, 6470, 12900 and 19330 yr are
shown, from top to bottom.

Figure 8. Time evolution of the radial grain size distribution in the Flat disc
obtained with the 3D SPH code. Aggregates made of 0.1-µm monomers
(left) can reach larger sizes all over the disc than dust made of 1-µm
monomers (right). The colour bar represents the filling factor. Four snap-
shots at 44, 6470, 12900 and 19330 yr are shown, from top to bottom.
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4 DISCUSSION

4.1 Porosity in the Solar System

Okuzumi et al. (2012) studied the possibility of forming planetes-
imals from direct growth of porous dust. This idea was then com-
pleted by Kataoka et al. (2013b) who added the compression due
to gas drag and self-gravity of massive solids. They have thus de-
termined the evolution of the filling factor during growth but with-
out drift and collective effects in a Minimum Mass Solar Nebula
(MMSN) disc. With our continuous model, the values we obtain
are generally in a good agreement with those from Kataoka et al.
(2013b). The minimum value reached by the filling factor, ∼ 10−4,
is however slightly larger than that of Kataoka et al. (2013b) be-
cause our grains drift to regions where the gas density is larger, and
hence gas drag compression stronger.

The Solar System still contains porous bodies today. Evidence
has been found for low densities in asteroids, such as 253 Mathilde
(Housen et al. 1999; Veverka et al. 1999), or meteorites (e.g. Brown
et al. 2002). This may even be a more widespread property, with the
recent suggestion that the first known interstellar object to visit our
system, 1I/‘Oumuamua, is a fractal dust aggregate with an ultra-low
density of 10−2 kg m−3 (Flekkøy et al. 2019). Spatial exploration
and measurements on comets have shown that these objects made
of ice and silicates are also porous. Their average density falls be-
tween 400 and 600 kg m−3 (Blum et al. 2006; A’Hearn 2011). As an
example, Sierks et al. (2015) determined that the density of comet
67P/Churyumov-Gerasimenko is of the order of 470 kg m−3. The
Rosetta probe orbiting comet 67P and its lander Philae have pro-
vided a wealth of data on this body. In particular, they have shown
that its surface is covered with solids whose size varies from tens
of micrometers to tens of meters (Blum et al. 2017). Among them,
millimiter-sized grains with a density < 1 kg m−3 and a filling fac-
tor φ ∼ 10−3 were found with the GIADA instrument (Fulle et al.
2015). As can be seen on Fig. 5, our results show that grains with
similar sizes and filling factors are present over large regions in the
disc. While such low filling factors can seem surprising at first, they
are compatible with the measurements made on comet 67P.

4.2 The Stokes regime, a key point

One of the main theoretical problems for dust evolution is the
radial-drift barrier, i.e. the rapid inwards drift of grains with St = 1
leading to dust accretion onto the star. A solution to this problem
is either to stop the grains from drifting or for them to grow from
St � 1 to St � 1 (for which the drift is slow) in a time shorter than
the drift timescale.

Moreover, Laibe et al. (2012) have shown that if dust reaches
St > 1 in the Stokes drag regime, it remains in the disc if q ≤ 2/3.
Discs satisfying this condition represent 90% of discs observed by
Andrews & Williams (2005, 2007). The Stokes regime has two ad-
vantages: the Stokes number increases as grains get closer to the
star (while it decreases in the Epstein regime) and varies as s2

(while as s in the Epstein regime), see equation (5)2. Thus, in the
Stokes drag regime, dust can reach large Stokes numbers more eas-
ily. Physically, it means that the grain is more efficiently slowed
down by the stronger gas drag in the inner parts of the disc. Conse-
quently, reaching the Stokes drag regime with St ∼ 1 is a key point

2 For a power-law disc, St ∝ s Rp in the Epstein regime and St ∝
s2 R(q−3)/2 in the Stokes regime.

Figure 9. Optimal size, i.e. size for which St = 1, as a function of the
distance from the star in the CTTS disc for different filling factor values.
For a given filling factor, below the line, grains have St < 1 and above it
St > 1. The red line represents the limit between the Epstein and Stokes
regimes for s = 9λ/4. Above this line, grains are in the Stokes regime and
St ∝ s2 while below, they are in the Epstein regime and St ∝ s.

for grains to remain in most discs and thus survive the radial-drift
barrier.

In order to understand the influence of porosity on the Stokes
number and the drag regime, one needs to compare two character-
istic sizes:

• the optimal size, sSt=1, for which the grain Stokes number
reaches unity, i.e. the size corresponding to the fastest drift;
• 9λ/4, the transition size between the Epstein and Stokes drag

regimes.

In a power-law disc, the optimal size sSt=1 ∝ φ−1 R−p in
the Epstein regime and sSt=1 ∝ φ−1/2 R(3−q)/4 in the Stokes
regime. 9λ/4 does not depend on the filling factor and varies as
Rp+(3−q)/2. If sSt=1 < 9λ/4 (resp. sSt=1 > 9λ/4), grains reach the
maximal drift velocity in the Epstein (resp. Stokes) regime.

Figure 9 shows the optimal size for different filling factors
and the transition between both drag regimes. For compact grains,
the transition between the Epstein and Stokes regimes occurs nec-
essarily with St > 1. It means that compact grains experience a
maximal inwards drift (and accretion onto the star) without the
chance to transition to the Stokes regime. On the contrary, for grains
with a filling factor lower than 0.5, there exists a region in the in-
ner disc where porous grains are in the Stokes drag regime with
St ≤ 1, which is more and more extended as grains become fluffier
and fluffier. Thus, the Stokes number of those grains can increase
rapidly during their growth, allowing them to decouple from the
gas and survive the radial-drift barrier.

4.3 Porosity and growth

As discussed previously, porosity can have an impact on dust spa-
tial evolution and growth. According to Figs. 4 and 5, compact and
porous grains have a qualitatively similar growth behaviour in three
stages. The optimal size for compact grains is about 0.1 mm. Since
the optimal size depends on the grain filling factor, porous grains
can reach larger sizes before starting to drift rapidly. For instance,
porous grains with φ = 10−3, order of magnitude of the average
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Figure 10. Azimuthally-averaged radial profiles of the dust-to-gas ratio:
vertically integrated (top) and in the mid-plane (bottom) for different time
steps obtained with a 3D SPH simulation of the CTTS disc. Porous grains
are represented by solid lines and compact grains by dotted lines. In the
PACED code, the dust-to-gas ratio has a constant value of 10−2.

filling factor over the disc (Fig. 5), have an optimal size 103 times
larger than for compact grains. Thus, they can grow up to ∼ 10 cm
before drifting significantly. This average ratio of 103 for porous
grains sizes can be seen in Figs. 4 and 5. Generally, porous dust
is characterised by a more efficient growth during the three steps
described previously as their collision cross-section is larger than
for compact grains. Consequently, porosity helps grains to reach
larger sizes and transition to the Stokes drag regime in the inner
disc, as seen in Figs. 4 and 5. We discussed in Section 4.2 on how
the Stokes drag regime is important for the dust survival in the disc.

Porosity also allows to form 100 m – 1 km planetesimals in
the mid-plane in the innermost 100 au, as shown by Figs. 4 and 6,
in less than 104 yr. Even if our disc model is different from the one
Krijt et al. (2016) use, we find drift and growth timescales for both
compact and porous grains similar to theirs. Those planetesimals
are thought to be building blocks to form giant planet cores and our
results can be used as a starting point for simulations of giant planet
formation (Kobayashi et al. 2016; Kobayashi & Tanaka 2018).

4.4 On drift and the importance of collective effects

We can spot a different behaviour for compact dust in the very in-
ner disc. With the PACED code, compact dust is accreted onto the
star without growing larger than the decimetre (Fig. 4), while we
find in 3D SPH simulations that compact solids can remain in the
very inner disc where they can reach metre sizes (Fig. 5). This phe-
nomenon can be explained by the different calculation (and influ-
ence) of the local dust-to-gas ratio ε in our two codes. Indeed, Nak-
agawa et al. (1986) have shown (via equation (6)) that dust drift
is slowed down when the local dust-to-gas ratio increases thanks
to dust collective effects. Moreover, the PACED code uses a con-
stant ε of 10−2 while in the 3D SPH code, this quantity is directly
calculated using the local dust and gas densities and so may vary.
Figure 10 reports the value of the dust-to-gas ratio at several times
of the simulation with our 3D SPH code. Initially, ε = 10−2 in the
whole disc as in the PACED code but as grains grow, they drift in-
wards and the dust-to-gas ratio increases in the innermost few au

where its vertically integrated value can reach 10−1. In the mid-
plane, it can even exceed unity thanks to vertical settling. Thus, the
drift is slowed down and growth accelerated as the dust phase is
denser. Those two effects help compact grains to reach meter sizes
at the edge of the disc. However, they are not strong enough to al-
low them to reach the Stokes regime.

Such an increase in the dust-to-gas ratio in the inner disc was
not seen for compact grains by Birnstiel et al. (2010), Okuzumi
et al. (2012), or Krijt et al. (2016), whose framework and assump-
tions are very different from ours. These previous studies are all
one-dimensional and compute the vertically-averaged dust evolu-
tion in the radial direction while keeping the gas distribution fixed
(amounting to neglecting the back-reaction of dust on gas) and as-
suming vertical hydrostatic equilibrium for the gas and a prescrip-
tion for the dust vertical scale-height as a function of turbulence.
Okuzumi et al. (2012) further assess the impact of back-reaction on
the velocities of gas and dust and on collision velocities and find it
to be negligible. However, it is not a full implementation of back-
reaction as the background gas structure is still kept constant. For
compact dust, all these studies found that grains grow until they
reach St = 1 then drift inwards, producing a drift-limited size dis-
tribution and a flat dust-to-gas ratio profile. On the contrary, our
simulations are three-dimensional and compute the self-consistent
evolution of both gas and dust, including back-reaction of dust on
gas. It has been shown that back-reaction, assisted by an increase of
dust density close to the mid-plane due to vertical settling, is able
to slow down the dust radial drift enough to allow grains to grow
to sizes for which St > 1, slow down their drift further, and pile up
(e.g. Laibe et al. 2008; Gonzalez et al. 2015b, 2017a), something
models neglecting back-reaction are unable to capture. The impor-
tance of back-reaction has further been shown by several authors
(e.g. Kanagawa et al. 2017; Dipierro & Laibe 2017; Dipierro et al.
2018). The reader is referred to Gonzalez et al. (2017a) for a com-
parison of dust-to-gas ratio profiles with and without back-reaction
in the case when dust fragmentation is included.

For porous dust, Okuzumi et al. (2012) and Krijt et al. (2016)
found that grains grow rapidly, overcome the radial-drift barrier,
then pile up, leading to an increase of the dust-to-gas ratio in the
inner disc. This is exactly what we find in this study, see Sec-
tion 3.2 and Fig. 10. However, where Okuzumi et al. (2012) saw
an increase of their one-dimensional ε of a factor of several, our
azimuthally-averaged, vertically-integraged ε is enhanced by one
order of magnitude. Porous grains, similarly to compact grains, ex-
perience collective effects, which play an important role in setting
their spatial distribution. Additionally, even though porosity can
slighty slow down vertical settling and radial drift, its main effect
remains a strong acceleration of growth (Section 3.2), which causes
the transition to the Stokes drag regime. As a result, porous grains
decouple from the gas and pile-up sooner in their evolution, there-
fore at larger distances from the star, than compact grains. This is
reflected in the locations of the dust-to-gas ratio maxima in Fig. 10.
The combination of collective effects and of the Stokes regime also
results in a larger dust-to-gas ratio than when dust back-reaction is
not included.

5 CONCLUSION

The growth from sub-µm monomers to planetesimals is hampered
by several barriers such as the radial-drift barrier. The dust needs to
decouple from the gas in order to remain in the disc. In this work,
we investigate how porosity can act on both grain growth and drift
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to overcome this barrier. It amounts to considering simultaneously,
and thus link, the small (collisions) and large (disc) scales. To do
so, we have developed a model of evolution of the filling factor de-
pending on grain characteristics (bulk density, rolling energy, mass)
and disc quantities (gas density, sound speed or temperature). Our
model can be used for codes in which the disc evolution time step
is different from that of individual collisions. We demonstrate that
grains can remain in the disc in most cases if they grow enough to
transition to the Stokes drag regime. Indeed, in this regime, dust can
reach large Stokes numbers and decouple from the gas more easily.
We have shown that compact grains do not grow quickly enough
and stay in the Epstein regime. However, collective effects can slow
them down enough for them to remain in the very inner regions of
the CTTS disc. We find that the growth is accelerated for porous
grains, allowing them to transition to the Stokes regime close to
the star and survive the radial-drift barrier, both in the CTTS and
Flat discs. Furthermore, our study has shown that porous millime-
tre grains have an average filling factor of about 10−3, in good
agreement with measurements made on comet 67P/Churyumov-
Gerasimenko (Fulle et al. 2015). Finally, we find that small plan-
etesimals can be formed by direct coagulation of porous dust in the
innermost 100 au. This result provides a link with the formation of
giant planet cores from planetesimals.
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APPENDIX A: MODEL OF POROSITY EVOLUTION
DURING COLLISIONS

Suyama et al. (2008) have found that the filling factor after collision
φf is related to the filling factor φi and some other quantities such
as the kinetic energy Ekin before collision by

φf =




2φi

[
2.995/6 + (2 − 2.995/6)

Ekin
3 b Eroll

]−6/5
,

for Ekin ≤ 3 b Eroll (hit and stick regime)

2mi
ρs



(3/5)5 (Ekin − 3 b Eroll)

N5
tot b Eroll V10/3

0

+
(
2V5/6

i

)−4


3/10

,

for Ekin ≥ 3 b Eroll (internal restructuring regime)
(A1)

where mi is the mass of colliding grains and Vi their volume. Ntot
is the total number of monomers involved in the collision, V0 is the
volume of a monomer, defined as a compact sphere of radius a0
and b is a numerical factor taken as 0.15 (Okuzumi et al. 2012).

The rolling energy is given by Dominik & Tielens (1997) as

Eroll = 6π2 γ a0 ξcrit, (A2)

where γ is the surface energy of the material. They find that ξcrit,
the critical rolling distance of one monomer on another for en-
ergy dissipation, is of the same order as the critical distance for
monomer separation, given by Chokshi et al. (1993) as

δc =

(
27π2 γ2 a0

2 E2

)1/3

, (A3)

where E is the Young modulus of the material. This leads to

Eroll = *
,

2916 π8 γ5 a4
0

E2
+
-

1/3

, (A4)

where we adopt for ice γ = 7.3 × 10−2 J m−2 and E = 9.4 GPa
(Yamamoto et al. 2014).

In this Appendix, we explain how we extend the Suyama et al.
(2008) equation (A1) to make it continuous in Section A1 for the
hit and stick regime (i.e. Ekin ≤ 3 b Eroll) and in Section A2 for the
internal restructuring regime (i.e. Ekin ≥ 3 b Eroll). It is equivalent

to express φf as a power law of the grain mass m and quantities
of the disc. To do so, we chose to approximate Ekin as either very
small or very large compared to Eroll in order to do a finite expan-
sion. More detailed calculations leading to the equations presented
in this Appendix can be found in Garcia (2018, in French).

A1 Hit-and-stick regime

If we consider Ekin � Eroll, equation (A1) becomes

φf =
2

2.99
φi . (A5)

Thus, we see that the filling factor in the hit-and-stick regime
evolves as a geometrical progression with a common ratio 2/2.99.
We can express the filling factor φf of a grain with a mass m as
a function of the monomer filling factor φ0 and n the number of
collisions to form that grain

φf = φ0

(
2

2.99

)n
. (A6)

After one collision, the grain mass doubles. So after n collisions
from a monomer, m = 2n m0. Consequently, the filling factor φf in
the hit-and-stick regime (thereafter renamed φh&s) can be given as
a function of m

φh&s = φ0

(
m
m0

) ln(2/2.99)/ ln(2)
. (A7)

Since monomers are compact, φ0 = 1. Note that we no longer have
the recursive aspect of equation (A1).

A2 Internal restructuring regime

We consider here that Ekin � Eroll. Using Ntot = 2mi/m0 and
Vi/V0 = 1/φi (mi/m0), equation (A1) becomes

φf = 2−1/5 φi


1 +

(3/5)5 Ekin
2 b Eroll

1

φ10/3
i

(
mi
m0

)−5/3

3/10

. (A8)

However, Ekin depends on φi trough v2
rel and the Stokes number St.

Nevertheless, v2
rel does not vary linearly with the Stokes number.

We consider St� 1 (resp. St� 1) in order to have Ekin ∝ St (resp.
St−1). With this approximation, φf is then related to φi at a certain
power. The power depends on the grain drag regime (Epstein or
Stokes) and if its Stokes number is smaller or larger than 1. As we
want to express φf as φf ∝ mk with k ∈ R, we have for given disc
quantities, φf = 2kφi. We define β = 2−k , and thus φi = βφf .
The values of β are different in Epstein and Stokes regimes and are
taken to fit Eq. (A1) as discussed in Sections A2.1 and A2.2.

A2.1 In the Epstein regime and St < 1

In the Epstein regime with St < 1, the filling factor φf (thereafter
renamed φEp−St<1) of a grain with mass m can be expressed as

φEp−St<1 =
(
21/5 − βEp

)−3/8
β−5/8

Ep 21/8

× *
,

3
10

(3/5)5 23/2 Ro α m0 cg ρs a0ΩK

8 ρg b Eroll
+
-

3/8 (
m
m0

)−1/8
, (A9)

where βEp is the value of β in the Epstein regime. As k = −1/8,
βEp = 21/8.
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Table A1. Definitions of the transition masses.

Transition masses Transition

M1 beginning of the collisional compression
in the Epstein regime with St < 1

M2 beginning of the collisional compression
in the Stokes regime with St < 1

M3 transition from the Epstein regime
to the Stokes regime with St < 1

M4 transition from St < 1 to St > 1
in the Epstein regime

M5 transition from St < 1 to St > 1
in the Stokes regime

A2.2 In the Stokes regime and St < 1

In the Stokes regime with St < 1, the filling factor φf (thereafter
renamed φSt−St<1) of a grain with mass m can be expressed as

φSt−St<1 =
(
21/5 − βSt

)−1/3
β−2/3

St

× *
,

3
10

(3/5)5 23/2 Ro α m0 c2
g ρs a2

0 ΩK

36 µg b Eroll
+
-

1/3

, (A10)

where βSt is the value of β in the Stokes regime. Since φSt−St<1
does not depend on the mass, βSt = 1.

A2.3 In the Epstein and Stokes regimes and St > 1

When the Stokes number St becomes larger than unity, the right
term in the bracket on equation (A8) can be negligible compared
to 1. If St = 1 is reached for a mass M4 (respectively M5) in the
Epstein (resp. Stokes), the filling factor in this regime φEp−St>1
(resp. φSt−St>1) is expressed as

φEp−St>1 = φEp−St<1(M4)
(

m
M4

)−1/5
, (A11)

φSt−St>1 = φSt−St<1(M5)
(

m
M5

)−1/5
, (A12)

where M4 and M5 are respectively given by equations (A16) and
(A17).

A3 Transition masses

In order to know in which regime the grain is, we compare its mass
m with the limit masses in every regime with the algorithm. The
names of those transition masses are reported in Table A1. The
transition masses M1 to M5 are given by

M1
m0
=

[(
21/5 − βEp

)−3/8
β−5/8

Ep 21/8

× *
,

3
10

(3/5)5 23/2 Ro α m0 cg ρs a0ΩK

8 ρg b Eroll
+
-

3/8

1
1
8 +

ln(2/2.99)
ln(2) ,

(A13)

Figure A1. Different regimes of evolution of the filling factor encountered
during collisions according to grain mass and distance from the star in the
CTTS disc. Straight lines represent transitions between regimes. Dashed
lines are used when transitions are no longer operating. The two vertical
dotted red lines illustrate the regimes crossed by grains at 5 and 100 AU.

M2
m0
=

[(
21/5 − βSt

)−1/3
β−2/3

St

× *
,

3
10

(3/5)5 23/2 Ro α m0 c2
g ρs a2

0 ΩK

36 µg b Eroll
+
-

1/3

ln(2)
ln(2/2.99)

, (A14)

M3
m0
=

(
21/5 − βSt

)8/3 (
21/5 − βEp

)−3
β16/3

St β−5
Ep 368/3 8−3

×

(
3

10
(3/5)5 23/2 Ro α m0 ρsΩK

b Eroll

)1/3

c−7/3
g a−7/3

0 ρ−3
g µ8/3

g ,

(A15)

M4
m0
=

(
ρg cg

ΩK ρs a0

)4
2−1/3 β5/3

Ep

(
21/5 − βEp

)
× *

,

3
10

(3/5)5 23/2 Ro α m0 cg ρs a0ΩK

8 ρg b Eroll
+
-

−1

, (A16)

M5
m0
= *

,

9 µg

2ΩK ρs a2
0

+
-

3/2

β1/3
St

(
21/5 − βSt

)1/6

× *
,

3
10

(3/5)5 23/2 Ro α m0 c2
g ρs a2

0 ΩK

36 µg b Eroll
+
-

−1/6

. (A17)

Note that those expressions depend only on the distance from the
star R in the case of a power-law disc model.

The different transition masses are plotted in Fig. A1 for the
CTTS disc. As shown in Figs. A1 and A2, all the dust begins to
grow in the hit-and-stick regime before getting compacted by colli-
sions in the Epstein drag regime. However, two different cases can
be highlighted: grains in the first tens of AU transition to the Stokes
regime as they grow while further in the disc, they keep growing in
the Epstein regime. Moreover, Fig. A2 exhibits a comparison be-
tween the Suyama et al. (2008) discrete model and our continuous
model. Both models mostly give similar results, allowing the sim-
pler implementation of the continuous model in hydrodynamical

MNRAS 000, 1–13 (2020)
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Figure A2. Comparison of our model of filling factor evolution during col-
lisions (straight cyan lines) with the Suyama et al. (2008) discrete model
(red dots) for grains evolving at fixed positions of 5 au (left) and 100 au
(right) in the CTTS disc.

Figure B1. Grain filling factor as a function of mass in the CTTS disc at dif-
ferent fixed positions R0 with the PACED code. Arrows show the different
regimes encountered by the grains.

codes. Our model deviates from that of Suyama et al. (2008) in two
situations: for Ecin ∼ Eroll and St ∼ 1. In both cases, the filling
factor value we obtain is slightly higher than obtained with the dis-
crete model but this difference is not significant for grains growth
and dynamics and can be neglected.

A4 Algorithm

The algorithm allowing to compute the value of the filling factor
after collisions φcol is detailed in Algorithm 1.

APPENDIX B: POROSITY EVOLUTION OF STATIC
GRAINS IN THE FULL MODEL

Figure B1 shows the evolution of the filling factor of static grains
as they grow at different distances from the star as a function of
their mass, computed with the PACED code. The different regimes
in the collisional evolution (hit-and-stick and collisional compres-
sion) and static compression (gas drag and self-gravity) phases are
identified. Figure B1 is to be compared with Fig. 1, showing the
porosity evolution of radially drifting grains (see Section 3.1).

Algorithm 1 Calculation of φcol
if M2 < M1 then

if m < M2 then
φcol = φh&s

else
if m < M5 then
φcol = φh&s

else
φcol = φSt−St>1

end if
end if

else
if m < M1 then
φcol = φh&s

else
if M4 > M3 then

if m < M3 then
φcol = φEp−St<1

else
if m < M5 then
φcol = φSt−St<1

else
φcol = φSt−St>1

end if
end if

else
if m < M4 then
φcol = φEp−St<1

else
φcol = φEp−St>1

end if
end if

end if
end if

This paper has been typeset from a TEX/LATEX file prepared by the author.
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