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Abstract: With the emergence of numerical sensors in sports, there is an increasing need for tools
and methods to compute objective motion parameters with great accuracy. In particular, inertial
measurement units are increasingly used in the clinical domain or the sports one to estimate
spatiotemporal parameters. The purpose of the present study was to develop a model that can
be included in a smart device in order to estimate the horse speed per stride from accelerometric and
gyroscopic data without the use of a global positioning system, enabling the use of such a tool in both
indoor and outdoor conditions. The accuracy of two speed calculation methods was compared: one
signal based and one machine learning model. Those two methods allowed the calculation of speed
from accelerometric and gyroscopic data without any other external input. For this purpose, data
were collected under various speeds on straight lines and curved paths. Two reference systems were
used to measure the speed in order to have a reference speed value to compare each tested model
and estimate their accuracy. Those models were compared according to three different criteria: the
percentage of error above 0.6 m/s, the RMSE, and the Bland and Altman limit of agreement. The
machine learning method outperformed its competitor by giving the lowest value for all three criteria.
The main contribution of this work is that it is the first method that gives an accurate speed per stride
for horses without being coupled with a global positioning system or a magnetometer. No similar
study performed on horses exists to compare our work with, so the presented model is compared to
existing models for human walking. Moreover, this tool can be extended to other equestrian sports,
as well as bipedal locomotion as long as consistent data are provided to train the machine learning
model. The machine learning model’s accurate results can be explained by the large database built
to train the model and the innovative way of slicing stride data before using them as an input for
the model.

Keywords: speed estimation; support vector machine; overall dynamic body acceleration;
sensors; horse

1. Introduction

According to Article 234 of the International Equestrian Federation (FEI) Jumping Rules, horses
speed for international competitions has to be 350 m per minute at a minimum and 400 m per minute
at a maximum, with exceptions for different kinds of show conditions (FEI, FEI Jumping Rules, 26th
edition, 2019). Speed is therefore a key parameter for success in show jumping competitions and
an important training input. 3D optical motion capture is currently the gold standard for horse gait
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analysis and can be therefore used for measuring stride parameters such as speed [1]. However, the
setting up of its measurement field is time consuming, as well as the data processing when your subject
differs from the plug-in gait reference provided by the software [2]. This leads to an impossible use
on a daily basis or during championships for a rider who wants descriptive results of his/her horse’s
performance and locomotion parameters within a minute or even potentially in real time without
preliminary preparation.

New gait analysis techniques emerged and enabled the development of tools to provide objective
parameters of horses’ motion [3] or to detect lameness [4], using low cost inertial measurement units
(IMU), composed of two sensors: tri-axial accelerometer and tri-axial gyroscope. Those sensors can
be coupled with a tri-axial magnetometer and are therefore called mIMUs. Thanks to data fusion
techniques, the use of a magnetometer helps reduce the IMU bias and leads to better estimation of
distance [5]. IMUs can also be paired with a global positioning system (GPS) unit, to improve the
estimation of locomotion parameters such as speed [6,7]. However, GPS can be badly influenced by
the presence of obstacles [8], and it cannot be used indoors due to signal loss under roofing.

There exist three main families of methods developed to calculate motion characteristics from
IMU signals. Firstly are the model based methods, like inverted pendulum models for speed estimation
in human gait, which simplify complex biomechanical behaviors with a simple mechanical model
and incorporate subject specific information like the limb length [9,10]. Secondly are the signal based
methods, which mainly rely on signal integration [11] and use signal processing methods like the
Butterworth filter to prevent drifting [12]. Those methods need to formulate some realistic assumptions
to correct sensors’ drift and need a zero velocity phase within each stride to be able to apply the
integration process. For example, the method proposed by [1] estimated horse displacement from one
IMU placed on the trunk, assuming that the horse was in a steady state because of a treadmill that
constrained the horse’s motion. In this case, the IMU sensor displacement should follow a closed loop,
and then, the average velocity over a stride should be zero, as well as the average forward-backward
and side-to-side acceleration. Thus, in this context, stride-by-stride mean subtraction of acceleration
and of the calculated velocity before integration enables determination of the integration constants.
This assumption is often invalid in numerous experimental conditions, leading to the non-applicability
of the direct signal integration method.

Thirdly, new methods based on statistical approaches are developed to estimate human
speed [13,14] from IMU data. Those approaches provide accurate estimation of walking speed,
but the regression models’ accuracy seems to be dependent on the range of motion. To prevent the
drift, model extension is proposed to divide data according to the speed regime prior to the speed
estimation [15]. Then, a regression model is fit independently to each range of speed. A support vector
machine (SVM) [16] is used for the classification part. This method refines the regression model’s
accuracy for the slow speed regime. SVM is a machine learning approach that can be used for both
classification and regression. The concept is simple: one has to provide a dataset, called the training
dataset, with a known variable of interest value (for example, IMU signals matched to their associated
speed) that will be used to build a model. The model will then be able to predict the value of the
variable of interest for new data. The model has to be trained with cases that can be encountered in its
future application, without which it will perform poorly.

The objective of this work is to develop a model that can be included in a smart device that can
provide the rider with the movement parameters of his/her horse, in daily routines such as during a
training session, as well as during competition events, using only one IMU fixed in the pommel of
the saddle. This user case differs from existing published work for sports [17] by not using sensor
fusion, not being in a steady state that allows an easy use of direct integration of acceleration signals,
nor using a sensor on the limb, which allows resetting errors at each cycle over short time periods.
A new model, based on the SVM regression method, to predict horse speed at canter from one IMU’s
data only, will be presented. The idea is also to propose a tool that overcomes the limits imposed by
the use of GPS or 3D optical motion capture systems. The accuracy aim for the developed model is
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0.6 m/s (36 m/min) in order to meet the expectations of the show jumping professionals. As far as the
authors know, this accuracy was not reached for horses by the previous mentioned [1,12] methods
using data from one IMU only. The results obtained with this new model will be compared to those of
one signal based method, already used for speed estimation in animal locomotion, the overall dynamic
body acceleration.

2. Materials and Methods

2.1. Data

The database used for model development was made of 3221 canter strides from 58 ridden
jumping horses of different breeds, size (129–176 cm), age (5–18 years old), and different levels of
competition (amateur or professional).

One IMU (LSM6DSL, STMicroelectronics, Geneva, Switzerland) placed in the saddle pommel
close to the horse’s withers was used to measure tri-axial acceleration (range±8 g) and tri-axial rotation
rate (range ±2000 dps) at a sampling frequency of 100 Hz. It was fixed directly to the saddle tree,
before its assembly. Data collected by the IMU were sent via a Bluetooth R© antenna to a smartphone
(iPhone X, Apple Inc., Cupertino, CA, USA) and then stored on an online server.

Two different protocols were used to collect data: the first one was speed measurement for a
straight path, and the second one was speed measurement for a curved path. For both protocols,
reference speed was measured by video cameras or a chronometer and matched to each stride signal to
build the machine learning model. In practice, a stride is defined as the period between two successive
hoof falls of the same leg. For the present work and each protocol, “strides” are defined from the
maximum peak on the Z-axis, which corresponds to the dorso-ventral axis, (cf. Figure 1) of the
raw acceleration data to the next 100 samples, in order to have the same number of points for each
individual regardless of the speed, a necessary condition to use machine learning methods. Therefore,
depending on the horse’s speed, this data segmentation may include in one “stride” more than one
real stride. The authors chose not to re-sample a cycle in order to keep the information on the duration
of the stride to estimate speed. Values from the three axes of the gyroscope and the accelerometer were
extracted according to this cutting with an automated detection algorithm written with MATLAB (The
MathWorks, Natick, MA, USA). Therefore, one “stride” data were 6 × 101 samples (101 values for 1 s
of measurement and 1 column per axis).

Figure 1. Orientation of the IMU’s axes and sensor location (blue dotted lines).

2.1.1. Straight Path

To get reference stride speed, IMU data were synchronized to a 4 camera 2D tracking system
(Imaging Development System, GmbH, Obersulm, Germany), which had a measuring field of 26 m.
Horses were equipped with 10 2D reflecting markers on anatomical landmarks (Figure 2), and their
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speed in the camera’s field was derived from the markers’ 2D trajectories using a custom software
written with MATLAB R© (R2014b). The accuracy of this system was 1.4% of the measured distance [18],
which would correspond to ±2.8 cm for a 2 m measured distance, for example.

Data were gathered for different speeds chosen by the rider (normal, slow, and fast), with and
without jumps, before and after the camera’s field, and with or without ground bars, spaced from
2.5 to 4.5 m, in the field of measurement. Those various conditions were chosen in order to expand
the range of canter within the training set, in order to get closer to the daily training conditions of
jumping horses.

26 m

2 m

4 m

Camera 1 Camera 2 Camera 3 Camera 4

2D kinematic marker
2D kinematic markerfor cross referencingof cameras

1 m

10 m

Figure 2. Field of measurement with 2D video cameras.

2.1.2. Curved Path

Because the 2D tracking system had great accuracy only when the horse displacement
was perpendicular to the cameras field, another measurement protocol was designed for
curve displacement.

A curved path of a known perimeter was defined with cones and with a width small enough to
limit the horse’s possible pathway (Figure 3). The traveled distance was calculated as distance = 2πr,
with r the radius of the circle.

Starting point chronometer TAG HEUER

Finish point chronometer TAG HEUER

Cones

Ground bar

15 m of diameter

3 m

7.5 m

Figure 3. Plan of speed measurement on a curved path for a horse at left hand canter.

Time spent in the curve by the horse was measured with an automatic chronometer (CP 520, Tag
Heuer) triggered at the entrance and at the exit of the curved path (Figure 3). The average speed of the
horse was then derived as speed = distance/time. Each stride of the horse within the curve was then
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matched with the average speed. For example, if the average speed in the curve was 6 m/s and the
horse did 5 strides, then a speed of 6 m/s was assumed for all these strides.

In order to mimic real-life conditions of a jumping course, the whole database was composed of
2906 strides collected in a straight path and 315 strides in a curved path. An example of signals for
one stride is available in Figure 4. The red curve corresponds to a running speed of 8.6 m/s, and the
black one corresponds to a running speed of 5.0 m/s. The signal length for one stride was correlated
to the speed.

Figure 4. One stride acceleration (left) and angular velocity (right) signals for the x-axis (top), y-axis
(middle), and z-axis (bottom). The red curve corresponds to a running speed of 8.6 m/s, and the black
one corresponds to a running speed of 5.0 m/s.

2.2. Speed Measurement Methods

2.2.1. Overall Dynamic Body Acceleration Method

The overall dynamic body acceleration (ODBA) method is a signal based method proposed in [19]
that does not rely on signal integration. The authors developed a parameter named ODBA, calculated
from acceleration in the 3 space directions, which was closely linked to the speed of a walking animal.

In this case, acceleration signals were low pass filtered using a fourth-order Butterworth filter
with a cut-off frequency of 10 Hz. After that, an angle correction was applied to align the Z-axis with
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the gravity vector. Then, for each axis, as specified by [19], the signal mean value was subtracted to
smooth the data. Those values were then converted to absolute positive units. Finally, the resulting
signals were summed up, and a mean ODBA value was calculated for each stride. A linear regression
was then used to link the mean ODBA for one stride to the speed of the stride.

The linear regression was performed with R software (v.3.4.0, Vienna, Austria) [20] and the lm
function of the stats package [20].

2.2.2. Machine Learning Method

Several methods can be tested in order to predict the speed from the IMU signals, such as
Ridge, Lasso, Partial Least Squares (PLS), Principal Component Regression (PCR) and elastic net
regressions [21], random forests, neural networks, SVM [16], and non-parametric [22] and parametric
functional regression [23]. All those methods have been tested on the current database, so we will only
present here the one that gave the best results.

In the present work, the SVM method was the one that gave the best results. SVM is a supervised
learning algorithm that can be used for both classification and regression [16]. Its goal is to find a
function f (x) that has at most ε deviation from the actually obtained target yi for the training data
(here, the speed per “stride”) and at the same time is as flat as possible (in the present case, the
smoothness parameter was fixed to 4). Thus, the model did not consider errors as long as they were
less than ε, but would not accept a deviation larger than this. The proportion of the training set used
to create support vectors was also a tuning parameter of the algorithm, and it was limited to 75% in
the present work, then ε was automatically calculated by the algorithm [24].

To sum up, the six signals collected with the accelerometer and the gyroscope for each “stride”
were matched with the measured reference speed for the stride. This was used as input data to train
the SVM model in order to obtain the best speed estimation for new data in the future. All this process
is illustrated in Figure 5. The model was developed with R software and the svm function of e1071
package [25].

Figure 5. Diagram of the SVM process from training to the speed prediction.
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2.2.3. Methods Comparison

To compare the accuracy of both the ODBA and SVM models, the database was cut into 2 parts: a
training dataset, which was composed of a random sampling of 80% of the database, and the remaining
20% forms the test data set. This sampling prevented over-fitting because the same stride could not be
in both sets. The 2 models were built on the training dataset, and their accuracy was evaluated on the
test dataset.

Comparison between models was done with the calculation of the percentage error in the
estimated speed above 0.6 m/s. This threshold was the minimum satisfactory for this parameter to
make sense for the professionals. Percentage error above the target value of 0.6 m/s was computed as:

% error above target value = 100×∑
i

|Measured speed at stride i− Predicted speed at stride i| > 0.6
Total number of strides

,

with i corresponding to each stride of the test dataset.
Models accuracy was also compared with:

RMSE =

√
∑

i

(Measured speed at stride i− Predicted speed at stride i)2

Total number of strides

and Bland and Altman plots and its 95% limits of agreement [26], which allowed the evaluation of
differences between 2 methods used on the same individuals (here, strides). In this work, the average
differences between each method and reference values obtained with 2D tracking system for straight
path and chronometer for curve path were examined. Bland and Altman analysis and graphs were
built with the bland.altman.plot function from the BlandAltmanLeh R package [27].

3. Results

To avoid results’ fluctuation due to random sampling of the test set, the random sampling process
of the database was repeated 50 times, and the average, minimum, and maximum of percentage error
were estimated for each repetition, as well as the width of the Bland and Altman limit of agreement.

Table 1 shows the mean results for each model. With an average percentage of error of 10.9%
against 51.4% for the ODBA method, the SVM model clearly outperformed its competitor.

The Bland and Altman plot of one SVM repetition is shown in Figure 6 (top), with one circle
corresponding to one stride. The speed predicted by the model and the measured speed of the stride
were compared. The mean bias was zero, which meant that on average, the SVM model output was
close to the measured speed. If the model predictions were perfect, all the points would be aligned on
the zero line. The points that were the farthest from the zero line were the worst predictions. We can
see that for some strides of low speed (below 5 m/s), the SVM model had a tendency to overestimate
their speed; whereas for some strides of high speed (above 5 m/s), the SVM model had a tendency to
underestimate them. Nevertheless, 95% of strides had a bias lower than 1 m/s, which was satisfying
according to this work’s objective to reach an accuracy of 0.6 m/s; whereas ODBA estimations (Figure 6,
bottom) were more variable than SVM ones. The mean bias was also zero, but the 95% confidence
interval was twice the size of the SVM one (cf. Table 1), that is to say high above our objective value.
The ODBA method was more variable than the SVM one, with 95% of strides’ bias lower than 2.5 m/s
and a clear tendency to underestimate strides of high speed.
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Table 1. Mean, minimum, and maximum of the percentage of error above 0.6 m/s and the mean
(standard deviation) of the width of the Bland and Altman limit of agreement for 50 repetitions for
each method.

SVM ODBA
Mean of model error above 0.6 m/s 10.9% 51.4%

Minimum of model error above 0.6 m/s 9.0% 47.8%
Maximum of model error above 0.6 m/s 14.0% 55.1%
Mean of width of the limit of agreement 1.7 m/s 3.9 m/s

Standard deviation 0 0.1
Average RMSE 0.43 0.98

Standard deviation of RMSE 0.02 0.03

−7.5

−5.0

−2.5

0.0

2.5

2 4 6 8 10
Measured and predicted speed (m/s)

B
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/s
)

SVM method

−7.5

−5.0

−2.5

0.0

2.5

2 4 6 8 10
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B
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s 
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ODBA method

Figure 6. Bland and Altman plot for one repetition of the SVM model with its 95% confidence interval
(top) and the overall dynamic body acceleration (ODBA) method (bottom).
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4. Discussion and Conclusions

The objective of our study was to develop a model that could be included in a smart device in
order to provide horse speed per stride from only one IMU situated on the horse wither. The number
of sensors was reduced to a minimum in order to facilitate the daily use of this tool, and the non-use of
GPS was due to our willingness to make this tool work both inside and outside.

Usually, models for speed estimation first detect a stride, then cut the collected signal according
to this stride and apply the calculation model [28–30]. These methods standardized the stride duration
for all individuals, and few of them took into account the stride duration to calculate the speed
parameter leading to a loss of information. In the present work, the authors chose a different way of
pre-processing the collected signals. Precisely, the stride was detected on the Z-axis (dorso-ventral
axis), but 101 points were kept from the maximal peak on the Z-axis. This change allowed keeping
the stride duration information: for high speed, the “stride” would have a signal that contained more
canter cycles than low speed “strides”. This cutting helped increase the accuracy of the machine
learning model. Indeed, the presented model applied to data sampled on real strides showed the
average percentage of errors above 0.6 m/s increase by 2%.

To evaluate the presented SVM method, its results were compared with those of another method
that did not need external inputs to estimate speed per stride from new IMU data: the ODBA method.
In fact, direct signal integration methods, which are commonly used in the human case or in the
horses running on a treadmill case, need strong assumptions to calculate an integration constant for
speed estimation, which cannot be made when the horse moves in real conditions and when the IMU
is not located on the limb [5,17]. Moreover, biomechanical models have not been developed for an
asymmetrical gait such as horse canter.

The novelty of this paper was to propose a model for speed estimation that relied on one IMU
only. The integration of the machine learning model in a device for equestrian sports was innovative
in comparison with other existing systems for equestrian sports based on GPS or in comparison with
human tracking motion systems that were mainly based on the use of a magnetometer or several
IMUs [5]. The machine learning approach allowed the development of a smart device that did not
rely on a GPS for the estimation of a physical phenomenon, here the horse speed at each stride, with
an average accuracy of 0.6 m/s. In fact, for one jumping course of 250 strides, 223 strides would be
estimated with an error lower than 0.6 m/s. This accuracy met the expectations of professionals in
the show jumping discipline, which was their main concern about using or not connected devices.
As expected, as show jumping can be practiced both indoors and outdoors, our tool overcame the GPS
system’s limitations.

The presented model cannot be benchmarked to other works on horses because no one else has
provided a speed per stride estimation. As a matter of fact, the work in [1,12] calculated traveled
distance with preciseness, but the work in [12] aimed to provide a speed estimation in future work.
In human research, a wide literature exists on computing human walking speed from data collected
by one IMU placed on the foot, as for example [29], who compared two methods of walking speed
estimation, whose ARMSE range was 0.2–0.3 km/h (0.06–0.08 m/s) depending on the walking speed
and the method used. The work in [13] estimated an instantaneous velocity decomposed in the three
space directions from two IMUs’ data placed on the pelvis and on the shank of the subject, whose
accuracy was in the same range as the previous study. The work in [31] developed a model for walking
speed estimation based on a regression model, which used data from one wrist worn inertial sensor.
In their paper, the Bland and Altman limits of agreement were lower than 0.2 m/s, and the ARMSE was
between 0.03 and 0.17 m/s depending on the model and the speed regime. For instance, considering
a walking man of 3 km/h (0.8 m/s), the error of the first two previous models was between 6.7 and
10%, and that of [31] was between 3.8 and 21.2%. For a running show jumping horse of average speed
350 m/min (5.8 m/s), the presented model error of 0.43 m/s was about 5.2%. Thus, the present model
could be considered as more accurate than most of the existing ones for human walking.
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As a result, to pursue refining the accuracy of our model, more campaigns of measurement with
the reference system are needed. As a matter of fact, a panel of 58 horses is not sufficient to model
the behavior of all horses due to individual’s diversity. It is also necessary to do more measurements
on curves of various diameters, since this greatly influences the horse’s behavior, the corresponding
collected signals, and therefore, the horse’s speed [32]. In addition, more extreme speeds should be
collected as well, in order to improve the model behavior in those particular cases. Indeed, slow and
extremely fast canter strides represent currently less than 20% of the database, which could explain the
lower model performance for those situations.

Despite its accuracy, our model presented some limits: we should validate the use of an automatic
chronometer to estimate average speed in a future study, comparing it to the camera motion capture
system on straight paths for example. Moreover, the presented model should not be directly transferred
to a discipline other than show jumping because show jumping canter is specific to the discipline.
For example, in endurance horses, flat canter is preferred, while in show jumping, the bounce is
important in order to help the horse gather more vertical than horizontal energy to ease the jumps.
Therefore, in order to adapt our tool to other disciplines, the model has to be expanded with more
data gathered in new situations. The SVM model is transposable to the other equestrian sports and to
bipedal locomotion, as long as consistent data are provided to train the model.

Author Contributions: A.S. contributed to the design of the experiments, data collection, algorithm development,
data analysis, and writing of the manuscript. L.C. contributed to the design of experiments and writing of the
manuscript. J.J. assisted with the writing and revision of the manuscript. P.M. provided the instrumentation
material and contributed to the design of the experiment. All authors read and agreed to the published version of
the manuscript.

Funding: The authors would like to thank the LabCom “CWD-VetLab” for its financial support. The LabCom
“CWD-VetLab” is financially supported by the Agence Nationale de la Recherche (Contract ANR 16-LCV2-0002-01).

Acknowledgments: We gratefully acknowledge Jeanne Parmentier for critical rereading of this paper. We also
thank Camille Hebert, Marie Sapone, and the participants of the measurement campaigns for their support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pfau, T.; Witte, T.; Wilson, A. A method for deriving displacement data during cyclical movement using an
inertial sensor. J. Exp. Biol. 2005, 208, 2503–2514. [CrossRef] [PubMed]

2. Van der Kruk, E.; Reijine, M. Accuracy of human motion capture systems for sport applications;
state-of-the-art review. Eur. J. Sport Sci. 2018, 18, 806–819. [CrossRef] [PubMed]

3. Martin, P.; Chèze, L.; Pourcelot, P.; Desquilbet, L.; Duray, L.; Chateau, H. Effects of the rider on the kinematics
of the equine spine under the saddle during the trot using inertial measurement units: Methodological study
and preliminary results. Vet. J. 2017, 221, 6–10. [CrossRef] [PubMed]

4. Pfau, T.; Boultbee, H.; Davis, H.; Walker, A.; Rhodin, M. Agreement between two inertial sensor gait analysis
systems for lameness examinations in horses. Equine Vet. Educ. 2016, 28, 203–208. [CrossRef]

5. Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of Motion Tracking
Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors 2017, 17. [CrossRef]
[PubMed]

6. Tan, H.; Wilson, A.; Lowe, J. Measurement of stride parameters using a wearable GPS and inertial
measurement unit. J. Biomech. 2008, 41, 1398–1406. [CrossRef] [PubMed]

7. Zihajehzadeh, S.; Loh, D.; Lee, T.J.; Hoskinson, R.; Park, E.J. A cascaded Kalman filter based
GPS/MEMS-IMU integration for sports applications. Measurement 2015, 73, 200 – 210. [CrossRef]

8. Wing, M.G.; Eklund, A.; Kellogg, L.D. Consumer-Grade Global Positioning System (GPS) Accuracy and
Reliability. J. For. 2005, 103, 169–173. [CrossRef]

9. Duong, H.T.; Suh, Y.S. Walking distance estimation of a walker user using a wrist-mounted IMU.
In Proceedings of the 2017 56th Annual Conference of the Society of Instrument and Control Engineers of
Japan (SICE), Kanazawa, Japan, 19–22 September 2017; pp. 1061–1064.

http://dx.doi.org/10.1242/jeb.01658
http://www.ncbi.nlm.nih.gov/pubmed/15961737
http://dx.doi.org/10.1080/17461391.2018.1463397
http://www.ncbi.nlm.nih.gov/pubmed/29741985
http://dx.doi.org/10.1016/j.tvjl.2016.12.018
http://www.ncbi.nlm.nih.gov/pubmed/28283082
http://dx.doi.org/10.1111/eve.12400
http://dx.doi.org/10.3390/s17061257
http://www.ncbi.nlm.nih.gov/pubmed/28587178
http://dx.doi.org/10.1016/j.jbiomech.2008.02.021
http://www.ncbi.nlm.nih.gov/pubmed/18423472
http://dx.doi.org/10.1016/j.measurement.2015.05.023
http://dx.doi.org/10.1093/jof/103.4.169


Sensors 2020, 20, 518 11 of 12

10. Murphy, J.; Carr, H.; O’Neill, M. Animating horse gaits and transitions. In Symposium on Theory and Practice
of Computer Graphics; The Eurographics Association: Sheffield, UK, 2010.

11. Brzostowski, K. Novel approach to human walking speed enhancement based on drift estimation. Biomed.
Signal Process. Control 2018, 42, 18 – 29. [CrossRef]

12. Bosch, S.; Serra Bragança, F.; Marin-Perianu, M.; Marin-Perianu, R.; Van der Zwaag, B.J.; Voskamp, J.;
Back, W.; Van Weeren, R.; Havinga, P. EquiMoves: A Wireless Networked Inertial Measurement System for
Objective Examination of Horse Gait. Sensors 2018, 18. [CrossRef] [PubMed]

13. Sabatini, A.M.; Mannini, A. Ambulatory Assessment of Instantaneous Velocity during Walking Using
Inertial Sensor Measurements. Sensors 2016, 16, 2206. [CrossRef] [PubMed]

14. Zihajehzadeh, S.; Park, E.J. A Gaussian process regression model for walking speed estimation using a
head-worn IMU. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 2345–2348.

15. Zihajehzadeh, S.; Aziz, O.; Tae, C.; Park, E.J. Combined Regression and Classification Models for Accurate
Estimation of Walking Speed Using a Wrist-worn IMU. In Proceedings of the 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21
July 2018; pp. 3272–3275.

16. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer:
Berlin/Heidelberg, Germany, 2006.

17. Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable
Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [CrossRef]
[PubMed]

18. Martin, P. Saddle In Motion: Back Biomechanics of the Ridden Horse: Analysis of the Interactions Between
the Saddle and the Back, and Application to the Development of News Prototypes of Saddles. Ph.D. Thesis,
Université Claude Bernard–Lyon I, Villeurbanne, France, 2015.

19. Wilson, R.; White, C.; Quintana, F.; Halsey, L.; Liebsch, N.; Martin, G.; Butler, P. Moving towards acceleration
for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J. Anim. Ecol.
2006, 75, 1081–1090. [CrossRef] [PubMed]

20. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2017.

21. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer:
New York, NY, USA, 2001.

22. Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis; Springer Series in Statistics; Springer: New York,
NY, USA, 2006.

23. Ramsay, J.O.; Silverman, B.W. Functional Data Analysis, 2nd ed.; Springer Series in Statistics; Springer:
New York, NY, USA, 2005.

24. Smola, A.J.; Bernhard, S. A Tutorial on Support Vector Regression; Stat. Comput. 2004, 14, 199-222. .
25. Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of

Statistics, Probability Theory Group (Formerly: E1071). R Packag. 2008, 1, 5–24
26. Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med Res. 1999,

8, 135–160. [CrossRef] [PubMed]
27. Lehnert, B. BlandAltmanLeh: Plots (Slightly Extended) Bland-Altman Plots. R Package Version 0.3.1.

Available online: https://cran.r-project.org/web/packages/BlandAltmanLeh/index.html (accessed on
17 January 2020)

28. Bichler, S.; Ogris, G.; Kremser, V.; Schwab, F.; Knott, S.; Baca, A. Towards high-precision IMU/GPS based
stride-parameter determination in an outdoor runners’ scenario. Procedia Eng. 2012, 34, 592–597. [CrossRef]

29. Mannini, A.; Sabatini, A. Walking speed estimation using foot-mounted inertial sensors: Comparing machine
learning and strap-down integration methods. Med Eng. Phys. 2014, 36, 1312–1321. [CrossRef] [PubMed]

30. Zhao, Y.; Brahms, M.; Gerhard, D.; Barden, J. Stance Phase Detection for Walking and Running Using an IMU
Periodicity based Approach. In Proceedings of the 10th International Symposium on Computer Science in
Sports (ISCSS), Moscow, Russia, 8–10 July 2019; Chung, P., Soltoggio, A., Dawson, C.W., Meng, Q., Pain, M.,
Eds.; Springer: Cham, Switzerland, 2016; pp. 225–232.

http://dx.doi.org/10.1016/j.bspc.2018.01.002
http://dx.doi.org/10.3390/s18030850
http://www.ncbi.nlm.nih.gov/pubmed/29534022
http://dx.doi.org/10.3390/s16122206
http://www.ncbi.nlm.nih.gov/pubmed/28009854
http://dx.doi.org/10.3390/s18030873
http://www.ncbi.nlm.nih.gov/pubmed/29543747
http://dx.doi.org/10.1111/j.1365-2656.2006.01127.x
http://www.ncbi.nlm.nih.gov/pubmed/16922843
http://dx.doi.org/10.1177/096228029900800204
http://www.ncbi.nlm.nih.gov/pubmed/10501650
https://cran.r-project.org/web/packages/BlandAltmanLeh/index.html
http://dx.doi.org/10.1016/j.proeng.2012.04.101
http://dx.doi.org/10.1016/j.medengphy.2014.07.022
http://www.ncbi.nlm.nih.gov/pubmed/25199588


Sensors 2020, 20, 518 12 of 12

31. Zihajehzadeh, S.; Park, E.J. Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial
Sensor. PLoS ONE 2016, 11, e0165211. [CrossRef] [PubMed]

32. Greve, L.; Dyson, S. Body lean angle in sound dressage horses in-hand, on the lunge and ridden. Vet. J. 2016,
217, 52–57. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0165211
http://www.ncbi.nlm.nih.gov/pubmed/27764231
http://dx.doi.org/10.1016/j.tvjl.2016.06.004
http://www.ncbi.nlm.nih.gov/pubmed/27810211
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Data
	Straight Path
	Curved Path

	Speed Measurement Methods
	Overall Dynamic Body Acceleration Method
	Machine Learning Method
	Methods Comparison


	Results
	Discussion and Conclusions
	References

